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Abstract

Cassava will have a vital role to play, if food security is to be achieved in Sub-Saharan

Africa, especially Central and East Africa. The whitefly Bemisia tabaci poses a major threat

to cassava production by small holder farmers in part due to their role as a vector of cassava

mosaic begomoviruses (CMBs) and cassava brown streak ipomoviruses (CBSIs). In the

present study untargeted metabolomics has been used as a tool to assess natural variation,

similarities and attempts to identify trait differentiators among an East African cassava diver-

sity panel that displayed tolerance/resistance to the effects of Bemisia tabaci infestation.

The metabolome captured, was represented by 1529 unique chemical features per acces-

sion. Principal component analysis (PCA) identified a 23% variation across the panel, with

geographical origin/adaption the most influential classification factors. Separation based on

resistance and susceptible traits to Bemisia tabaci could also be observed within the data

and was corroborated by genotyping data. Thus the metabolomics pipeline represented an

effective metabotyping approach. Agglomerative Hierarchical Clustering Analysis (HCA) of

both the metabolomics and genotyping data was performed and revealed a high level of sim-

ilarity between accessions. Specific differentiating features/metabolites were identified,

including those potentially conferring vigour to whitefly tolerance on a constitutive manner.

The implications of using these cassava varieties as parental breeding material and the

future potential of incorporating more exotic donor material is discussed.

Introduction

Plant breeding relies on the selection of accessions carrying desirable agronomic and con-

sumer traits. This is not always a straightforward task, especially when the resolution or sensi-

tivity of the phenotyping methodology is low or heavily influenced by environmental factors.

The robustness of phenotyping criteria for assessing disease resistance in cassava has been

already addressed, and has highlighted the effects of the environment on the visible symptoms

of disease [1] and on the development rate of its vector, the whiteflies [2]. In the absence of
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reliable or clearly distinguishable phenotypes, metabolite analysis has been introduced as a

tool for aiding selection and assessing effects of genetic differences, both among candidate

donors (parents), siblings or even families derived from genetic crosses [3–6]. Food security is

one of the major challenges facing society in the 21st century and over 800 million of people

rely on cassava production to subsist. Viral diseases like the cassava mosaic and cassava brown

streak diseases (CMD and CBSD) constitute one of the major threats for cassava production in

Sub-Saharan Africa (SSA) [7]. The presence of these viruses was first detected in Uganda and

Tanzania back in the 1930s. CMD has been reported throughout SSA while CBSD is currently

restricted to Eastern and Southern Africa but its predicted spread to West Africa is considered

highly damaging. Outbreaks of CMD were controlled in the past through integrated pest man-

agement (IPM) measures including the release of advanced varieties bred for disease resistance

[1, 8] but those were susceptible to CBSD. This together with the “superabundant” populations

of African cassava whitefly Bemisia tabaci in the 2000s [9] caused new CBSD outbreaks [10].

African cassava whitefly, Bemisia tabaci (Gennadius) sensu lato is the vector of both viral

agents causing CMD and CBSD but it also affects crop production directly, through the feed-

ing of adults and nymphs, which in turn promotes the colonisation of sooty mould fungus on

leaves. Since the raise and spread of African cassava whitefly superabundant populations, the

development of improved cassava varieties possessing virus and whitefly resistance has consti-

tuted one of the core milestones of national breeding programs in Sub-Saharan African coun-

tries and international consortiums [8, 11, 12]. Efforts in finding natural sources of African

whitefly (Bemisia tabaci) resistance have been focused on collections of local landraces and

advanced lines originally developed for virus resistance [13–17] with the intention of pyramid-

ing both disease and vector resistance into farmer-preferred varieties adapted to local agro-

ecosystems.

In order to increase agricultural production and combat food (and nutritional) security,

new crop varieties are urgently required [18]. In the case of cassava, varieties displaying toler-

ance to biotic and abiotic stresses, while maintaining consumer quality will be vital. To develop

such lines, new alleles or combinations from “exotic” diverse germplasm need to be intro-

gressed into existing donor or domesticated germplasm. In the present article we have used

metabolomics as a phenotyping tool (metabotyping), in conjunction with genotyping by

sequencing to characterise elite and pre-breeding materials found among cassava varieties

presently used in East Africa. These materials are commonly referred to as the “5CP” material

due to their assembly in the 5CP project [14]. Despite their importance as core resources for

the development of new cassava varieties, very little detail is known on their genetic pedigree

or chemical composition. The present study has provided valuable insights into these criteria

that underpin their use in further plant breeding activities.

Materials and methods

Plant material

The clean and virus-free plant material used in this study originated from the 5CP project

[14]. Plants were grown in a mixture of soil and compost (John Innes No.2; Fargo Ltd., Arun-

del, UK) in an insect-free quarantine glasshouse at 25 ± 5˚C, 50–60% relative humidity and

L14:D10 (light:dark) hours for three months. The 5CP´s cassava collection of elite varieties

(Table 1) were grown under identical greenhouse conditions in order to minimise environ-

mental effects and assess natural chemical variation under controlled conditions. Between 3

and 6 biological replicates per variety were collected when possible and metabolite composi-

tion analysed.
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Table 1. Descriptive metadata of the East African elite cassava collection recovered from literature surveillance.

Classification based on plant’s

reaction to disease

Classification based on symptoms severity

and virus titre

Country of

origin

Code Common name B. tabaci
phenotype

CMD

phenotype

CBSD

phenotype

African CBSVs phenotype

Kenya KE1 LM1/2008/363 T [14, 17] T [14, 17] S [27]

KE2 F19-NL T [14, 17] T [14, 17] S [27]

KE3 Tajirika T [14, 17] T [14, 17] S [27]

KE4 Shibe 16.5 [21]+ T [14, 17] T [14, 17] HS [27]

KE5 F10-30-R2 16.9 [21]+ T [14, 17] T [14, 17] HS [27]

KE6 Kibandameno S [14, 17] S [14, 17] S [27]

Malawi MAL1 Yizaso T [14, 17] T [14, 17] HS [27]

MAL2 Mbundumali S [14, 17] S [14, 17] S [27]

(= Manyokola [28])

MAL3 Sauti 15.6 [21]+ T [14, 17] T [14, 17] HS [27]

(= CH92/077 [28])

MAL4 CH05/203 14.1 [21]+ T [14, 17] T [14, 17] S [27]

MAL5 Sagonja 28.3 [21]+ T [14, 17] T [14, 17] HS [27]

MAL6 Kalawe 25.1 [21]+ T [14, 17] T [14, 17] S [27]

Mozambique MOZ1 Oekhumelela T [14, 17] T [14, 17] HS [27]

MOZ2 Eyope 25.9 [21]+ T [14, 17] T [14, 17] HS [27]

MOZ3 Nziva S [14, 17] T [14, 17] S [27]

MOZ4 Colicanana S [14, 17] T [14, 17] S [27]

MOZ5 Orera 18.9 [21]+ S [14, 17] T [14, 17] S [27]

Tanzania TZ1 KBH 2002/ 066 27.2 [21]+ T [14, 17] T [14, 17] HS [27]

(= Kipusa [27])

TZ2 Pwani T [14, 17] T [14, 17] S [27]

TZ3 Mkumba 9.4 [21]+ S [14, 17] T [14, 17] S [27]

TZ4 Kizimbani T [14, 17] T [14, 17] HS [27]

TZ5 KBH 2006/ 26 10.3 [21]+ T [14, 17] T [14, 17] HS [27]

(= Mkuranga1 [27])

TZ6 Albert 12.5 [21]+ R [14, 17] S [14, 17] HS [30], S [27]

WF-S [29]

TZ7 Kiroba S [14, 17] T [14, 17] S [27, 30]

TZ8 Mkombozi 20.4 [21]+ R [14, 17] S [14, 17] S [27]

(= MM 96/4684 [28])

Uganda UG1 Nase 3 16 [21]+ T [14, 17] T [14, 17] S [27]

(= TMS 30572 [16], Migyera, Nicass 1

[28])

WF-S [15, 16]

UG2 TME 204 WF-M [13]�� R [14, 31] S [14, 31] HS [27, 30]

UG3 Tz 130 11.6 [21]+ R [14, 17, 31] T [14, 17, 31] HS [27], S [30]

WF-R [15]

(= NaroCass1, NAM130, MM2006/

130�)

WF-M [13]��

UG4 Nase 18 12.5 [21]+ R [14, 17] T [14, 17] HS [27]

UG5 72-TME 14 WF-M [13]�� R [31] S [17, 31] HS [27]

(= Nase 19)

UG6 Nase 14 20.7 [21]+ R [14, 17, 31] T [14, 17, 31] HS [27], S [30]

(= MM 96/4271, also bread as MM

192/0248 [32])

WF-R [16]

(Continued)
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Sample collection and preparation

The 4th full expanded leaf of 3 months old plants was collected and used for analysis. Leaves

collected were immediately frozen in dry ice, lyophilised for 2 days and ground to a fine pow-

der with a TissueRuptor (Qiagen). Ten milligrams of freeze-dried powdered leaves were used

for extraction of metabolites and a quality control (QC) sample was prepared by pooling 10

mg of each variety and biological replicate.

Metabolites’ extraction

Addition of methanol:water:chloroform (1:1:2) (vol/vol/vol) to 10 mg of freeze-dried leaf

material enabled separation of semi-polar metabolites in the epiphase and non-polar metabo-

lites in the organic phase. Solvent extraction was carried out for 1 hr at room temperature with

continuous shaking and the phase separation obtained after centrifugation of this mixture.

Semi-polar extracts were filtered (0.45 μm nylon membranes), centrifuged (14 000 rpm, 5

min) and an aliquot of 95 μl spiked in with 5 μl of internal standard (genistein 0.2 mg/ml),

were then subjected to LC-MS analysis. Details described in [19].

LC-MS metabolite profiling

Analysis was conducted with a UHPLC UltiMate 3000 (Dionex Softron) linked to a MAXIS

UHR-Q-TOF mass spectrometer (Bruker Daltonics) and an electrospray ionisation (ESI)

source operating in negative mode under the following conditions: dry gas at 8 L/min, capil-

lary 3500 V, end plate at -500 V, vaporizing temperature was 195˚C and nebulizer was 1.3 Bar.

Mass spectra were recorded in full scan mode from 50 to 1200 m/z range. Chromatographic

separation of metabolites was carried out on an YMC-UltraHTPro C18 2 μm column (100 x 2

mm i.d.) using 10% acetonitrile in water (A) and acetonitrile (B) as mobile phases, both con-

taining 0.1% formic acid. These solvents were used in linear gradient mode from 100% (A) to

65% (A) in 17 min and up to 0% (A) over 12 min. A 5 min washing and re-equilibration steps

respectively were added to the gradient program. The flow rate was 0.2 ml/min and the injec-

tion volume used was 5 μl.

Metabolomics data processing and analysis

Chemical features were extracted using MetaMS script in R [20] as described in [19]. Schemes

of analytical, data processing and data analysis workflows and strategies adopted for interro-

gating data are illustrated in S1 and S2 Figs.

Table 1. (Continued)

Classification based on plant’s

reaction to disease

Classification based on symptoms severity

and virus titre

Country of

origin

Code Common name B. tabaci
phenotype

CMD

phenotype

CBSD

phenotype

African CBSVs phenotype

UG7 Nase 1 R [14, 17] T [14, 17] S [27, 30]

(= TMS60142 [11])

HS, highly susceptible; S, susceptible; T, tolerant; R, resistant.
�

Breeding line MM2006/130 nominated as Naro-Cass 1 and Naro-Cass 2 in the same reference [8].

[NARO = National Agricultural Research Organisation in Uganda].
��

Tested for whitefly phenotype in ref.9 but results not reported for this line other than it doesn’t fall

into the 10 top resistant nor into the 10 top susceptible. WF-M stands for whitefly-moderate phenotype. + B. tabaci abundance as in ref. [21].

https://doi.org/10.1371/journal.pone.0242245.t001
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Data analysis strategy and statistical analysis

An untargeted extraction and analytical methodology was used to assess the natural variation

present within the diversity panel of the 5CP cassava collection. Three multivariate tests were

used to explore the untargeted data matrix: (i) unsupervised Principal Component Analysis

(PCA) to check for quality of the data and to obtain a general overview of the trends within the

data, (ii) Agglomerative Hierarchical Clustering Analysis (HCA) to ascertain similarities and

distance between varieties, and (iii) supervised classification modelling using Orthogonal Par-

tial Least Square-Discriminant Analysis (OPLS-DA) to evaluate robustness and accuracy of

metabolite fingerprinting for explaining whitefly phenotype (resistance vs. susceptibility) and

at the same time enabling identification of potential biochemical markers linked to the

phenotype.

An overview of the metabolome analysis was assessed by principal component analysis

(PCA) and the classification models of phenotypes evaluated using OPLS-DA. Varieties

Mkumba (TZ3), Albert (TZ6) and Nase 18 (UG4) as whitefly resistant (WF-R), and Sagonja

(MAL5), Kalawe (MAL6) and Eyope (MOZ2) as whitefly susceptible (WF-S) were used as a

subset for model prediction and classification (OPLS-DA). Selection of lines was based on the

phenotyping data (number of Bemisia tabaci adults) published in [21]. Both multivariate anal-

ysis PCA and OPLS-DA were performed using pareto scaling and data matrix input was pre-

processed by normalising against internal standard and after batch correction (QC

normalisation).

Significant features identified through statistical tests were annotated using authors’ estab-

lished libraries [5, 19]. Hypothesis generated from multivariate analysis were further validated

by univariate statistical tests.

Genotyping

DNA was extracted from 31 cassava leaf samples; using the CTAB-based protocol described by

[22] with the following minor adjustment: DNA was obtained from powdered leaf tissues

using Qiagen Tissue Lyser (Venlo, Netherlands). A standard amount of DNA (60 ng) per sam-

ples were processed using a protocol for 96 single nucleotide polymorphism (SNP) genotyping

in cassava with the EP1TM system and 96.96 SNP type assays of Fluidigm1 version S.01. This

technique allowed simultaneously to collect both end-point and real-time data from a unique

chip cell with 97% confidence. This protocol has been used previously in several studies to ana-

lyse cassava diversity and varietal identification [23–25].

Alleles for each SNP were scored as present, absent, or missing (failed to amplify); the resul-

tant binary matrix was integrated in a.vcf file. The evaluation of true genetic duplicates was

done using the NGSEP platform [26]; where, samples with a percentage of homozygous and

heterozygous differences equal or lower than 3% were nominated. Finally, the genetic distance

among genotypes was calculated based on the matrices of allele frequencies, and the cluster

analysis was made using the agglomerative hierarchical clustering (AHC) algorithms with the

Ward method. The resulting dendrogram was un-rooted and depicted using pltree function,

implemented in the Cluster package v.2.1 for R program v.3.3.4 (R Development Core Team,

2017).

Results

The experimental approach used to metabotype the 5CP panel

Untargeted LC-MS analysis in negative mode, covering an m/z range from 50 to 1 200 gener-

ated a data-matrix of over 14 000 chemical features, after the application of MetaMS peak-
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picking algorithm. The raw data matrix was then filtered by excluding low abundant features

not presenting an isotopic pattern. Typically, these low abundant features are close to the limit

of detection and present high variability and poor reproducibility across replicates

(RSD>30%). In order to reduce redundancy, chemical features corresponding to the isotopic

species (13C, 2H, etc.), i.e., [M+1, 2, 3, 4] of parent ions [M] were also excluded. The final data

matrix contained 1530 unique chemical features (S1 Fig), one being the internal standard. At

this stage chemical features grouped under the same peak-cluster (PC) group were treated

independently, and clustering of adducts, in-source fragments or multiple charged species was

considered later for identification and characterisation purposes.

The final data matrix normalised against a single internal standard (SIS) and batch cor-

rected contained 149 observations and 1529 variables (S1 File) and was used as input data for

multivariate analysis and univariate statistics (S2 Fig). Within subjects biological variability

was also calculated as coefficients of variation (%CV) and plotted as violin plots (S3 Fig). Gen-

erally, the biological variation of the varieties oscillated between 25 to 30%.

The assessment of diversity at the genetic and biochemical level within the

5CP collection

To assess the overall biochemical variation of the Eastern African cassava elite varieties, unsu-

pervised PCA was performed on the metabolite composition of leaf extracts. Score plot of

components 1 and 2 explained 23% variation of the collection which was comprised of 26 vari-

eties (Fig 1). Three main clusters can be depicted from the PCA score plot attending geograph-

ical sub-region classification. Tanzanian varieties constituted the Central area of East Africa on

the top-left sector whilst varieties collected from Northern part of the East African region,

Uganda and Kenya, co-locate in the bottom-left sector of the ellipsoid. Varieties original from

Mozambique and Malawi tend to cluster together and spread towards the bottom-right quad-

rant of the ellipsoid, especially those lines from Mozambique. Some outliers of this geographi-

cal clustering pattern are Kiroba (TZ7) and KBH2002/066 (TZ1) or Nase 1 (UG7),

Kibandameno (KE6) and Oekhumelela (MOZ1). Clustering pattern associated with whitefly

(resistant and susceptible) phenotypes was difficult to draw due to the insufficient data avail-

able for the complete collection. Nevertheless, Sagonja (MAL5) and Kalawe (MAL6) and

Eyope (MOZ2) and KBH2002/066 (TZ1) regarded as the most susceptible by [21], cluster

together in two subgroups respectively. Similarly, Tanzanian lines Mkumba (TZ3), Mkuranga

1 (KBH 2006/26, TZ5) and Albert (TZ6) described as less preferred by B. tabaci [21] form a

tight cluster in the PCA score plot but separated from Nase 18 (UG4), which was also defined

as whitefly resistant.

Genetic similarity was evident when analysis of SNPs was carried out to assess the natural

genetic variation of the diversity panel and compared to similarities found at chemical compo-

sition level. The Ward AHC dendrogram was constructed using the genetic similarities matrix

obtained by running 96 highly informative SNP locus among the complete set of the 5CP col-

lection, which includes 31 East African cassava genotypes (Fig 2A). These African cassava vari-

eties clustered in four different groups; group 1 (G1) comprised principally by samples from

Malawi (MAL) and Mozambique (MOZ), group 2 (G2) by samples from Tanzania (TZ), while

the samples from Kenya are represented in group 3 (G3) and Uganda in group 4 (G4). The

analysis of true genetic duplicates showed that among 31 African cassava genotypes, two geno-

types in G2 from Tanzania, Pwani and Mkumba (TZ2 and TZ3), and three genotypes in G4

from Uganda, Nase18, 72-TME14 and Nase 14 (UG4, UG5 and UG6) showed the same genetic

makeup, respectively; with zero homozygous and heterozygous differences as it is also depicted

by their chemical composition. Similarly, LM1/2008/363 (KE1) and Tajirika (KE3) in group-3
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clustered together based on low DNA and chemical differences (Fig 2). On the contrary, culti-

vars with the largest genetic and chemical differences are Tajirika (KE3) in group-3 and

Oekhumelela (MOZ1) in group-1 as shown in Fig 2. It is important to highlight that G4 is not

a real group; but formed due to the high number of genetic duplicated samples from Uganda.

Additionally, based on both nucleotide and metabolite composition, the genotypes clustered

in the same group when both analyses were compared, were Eyope (MOZ2), Nziva (MOZ3),

Fig 1. Principal component analysis of untargeted LC-MS analysis of cassava leaf extracts. Score plot of components 1 and 2 displaying

median values only for visualisation purposes. Full detailed score plot illustrating biological replicates of each cassava variety is provided as

supplementary material. Geographical origin is denoted with different colouring: Kenya (KE) as green, Malawi (MAL) as light blue, Mozambique

(MOZ) as blue, Tanzania (TZ) as orange and Uganda (UG) as purple; and number of variety indicated as different symbols: (circle) variety 1,

(box) variety 2, (triangle) variety 3, (diamond) variety 4, (pentagon) variety 5, (hexagon) variety 6, (4-point star) variety 7 and (5-point star)

variety 8.

https://doi.org/10.1371/journal.pone.0242245.g001
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Colicanana (MOZ4), Sauti (MAL3) and CH05/203 (MAL4) in G1, Pwani (TZ2), Mkumba

(TZ3), Kizimbani (TZ4), Mkuranga 1 (TZ5), Albert (TZ6), Mkombozi (TZ8) and Nase 1

(UG7) in G2, and LM1/2008/363 (KE1), Tajirika (KE3), Orera (MOZ5), Nase 3 (UG1), Nase

18 (UG4) and 72-TME 14 (UG5) in G3 indicating a noticeable level of collinearity between the

SNP information and the biochemical composition.

The number of significant chemical features differentiating each sub-group of metabolome

derived dendrogram (Fig 2B) were calculated by multiple t-test comparison and indicated in

the figure. The differences between the two main clusters, one comprised by G3 and G4 and

the other including G1 and G2, is based on 185 significant features out of 1529 suggesting a %

homology at the metabolite level of 87.9%. Similarly, the differences between groups occurring

at the next branching point, G1 and G2, had a 93.8% homology, i.e. 96 significant features over

a total of 1529. The percentage of similarity increases towards the base of the tree where the

homology of chemical profiling between closest varieties is over 99% (Table 2).

Biochemical features as differentiating phenotypic markers

In order to study whether the natural variation present in the collection can be utilised to

define metabotypes representative of WF-R/WF-S phenotype and also to identify potential

chemical markers linked to phenotype, a multivariate classification analysis was applied using

the LC-MS untargeted data matrix as input.

Fig 2. Agglomerative Hierarchical Clustering Analysis of the East African diversity panel of cassava elite varieties based on (A) genetic similarities of 96 SNP locus (n = 31

varieties) and (B) chemical features composition (n = 26 varieties) with the number of significant chemical features (multiple T-test, Holm-Sidak post-test, alfa 0.05)

differentiating each metabolite-derived clustering indicated at each branching point. Kenya (KE), Malawi (MAL), Mozambique (MOZ), Tanzania (TZ) and Uganda (UG).

(�) genetic duplicates within the varieties from Tanzania and (��) genetic duplicates within the varieties from Uganda.

https://doi.org/10.1371/journal.pone.0242245.g002
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Table 2. Percentage of homology at metabolite composition level based on the number of different significant chemical features within each cluster and between

the most distant clusters.

# Significant features % Homology

AHC-subgroups alfa: 0.01� alfa:0.05� alfa: 0.01� alfa:0.05�

Sub-Group 3.1 UG2 MAL5 0 1 100 99.93

Sub-Group 3.2 KE1 KE3 0 0 100 100

Sub-Group 3.3 UG1 MOZ5 2 3 99.87 99.80

Sub-Group 3.4 TZ7 UG4 0 2 100 99.87

TZ7 UG5 0 0 100 100.00

UG4 UG5 0 0 100 100.00

Sub-Group 1.1 MOZ2 MOZ3 2 4 99.87 99.74

Sub-Group 1.2 MAL3 MAL4 1 1 99.93 99.93

Sub-Group 2.1 TZ8 TZ4 0 1 100 99.93

TZ8 KE6 0 3 100 99.80

TZ4 KE6 0 4 100 99.74

Sub-Group 2.1 UG7 TZ6 1 2 99.93 99.87

Sub-Group 2.2 TZ2 TZ3 0 1 100 99.93

Comparison of dendrogram’s extremes alfa: 0.01� alfa:0.05� alfa: 0.01 alfa:0.05

sG2.3 vs. sG3.1 TZ2+TZ3 UG2+MAL5 16 32 98.95 97.91

sG2.3 vs. sG3.2 TZ2+TZ3 KE1+KE3 19 43 98.75 97.19

Comparison of WF phenotype extremes alfa: 0.01� alfa:0.05� alfa: 0.01 alfa:0.05

sG2.3 vs. sG3.1 TZ3 (WF-R) MAL5 (WF-S) 1 3 99.93 99.80

�Statistical significance determined using the Holm-Sidak method, with alpha = 0.05 or 0.01. Each row (chemical feature) was analysed independently, without

assuming a consistent SD. Number of t-tests: 1529.

https://doi.org/10.1371/journal.pone.0242245.t002

Fig 3. (A) Score plot of OPLS-DA of untargeted LC-MS analysis of cassava leaf extracts of whitefly resistant (WF-R) and whitefly susceptible (WF-S) classes. Geographical

origin is denoted with different colouring: Malawi (MAL) as light blue, Tanzania (TZ) as orange and Uganda (UG) as purple; and number of variety indicated as different

symbols: (triangle) variety 3, (diamond) variety 4, (pentagon) variety 5 and (hexagon) variety 6. (B) Loadings S-Plot with potential biomarkers (p(corr)[1]>|0.6|) and p

[1]>|0.05|) highlighted in red.

https://doi.org/10.1371/journal.pone.0242245.g003

PLOS ONE Metabotyping of an East African cassava collection

PLOS ONE | https://doi.org/10.1371/journal.pone.0242245 November 18, 2020 9 / 16

https://doi.org/10.1371/journal.pone.0242245.t002
https://doi.org/10.1371/journal.pone.0242245.g003
https://doi.org/10.1371/journal.pone.0242245


Supervised discriminant analysis like partial least squares (PLS) are often used for these

purposes. In the present study an OPLS-DA model was chosen to incorporate both the orthog-

onal variation which is inherent of the metabolomics mass spectrometry data and the chemical

variation of the different classes of phenotypes.

Based on the whitefly abundance data available [21] OPLS-DA was applied to assess the

ability of the metabolome to explain and predict the phenotype reported. The varieties present-

ing the most extreme phenotypes were used to build the model and extract potential biomark-

ers. Varieties Mkumba (TZ3), Albert (TZ6) and Nase 18 (UG4) were selected as WF-R class

and Sagonja (MAL5) and Kalawe (MAL6) as WF-S. The variety Eyope (MOZ2) was initially

selected and included in the WF-S but was later excluded due to the high detected variation

across biological replicates (S4 Fig). Coincidentally, Sagonja (MAL5) and Kalawe (MAL6) hap-

pened to present the highest percentage of symptomatic plants when assessed for CBSD phe-

notype, and Mkumba (TZ3), Nase 18 (UG4) and Orera (MOZ5) displayed the lowest number

of infected plants [21] thus designated as CBSD susceptible and resistant classes, respectively.

The resulting model created from WF-R and WF-S classes presented strong goodness fit and

prediction power (R2cum = 0.941 and Q2 = 0.762, respectively). A variability of 16.3%

between classes and 11.8% within classes is explained by the model (Fig 3A) where sub-clusters

can be observed within both the WF-R and WF-S class. Loadings plot in the form of S-plot

(Fig 3B) was used to visualize and select the variables statistically relevant for discriminating

both phenotype classes, i.e., putative biomarkers. A list of 69 potential biochemical markers

was extracted based on the combined values of correlation and contribution (p(corr)[1]>|0.6|)

and p[1]>|0.05|) of chemical features and ANOVA analysis was applied to additionally vali-

date the statistical differences between the means of the different varieties (S2 File). Ten out

the 69 putative markers were found to be not significant according to pair-wise comparison

Fig 4. Putative markers extracted from the loadings S-plot, (A) heatmap and (B) K-means clustering of the WF-R and WF-S classes.

https://doi.org/10.1371/journal.pone.0242245.g004
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tests. Multiple t-test comparison to Sagonja (MAL5) as susceptible reference reveals that varie-

ties Mkumba (TZ3) and Albert (TZ6) presented the highest number of significant differences

(5 and 13 out of the 69, respectively), followed by Kalawe (MAL6) and Nase 18 (UG4) which

shows 2 and 1 significant differences, respectively. This is also consistent with ANOVA’s Dun-

nett test using Sagonja (MAL5) as control where 40 markers out of the 69 were significantly

different when compared to Mkumba (TZ3), similar number of significant features were

obtained from Sagonja (MAL5)-Kalawe (MAL6) and Sagonja (MAL5)-Albert (TZ6) compari-

sons, 27 and 26 respectively, and the lowest number of significant differences (8 out of 69)

were found between the WF-R variety Nase 18 (UG4) and the WF-S reference Sagonja

(MAL5) (S2 File).

Representation of normalised relative concentrations of putative biomarkers across varie-

ties in a heatmap shows that the trend in data is organised in three clusters as confirmed by K-

means clustering (Fig 4). Two main clusters 2 and 3 showing reciprocal accumulation of

metabolites between the WF-S varieties Sagonja (MAL5) and Kalawe (MAL6) and the WF-R

varieties Mkumba (TZ3), Albert (TZ6) and Nase 18 (UG4). In cluster number 1, the WF-R

line Nase 18 (UG4) presented a number of metabolites with similar levels as WF-S variety

Sagonja (MAL5). Some of the chemical features identified as putative chemical markers were

characterized by tandem mass spectrometry and accurate mass as malate esters of p-coumaric

acid and caffeic acid and neochlorogenic acid (S2 File). These compounds have been previ-

ously identified to be involved in the resistance mechanism of South American cassava ECU72

challenged with the South American whitefly Aleurotrachelus socialis Bondar [19].

Discussion

The natural variation at metabolite and genetic level of an East African cassava elite diversity

panel is presented. Analysis of the chemical fingerprinting datasets indicated low natural varia-

tion (23%) compared to the variation found in other cassavas’ collections including both Afri-

can and South American cultivars [33] where >50% and>30% was found in leaves collected

in the fields and in vitro plantlets respectively. The high level of homology within the East Afri-

can collection is consistent at both chemical and genetic level, which has been previously

reported by [34]. In effect the data shows the robustness of using metabolomics as a classifica-

tion tool. Capturing the representative metabolome, enables comparisons at the level of chemi-

cal composition which is often more representative of traits and more comprehensive than a

limited number of DNA based markers.

Historical breeding efforts of African cassava, documented since in the 1930s [1, 8, 11, 13]

suggests a high level of in-breeding probably resulting in scarce diversity in the current

national stock collections and fields. Indeed, the most promising candidates within the 5CP

collection, which represent a subset of national collections, as potential sources of both white-

fly and disease resistance seem to be concentrated in the Ugandan and Tanzanian lines

(Table 1) which are the ones presenting the highest level of duplication and homology.

Although the pedigree of these candidate lines is unknown, the origins of some of the Ugandan

collection can be found in the literature (S3 File), whilst Tanzanian cultivars may originate

from similar ancestors, i.e., the “Amani hybrids” previously deployed to farmers and most

likely bred/clonally propagated naturally over the years. Chemical distribution of East African

varieties either in the PCA or dendrogram followed a geographical origin pattern and classifi-

cation associated with either whitefly or virus resistance/susceptible phenotypes couldn’t be

drawn. Instead a high level of similarity was found between phenotypically and even geograph-

ically distant varieties suggesting that probably the effect of adaptation to local agro-ecosystems
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on the plant’s metabolome dominate and mask both the whitefly and virus phenotype

observed in the fields.

The variability introduced by environmental adaptation factors has likely to have an impact

in defining the preference of whitefly adults for certain varieties or the symptoms developed

under virus infection and therefore hindering/misleading the identification of true-to-type

phenotype classes. This hypothesis/concern also arises when the list of potential biomarkers

generated from the classification model (ultimately based on observed phenotype) is investi-

gated further. Pair-wise comparison of the WF-R variety Nase 18 (UG4) and the susceptible

Sagonja (MAL5) revealed higher similarity between them than comparison between Sagonja

(MAL5) and Kalawe (MAL6), despite both Malawian lines being phenotyped as the most sus-

ceptible. Varieties UG4 (Nase 18) and MAL5 (Sagonja) presented a significant number of phe-

notypic biochemical markers displaying a similar pattern of accumulation in both lines.

A number of chemical features differentiating WF-R and WF-S classes were characterised

and identified as neochlorogenic acid, caffeic acid and p-coumaric acid malate esters among

other unknown features. Malate esters of p-coumaric and caffeic acid were the most influential

in the S-plot and present at lower levels in the resistant varieties UG4, TZ3 and TZ6 whilst neo-

chlorogenic acid accumulated in the Tanzanian varieties resistant to whitefly and viral diseases

CMD and CBSD (S5 Fig). The identified compounds have been previously found to be also

associated with the South American whitefly resistance in cassava and a mechanistic mode of

action proposed [19]. The changes in the metabolite composition mapped into plant’s metabo-

lome suggested a link between phenylpropanoids and monolignols biosynthesis and cell wall

reinforcement as a resistance mechanism. The initial cassava breeding programmes witnessed

the incorporation of South American germplasm, namely the Brazilian cultivars, Aipin
Valenca and Macaxeira aipin (S3 File). Therefore it is potentially feasible that “ancestorial”

regions of “exotic” DNA have been selected for, within these 5CP lines, that have led to the

presence of the altered phenolic components (or regulators controlling their levels) that appear

to contribute to vigour and resilient traits. Given the heterozygosity of the cassava, segregation

of the 5CP lines from selfed accessions could lead to enhancement of the phenotype by increas-

ing the dosage of the gene(s) of interest and/or regions influencing complex traits. However, it

is important not to lose sight that the number of unknown chemical features that remain unre-

solved is still significant and further characterisation of these unknowns as well as implementa-

tion of further analytical metabolomics approaches are required. Annotation and

characterisation of unknown molecular or chemical features is the bottleneck of untargeted

metabolomics studies which limits the discovery of relevant biological markers to a reduced

number of overrepresented chemical classes. Phenylpropanoids constitute one of these exam-

ples of a recurrent marker of multiple agronomic trait or biological activities with emphasis on

chlorogenic acid and flavonoids [35–40]. The large-scale nature of untargeted metabolomics

studies requires high throughput methods that likely favour the extraction and detection of,

for example, phenylpropanoids and underestimate the presence of minor chemical families

are likely to be a contributing factor to these outcomes. Although bioinformatic resources have

implemented the process of interrogating metabolite and mass spectrum databases thus

increasing the number of putative identifications, complementation with targeted approaches

based on front-end fractionation would also aid in providing a more comprehensive coverage

of plant’s metabolome diversity.

Conclusions

This study shows that metabotyping approaches are effective methodologies for the assessment

of natural variation in cassava. The corroborating genotyping emphasises the need for multi-
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level omic analysis to ensure robustness. Collectively, these data provide important informa-

tion on parental materials that can be used in future breeding programmes directed towards

cassava varieties with improved stress tolerances. The relative low level of natural variation

identified in this study suggests that initial wide genetic crosses with diverse germplasm would

be beneficial, prior to focussed trait specific introgression or pyramiding of poorly character-

ised materials. In addition, if diversity panels containing genetically unrelated germplasm can

be created mGWAS is an approach that could be implemented.

Supporting information

S1 Fig. Schematic workflow followed for preparing data from raw data files to pre-pro-

cessed data matrix.

(TIF)

S2 Fig. Strategy followed for interrogating and analysing data.

(TIF)

S3 Fig. (A) Table of calculated coefficient of variation (%) within biological replicates per each

variety. Columns indicate median values of CV of all variables (chemical features) and the

minimum and maximum CV values of each cassava variety. (B) Violin plot showing within

subject coefficient of variation (biological variability) for each variety. Median values indicated

as straight lines and top and bottom dashed lines indicate 75th and 25th quartiles respectively.

(TIF)

S4 Fig. Principal component analysis of untargeted LC-MS analysis of cassava leaf extracts.

Score plot of components 1 and 2 displaying all biological replicates of each cassava variety as

small symbols and median values as large symbols. Geographical origin is denoted with differ-

ent colouring: Kenya (KE) as green, Malawi (MAL) as light blue, Mozambique (MOZ) as blue,

Tanzania (TZ) as orange and Uganda (UG) as purple; and number of variety indicated as dif-

ferent symbols: (circle) variety 1, (box) variety 2, (triangle) variety 3, (diamond) variety 4,

(pentagon) variety 5, (hexagon) variety 6, (4-point star) variety 7 and (5-point star) variety 8.

(TIF)

S5 Fig. Relative levels of most influential metabolite markers obtained from loadings S-

plot comparing WF-R (UG4, TZ3, TZ6) and WF-S varieties (MAL6, MAL5).

(PDF)

S1 File. Matrix of raw (not filtered) and normalised data (filtered).

(XLSX)

S2 File. Statistics (ANOVA and t-tests) on list of potential metabolite markers obtained

from OPLS-DA loadings S-plot including putative identification.

(XLSX)

S3 File. Scheme summarising historical breeding efforts in Africa for disease resistance in

cassava crop and list of related references.

(PDF)
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