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Abstract: Accurate risk-stratification can facilitate precision therapy in oropharyngeal squamous cell
carcinoma (OPSCC). We explored the potential added value of baseline positron emission tomography
(PET)/computed tomography (CT) radiomic features for prognostication and risk stratification
of OPSCC beyond the American Joint Committee on Cancer (AJCC) 8th edition staging scheme.
Using institutional and publicly available datasets, we included OPSCC patients with known human
papillomavirus (HPV) status, without baseline distant metastasis and treated with curative intent.
We extracted 1037 PET and 1037 CT radiomic features quantifying lesion shape, imaging intensity,
and texture patterns from primary tumors and metastatic cervical lymph nodes. Utilizing random
forest algorithms, we devised novel machine-learning models for OPSCC progression-free survival
(PFS) and overall survival (OS) using “radiomics” features, “AJCC” variables, and the “combined” set
as input. We designed both single- (PET or CT) and combined-modality (PET/CT) models. Harrell’s
C-index quantified survival model performance; risk stratification was evaluated in Kaplan–Meier
analysis. A total of 311 patients were included. In HPV-associated OPSCC, the best “radiomics”
model achieved an average C-index ± standard deviation of 0.62 ± 0.05 (p = 0.02) for PFS prediction,
compared to 0.54 ± 0.06 (p = 0.32) utilizing “AJCC” variables. Radiomics-based risk-stratification of
HPV-associated OPSCC was significant for PFS and OS. Similar trends were observed in HPV-negative
OPSCC. In conclusion, radiomics imaging features extracted from pre-treatment PET/CT may provide
complimentary information to the current AJCC staging scheme for survival prognostication and
risk-stratification of HPV-associated OPSCC.
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1. Introduction

Over past decades, the incidence of oropharyngeal squamous cell carcinomas (OPSCC) has
continuously increased, which is attributed to a marked rise in prevalence of sustained high-risk
human papillomavirus (HPV)-infection in the oropharynx [1–4]. Despite arising from the same
pharyngeal site, HPV-associated and HPV-negative OPSCC are considered separate cancer entities with
diverging demographic, biologic, and, most notably, prognostic characteristics. HPV-positive cancers
are associated with longer overall survival (OS), progression-free survival (PFS), and more favorable
treatment response as compared to the HPV-negative form [5–8]. Consequently, the 8th edition of
the American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC)
staging manuals adopted separate staging schemes for survival risk-stratification and prognostication
of HPV-associated and HPV-negative OPSCC [9–12].

Advancements in high-throughput computing and machine-learning led to emergence of the
“-omics” concept, referring to collective characterization and quantification of pools of biologic
information, such as genomics, proteomics, or metabolomics. Radiomics refers to automated
extraction of high-dimensional, quantitative descriptor (“feature”) sets from medical images for
various applications, including survival modelling, treatment guidance, and biomarker design [13–17].
Such features correlate with clinical outcome and convey medically meaningful information
describing tumor heterogeneity, microenvironment, pathophysiology, and mutational burden [13,18,19].
While prior studies demonstrated prognostic value of radiomics biomarkers in head and neck
cancers [15,16,20–28], none have incorporated or compared the AJCC 8th edition staging scheme in
OPSCC survival modelling and stratification. In this study, we explored the potential added value
of radiomics biomarkers in prognostication of PFS and OS—beyond the AJCC staging scheme—in a
multi-institutional cohort.

[18F]Fluorodeoxyglucose positron emission tomography (PET) and computed tomography (CT)
are a mainstay of OPSCC staging, treatment planning, and surveillance. We applied machine-learning
algorithms to devise prognostic radiomics biomarkers for OPSCC using baseline PET and/or CT
scans from a multi-institutional cohort. Then, we compared the radiomic biomarkers’ performance
with AJCC staging for prognostication and risk-stratification of PFS and OS in HPV-associated and
HPV-negative subgroups.

2. Results

2.1. Cohort Characteristics

For the PFS study arm, 311 OPSCC patients (235 HPV-associated and 76 HPV-negative) met
inclusion criteria; 94 (30.2%) experienced events. For the OS study arms, 306 OPSCC patients
(233 HPV-associated and 73 HPV-negative) met inclusion criteria; 58 (19.0%) died. The AJCC staging,
demographics, treatment, and imaging characteristics are summarized in Table 1, and are separately
reported for HPV subgroups in Tables S1 and S2.
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Table 1. Patients’ Characteristics.

Survival Endpoint Progression-Free Survival Overall Survival

Number of patients 1—n 311 306

Included lymph nodes—n 475 462

Events—n (%) 94 (30.2%) 58 (19.0%)

Follow-up (days)—median (IQR) 1170 (798–1645) 1197 (818–1656)

Data source—n (%)
Yale 201 (64.6%) 200 (65.4%)
TCIA 110 (35.4%) 106 (34.6%)

Sex—n (%)
Male 253 (81.4%) 249 (81.4%)
Female 58 (18.6%) 57 (18.6%)

Age (years)—mean (SD) 60.61 (9.24) 60.60 (9.28)

HPV status 2—n (%)
Positive 235 (75.6%) 233 (76.1%)
Negative 76 (24.4%) 73 (23.9%)

Smoking—n (%)
Never-smoker 76 (24.4%) 76 (24.8%)
Smoker 143 (46.0%) 142 (46.4%)

Pack-years—median (IQR) 20 (10–40) 20 (10–40)
Pack-years unknown—n 20 20

Unknown 92 (29.6%) 88 (28.8 %)

T stage 3—n (%)
T1 43 (13.8%) 42 (13.7%)
T2 120 (38.6%) 120 (39.2%)
T3 99 (31.8%) 97 (31.7%)
T4 49 (15.8%) 47 (15.4%)

N stage 3—n (%)
N0 60 (19.3%) 59 (19.3%)
N1 149 (47.9%) 149 (48.7%)
N2 97 (31.2%) 94 (30.7%)
N3 5 (1.6%) 4 (1.3 %)

Overall stage 3—n (%)
I 117 (37.6%) 117 (38.2%)
II 91 (29.3%) 91 (29.7%)
III 50 (16.1%) 47 (15.4%)
IV 53 (17.0%) 51 (16.7%)

Included lymph nodes/patient—range 0–8 0–8

Primary treatment—n (%)
CCRT or CBRT 208 (66.9%) 204 (66.7%)
RT alone 28 (9.0%) 27 (8.8%)
Surgery

Without adjuvant therapy 13 (4.2%) 13 (4.2%)
With adjuvant RT, CCRT, or CBRT 62 (19.9%) 62 (20.3%)

PET 4—mean (SD)
Slice thickness (mm) 3.40 (0.38) 3.39 (0.38)
In-plane pixel spacing (mm) 4.30 (0.91) 4.30 (0.92)
In-plane image matrix (n × n) 147.16 (58.88) × idem 147.32 (59.34) × idem

CT 4—mean (SD)
Slice thickness (mm) 3.12 (0.55) 3.10 (0.54)
In-plane pixel spacing (mm) 1.12 (0.18) 1.12 (0.18)
In-plane image matrix (n × n) 512 × 512 512 × 512

1 After exclusion of patients with uneventful follow-up <18 months from each respective study arm, subject counts
differ in the progression-free survival (PFS) and overall survival (OS) cohorts. 2 The American Joint Committee
on Cancer (AJCC) staging, demographics, treatment, and imaging characteristics of human papillomavirus
(HPV)-associated and HPV-negative subjects are separately reported in Tables S1 and S2. 3 AJCC 8th edition
staging manual T/N/overall stage [9]. 4 Values are from original images before pre-processing. CBRT = concurrent
bioradiotherapy with cetuximab; CCRT = concurrent platinum-based chemoradiotherapy; IQR = interquartile range;
RT = radiotherapy; SD = standard deviation; TCIA = The Cancer Imaging Archive.
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2.2. Survival Model Performance

OPSCC random survival forest (RSF) models combining radiomics features and AJCC staging
(T-, N-, and overall-stage) yielded higher averaged Harrell´s C-index scores than AJCC models in
the PFS and OS study arms for both HPV-associated and HPV-negative cohorts in the majority of
permutations (Figures 1 and S1). Similarly, survival models relying on radiomics predictors alone
outperformed AJCC baseline models in the majority of permutations (Figures 1 and S1).
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Figure 1. Heatmap depicting mean Harrell’s C-index in validation folds across 33 repeats of threefold
stratified cross-validation in the (a) HPV-associated and (b) HPV-negative cohorts. Models selected
for further evaluation are highlighted in the figure. All 24 methodological approaches to generate
optimized radiomics signatures for radiomics and combined models were applied in each study arm
(OS and PFS): 4 dimensionality reduction techniques (HClust, none, pRF, RIDGE) × 2 volume of
interest (VOI) sources × 3 imaging modalities. The corresponding AJCC models are also reported.
Detailed mean Harrell’s C-index ± standard deviations are reported in Figure S1. AJCC = AJCC
model; Comb = combined model; HClust = hierarchical clustering; none = no dimensionality reduction
applied; OS = overall survival; PFS = progression-free survival; pRF = Pearson correlation-based
redundancy reduction with random survival forest variable importance; Rad = radiomics model;
RIDGE = Cox regression with RIDGE regularization adapted for feature selection.

In the HPV-associated subgroup, the best PFS radiomics model (using PET/CT consensus volume
of interest (VOI) radiomics features) achieved an average C-index ± SD of 0.62 ± 0.05 (p = 0.02)
compared to 0.54 ± 0.06 (p = 0.32) from AJCC staging; and the best OS radiomics model (using PET
consensus VOI radiomics features) yielded 0.63 ± 0.08 (p = 0.06) compared to 0.55 ± 0.08 (p = 0.34)
from AJCC staging (Figures 1 and S1).

In the HPV-negative subgroup, the best PFS radiomics model (using CT primary tumor radiomics
features, and hierarchical clustering feature reduction) achieved an average C-index ± SD of 0.55 ± 0.07
(p = 0.25) compared to 0.50 ± 0.06 (p = 0.51) from AJCC staging, and the best OS radiomics model
(using CT primary tumor radiomics features) yielded 0.60 ± 0.09 (p = 0.17) compared to 0.50 ± 0.08
(p = 0.53) from AJCC staging. Combined models utilizing radiomics features and AJCC variables
yielded similar performance (Figures 1 and S1).
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2.3. Time-Dependent Survival Model Evaluation

Models selected for further evaluation are highlighted in Figure 1. Performance curves (Figure 2)
demonstrate time-dependent performance of PFS and OS models. The radiomics and combined PFS
models had superior prognostic accuracy compared to the AJCC model throughout 5 years of follow-up
in HPV-associated and HPV-negative cohorts. In the OS study arm, performance curves revealed
superiority of radiomics-based models throughout follow-up in the HPV-negative cohort; however,
while the radiomics and combined models outperformed the AJCC model in the first ≈3.5 years of
follow-up in the HPV-associated cohort, the AJCC model was slightly superior thereafter.
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Figure 2. Time-dependent performance curves depicting select models’ (highlighted in Figure 1)
prognostic abilities throughout follow-up in the (a) HPV-associated and (b) HPV-negative cohorts.
For comparison, corresponding AJCC models’ curves are depicted.

2.4. Kaplan–Meier Analysis

Radiomics-based PFS risk stratification was significant in the HPV-associated cohort (for 2-, 3-,
4-, and 5-year PFS: p = 0.01, p = 0.005, p = 0.007, and p = 0.02, respectively), whereas AJCC staging
was not significant (p > 0.05; Figures 3a and S2a). Pooling N-stages (N0 + N1 vs. N2 + N3) yielded
significant 2-year and 3-year PFS stratification; however, radiomics risk groups had more balanced
subject counts (Figure S2a). Neither radiomics nor AJCC staging could significantly differentiate PFS
in the HPV-negative cohort (p > 0.05, Figures 3c and S2c).

The 3-, 4-, and 5-year radiomics-based OS stratifications were significant in the HPV-associated
cohort (p = 0.001, p = 0.02, and p = 0.02, respectively), while the 2-year OS p-value approached
significance (p = 0.15; Figure 3b). Similarly, 4- and 5-year radiomics risk groups had significantly
different OS in the HPV-negative cohort (both p = 0.01), while the 2- and 3-year OS p-values approached
significance (p = 0.09 and p = 0.06, respectively; Figure 3d). AJCC staging did not achieve significant
OS stratification (p > 0.05; Figures 3b,d and S2b,d).
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Figure 3. Kaplan–Meier plots with log-rank test p-values depicting radiomics- and AJCC overall stage
risk-stratification in HPV-associated (a,b) and HPV-negative (c,d) cohorts in the OS and PFS study arms.
The AJCC T- and N-stage Kaplan–Meier plots, and plots with grouped AJCC variables are included in
Figure S2.

3. Discussion

Currently, pre-treatment imaging of head and neck cancers serves the purpose of evaluating
primary tumor dimensions, anatomical extent, involvement of regional lymph nodes, and detecting
distant metastases, which constitute main components of AJCC/UICC staging. However, our results
suggest quantitative imaging biodata reflecting tissue density, texture patterns, lesion shape,
and metabolic activity of primary tumors and metastatic cervical nodes may encode valuable
information pertaining to tumor behavior with potential prognostic relevance. In both HPV-associated
and HPV-negative OPSCC, we observed trends suggesting radiomic analysis may provide
complementary value for prognostication and risk-stratification beyond AJCC staging. Statistical
significance was consistently attained for PFS survival prognostication and risk-stratification in
HPV-associated OPSCC. Additionally, radiomics-based OS risk-stratification outperformed AJCC
staging variables in HPV-associated OPSCC, with similar trends in HPV-negative patients. Notably,
models utilizing PET radiomics or combined PET and CT feature sets predominantly outperformed
CT-based survival prognostication in the HPV-associated subgroup; additionally, consensus VOI models
utilizing radiomics information from both primary tumor and metastatic nodes were usually superior.
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Our methodology may be applied in future larger cohorts to generate uniformly applicable and
objective imaging biomarkers for prognostic risk-stratification of OPSCC. Additionally, our approach
enables inclusion of additional prognostic variables into PFS and OS models for risk-stratification of
head/neck cancer subgroups [29].

To enhance generalizability and model robustness against heterogeneity in imaging and
reconstruction protocols and scanning equipment, we acquired a multi-institutional dataset provided
by cancer centers in the United States and Canada. Overall, AJCC models had modest prognostic
accuracy in HPV-positive and HPV-negative subsets, achieving an averaged C-index ± SD of up to
0.55 ± 0.08 (p = 0.34, OS analysis of HPV-positive patients), which is likely attributable to low event
rates and relatively small cohort sizes. On the other hand, in the HPV-associated subgroup, a PET/CT
radiomics model using the full set of consensus VOI features for PFS prognostication produced an
averaged C-index ± SD of 0.62 ± 0.05 (p = 0.02), and a PET model using consensus features for OS
prediction achieved 0.63 ± 0.08 (p = 0.06). We observed similar trends in HPV-negative OPSCC,
despite using a smaller cohort.

To illustrate models’ prognostic abilities throughout the follow-up period, we plotted performance
curves (Figure 2). Findings from heatmaps are again reflected, with radiomics or combined models
predominantly outperforming AJCC models. The differences between models were more notable
in early years of follow-up, which could be related to data sparsity in later years of follow-up. It is
likely feasible to train machine-learning models with improved long-term prognostication using larger
cohorts with longer follow-up.

Most prior OPSCC radiomics studies relied on generalizations of linear models to examine
radiomics features and predict survival [22–25]. We applied a random forest machine-learning algorithm
specifically designed to handle right-censored survival data (“random survival forest”) [30–32],
with proven superiority in utilizing the full prognostic capability of radiomics data [28]. Decision
tree growing—which is repeatedly performed in random forest training—resembles decision-making
that physicians may apply in clinical practice—with multiple variables present, the algorithms may
first select the most prognostic one (e.g., HPV-status) to stratify cases. Thereafter, further variables
(e.g., AJCC-staging, radiomics feature) are incorporated in growing decision trees to sub-stratify
patients and refine survival prognostication [30].

Moreover, radiomics-based stratification generated high-risk and low-risk groups with significantly
different PFS and OS in HPV-associated OPSCC for the 3-, 4-, and 5-year follow-up endpoints
(Figure 3). In comparison, AJCC 8th edition overall-, T-, and N-staging exhibited modest abilities in
risk-stratification (Figures 3 and S2), suggesting complementary value of radiomic features for OPSCC
risk-stratification in addition to HPV-status and AJCC 8th edition staging.

It should be noted that C-indices reported for AJCC models in our study were averaged across
validation folds in repeated cross-validation analysis utilizing overall stage and T-/N-stage as prognostic
variables, which is methodologically different from some prior studies [33–35]. Dissimilarities in
analysis methodology, sample size, length of follow-up, and numbers of events may have contributed
to the differences between AJCC model C-indices in our study and prior reports.

Despite using a multi-institutional cohort, the sample size and length of follow-up might not
suffice for training radiomics models for long-term prognostication. Our study was also limited by its
lack of fully independent validation in external cohorts and adjustment for other OPSCC outcome
predictors. Regional metastatic spread for segmentation was determined by expert read of PET/CT
scans, but without tissue sampling from all nodes. HPV-status was ascertained through following
institutional standards in The Cancer Imaging Archive (TCIA) cohorts with a heterogenous array of
testing methods.
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4. Materials and Methods

4.1. Data Acquisition

We retrospectively acquired clinical and imaging data from (1) Yale’s Smilow Hospital cancer
registry from 2009–2019, and (2) two publicly available TCIA collections [36]: the “Head-Neck-PET-CT”
collection from four Canadian institutions (“Canadian” cohort) [37,38] and the “Data from Head and
Neck Cancer CT Atlas” collection from MD Anderson Cancer Center (“MD Anderson” cohort) [39,40].
Institutional review board approval was obtained from the Yale University ethics committee
(IRB protocol #2000024295) and informed consent was waived, given the retrospective study design.
TCIA datasets are de-identified and providing entities ensure ethical compliance.

Patients with (1) histopathologically confirmed OPSCC, (2) known HPV-status, (3) pre-treatment
PET and non-contrast CT scans, and (4) complete follow-up information were included. We excluded
patients (1) presenting with distant metastases upon initial staging, (2) receiving palliative therapy
and/or denying treatment, (3) recurrent OPSCC at presentation, (4) with CT artifacts affecting >50%
of the primary gross tumor volume on visual evaluation [41], and (5) with uneventful follow-up
<18 months. Biopsies or cytologic sampling prior imaging were permissible.

Patients from Yale were regularly followed up for cancer surveillance with physical examinations,
endoscopy, and imaging; additional tissue sampling was performed at oncologists’ discretion.
Disease progression or recurrence was ascertained by biopsies or unequivocal imaging evidence;
the latter was confirmed by additional tissue sampling or documented response to anticancer
therapy. For TCIA cohorts, annotations provided within the datasets were utilized to determine
study endpoints. HPV association was determined by high-risk HPV-specific [42] testing and/or
p16-immunohistochemistry, and “Yale” test results were interpreted following the Guideline from the
College of American Pathologists [42]. An overall HPV status is provided in TCIA for the “Canadian”
cohort, reflecting institutional testing and interpretation, and a high-risk HPV in situ hybridization
status was available for the “MD Anderson” dataset. PET/CT imaging and reconstruction were
performed at the source institutions utilizing standard clinical protocols.

4.2. Lesion Segmentation

To facilitate radiomics feature extraction, we defined separate PET and CT VOI for primary tumors
and individual metastatic cervical lymph nodes. Each lesion was manually contoured (“segmented”)
on PET axial slices, and segmentations were transferred to the co-registered CT and adapted to exclude
uninvolved bone, air, and preserved fat planes. CT axial images with streak artifacts affecting the
VOI were excluded from analysis on the basis of visual assessment, and lymph nodes with artifacts
in >50% of the VOI were entirely disregarded [41]. Segmentations were verified and adjusted by
experienced neuroradiologists, who additionally performed cancer staging according to the 8th edition
AJCC Manual [9]. We utilized 3D-Slicer version 4.10.1 for image review and VOI segmentation [43,44].
Figure 4 summarizes the segmentation and feature extraction pipeline.

4.3. Radiomics Feature Extraction

An automated image pre-processing pipeline facilitated homogenized radiomics analysis [19].
As detailed in the supplementary methods, we performed PET grey scale normalization, PET/CT
voxel size homogenization, CT re-segmentation, generation of 10 derivative images per original scan,
and grey scale discretization prior to radiomics feature extraction.

Subsequently, we extracted 1037 PET and 1037 CT radiomics features per primary tumor or lymph
node: 18 first-order and 75 texture-matrix features from each lesion’s representation in the original
and derived PET and CT images, and 14 volumetric shape features from the original series (Table S3
includes a comprehensive list of features). We customized a Pyradiomics version 2.1.2 pipeline for
image pre-procession and feature extraction [45,46].
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Given the variable robustness of individual radiomics features to inter- and intra-observer
segmentation inconsistencies [47–52], we determined feature stability, retaining only stable features for
analysis; the methodology and results are reported in the supplementary methods and Table S4 [19].Cancers 2020, 12, x 10 of 16 
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Figure 4. Segmentation, radiomics feature extraction, and survival modelling pipeline. (a) Positron
emission tomography (PET)-guided manual segmentation of the primary tumor and individual
metastatic cervical lymph nodes on PET and computed tomography (CT) axial slices, sagittal
images, and a 3D-renderered image are provided for spatial awareness. (b) Extraction of first-order,
shape, and texture matrix features yielded 1037 radiomics features per imaging modality and per
lesion. (c) Random forest machine-learning models with 1000 decision trees were applied for survival
prediction and risk-stratification. (d) Model performance was assessed in threefold cross-validation
(left), wherein all subjects were assigned to three folds by stratified random split; the models were
trained on two folds, and one fold was used for model validation. Model performance was visualized
in performance curves (right).

4.4. Survival Study Arms and Cohorts

Survival was defined as the time interval from OPSCC diagnosis to the first event in a study arm,
with censoring applied at loss of follow-up. Events in the PFS study arm were defined as locoregional
recurrence or progression, distant metastasis, or death from any cause, and events in the OS study
arm were deaths from any cause. Patients with uneventful follow-up <18 months were excluded
from each respective study arm. This approach allows training the prognostic algorithm on survival
data with adequate event-density in early follow-up, avoiding event sparsity-related performance
deterioration. Survival analysis in each study arm was separately performed for the HPV-associated
and HPV-negative study cohorts.
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4.5. Survival Modelling

For each study arm, we generated survival models using (1) clinical “AJCC” staging, i.e., overall
stage, T-stage, and N-stage; (2) “radiomics” signatures; and (3) “combined” models using AJCC
staging and radiomics signatures. Survival models were fitted on the combined dataset including
all subjects and were evaluated in HPV-associated and HPV-negative study cohorts. AJCC features
were concatenated with HPV status and were included as categorical variables, including overall stage
with seven levels (I–IV and I–III in HPV-negative and HPV-associated cancers, respectively), and T-
and N- stage with eight levels each (T1-T4 and N0-N3 in HPV-negative and HPV-associated cancers,
respectively). Since patients with distant metastasis were excluded from analysis, no HPV-associated
stage IV patients were included.

We compared several approaches to generate optimized radiomics signatures for radiomics and
combined models. Three feature dimensionality reduction techniques were compared to the prognostic
performance of the full feature set (details in the supplementary methods; abbreviations in Figure 1).
Feature sets were derived from two VOI sources of radiomics input: (a) the primary tumor lesion,
and (b) consensus of the primary tumor and all metastatic cervical nodes (i.e., “virtual” consensus VOI
as described by Yu et al. [53]). Feature sets from three imaging modalities (PET, CT, PET and CT) were
utilized for model development. All 24 methodological combinations (4 dimensionality reduction
techniques × 2 VOI sources × 3 imaging modalities) were applied in each study arm.

R version 3.6.0 was utilized for statistical analysis [54]. Using the predictor sets (AJCC, radiomics
and combined) described above, we trained and evaluated random survival forest (RSF) [30] models
using the “ranger” package (version 0.12.1) [32] configured to grow 1000 trees per forest using a
C-index split rule [31]. Other parameters were set according to default package recommendations.

4.6. Cross-Validation and Performance Evaluation of Survival Models

We devised a framework applying 33 repeats of threefold stratified cross-validation to assess
prognostic model performance, with the event/nonevent groups, HPV-status groups, and time to
event/censoring as strata. In each cross-validation iteration, consensus VOI generation (if applicable),
radiomics feature standardization, dimensionality reduction, and RSF training were consecutively
performed on the training folds, and RSF performance was evaluated in the validation fold. This strategy
yields accurate estimates of models’ prognostic capability in new cohorts, as “information leakage”
between folds is rigorously avoided.

Harrell’s C-index [31,55,56] quantified model performance in validation folds, and each model’s
score was averaged across all 99 cross-validation permutations. We selected the radiomics and combined
models yielding the highest average C-index per each combination of study cohort (HPV-associated
and HPV-negative) and study arm (PFS and OS) for further evaluation in those respective datasets.

A corrected paired t-test (“corrected repeated k-fold cv test” [57,58]) was applied to compare
select models’ C-index distribution across validation folds against random predictions (i.e., the same
fitted models applied in validation folds with randomly resampled survival outcome).

Uno’s estimator of cumulative/dynamic area under the curve (AUC) for right-censored survival
data [59,60] was computed in each validation fold to track model performance throughout follow-up,
and was averaged across 33 cross-validation repeats. The resulting time-dependent performance
curves were plotted for 5 years of follow-up. The radiomics data of selected models were utilized in
risk-stratification analysis.

We used the R “Hmisc” package [61] for C-index calculation, the “survAUC” package [62]
to compute Uno’s AUC estimator, and the “geom_smooth” function implemented in “ggplot2”
(version 3.2.1) [63] to apply “LOESS” smoothing [64] on performance curves.
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4.7. Risk-Stratification and Kaplan–Meier Analysis

To investigate the potentials of quantitative imaging for risk-stratification in HPV-associated
and HPV-negative OPSCC, we utilized radiomics features for binary classification (high-risk vs.
low-risk) and subsequently subjected cohorts to Kaplan–Meier analysis. For risk-stratification, we used
random classification forest (RCF) models (“ranger” package version 0.12.1) [32] configured to grow
1000 trees per forest with the remaining parameters in default setting. The framework applying
33 repeats of threefold stratified cross-validation was adapted, with the event/nonevent groups as
strata. Each patient’s RCF output (probability of experiencing an event) was averaged across validation
folds to generate risk scores. A cutoff was selected by maximizing Youden’s index in receiver operating
characteristic analysis, and patients with risk scores greater than the cutoff were assigned to the
“radiomics” high-risk group.

All classified patients were subjected to Kaplan–Meier analysis with their radiomics risk group,
and a log-rank test ascertained statistical significance defined as p < 0.05. For comparison, AJCC overall
stage groups, T-stage, and N-stage were applied for risk-stratification.

The radiomics-only datasets of survival models selected for further evaluation were used
as RCF input without feature reduction applied, and risk-stratification models were trained and
evaluated separately in each study cohort and study arm. To label subjects for Kaplan–Meier analysis,
cutoffs corresponding to 2, 3, 4, and 5 years of follow-up were used; patients experiencing events
before a given cutoff were labeled as positive instances, subjects lost-to-follow-up before a cutoff were
excluded, and all remaining patients were labelled negative and censored at the cutoff. RCF models
were trained for each cutoff, and separate Kaplan–Meier plots were generated using radiomics risk
groups and AJCC variables for risk-stratification. This approach allows supplying “dense” survival
data to RCF algorithms (i.e., no censoring) while enabling accurate comparison with AJCC stratification.

5. Conclusions

Pre-treatment PET/CT radiomics biomarkers may provide complementary prognostic value
for OPSCC beyond AJCC/UICC 8th edition staging via systematic quantification of tissue density,
texture patterns, lesion geometry, and metabolic properties. Our results suggest an added value of
radiomics biomarkers for survival prognostication and risk-stratification in HPV-associated OPSCC,
with similar trends in HPV-negative cancers. Pending careful development and rigorous validation in
larger multi-institutional/multi-national datasets, radiomics markers may improve prognostication and
risk-stratification in a clinical setting and pave the road for personalized treatment and targeted therapy.
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Abbreviations

AJCC American Joint Committee on Cancer
AUC area under the receiver operating characteristic curve
CT computed tomography
HPV human papillomavirus
IQR interquartile range
OPSCC oropharyngeal squamous cell carcinoma
OS overall survival
PET [18F]fluorodeoxyglucose positron emission tomography
PFS progression-free survival
RCF random classification forest
RSF random survival forest
SD standard deviation
TCIA The Cancer Imaging Archive
UICC Union for International Cancer Control
VOI volume of interest
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