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The geographic pattern of cropland is an important risk factor for invasion and saturation by crop-specific pathogens and arthropods. 
Understanding cropland networks supports smart pest sampling and mitigation strategies. We evaluate global networks of cropland 
connectivity for key vegetatively propagated crops (banana and plantain, cassava, potato, sweet potato, and yam) important for food security 
in the tropics. For each crop, potential movement between geographic location pairs was evaluated using a gravity model, with associated 
uncertainty quantification. The highly linked hub and bridge locations in cropland connectivity risk maps are likely priorities for surveillance 
and management, and for tracing intraregion movement of pathogens and pests. Important locations are identified beyond those locations 
that simply have high crop density. Cropland connectivity risk maps provide a new risk component for integration with other factors—such as 
climatic suitability, genetic resistance, and global trade routes—to inform pest risk assessment and mitigation.
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Plant diseases and pests are major threats to food   
 security and wildlands conservation (Anderson et  al. 

2004, Woolhouse et al. 2005, Fisher et al. 2012, Gonthier and 
Garbelotto 2013, Aguayo et al. 2014). Understanding which 
geographic areas have a high risk of pathogen and arthropod 
pest invasion is an important first step to designing sampling 
and mitigation strategies (Fears et al. 2014). Climate effects 
are one component of this risk, and are commonly addressed 
in species distribution models (Rosenzweig et  al. 2001, 
Anderson et  al. 2004, Jeger and Pautasso 2008, Elith and 
Leathwick 2009, Rodoni 2009, Bebber et  al. 2013, Garrett 
et  al. 2014, Hernandez Nopsa et  al. 2014, Kroschel et  al. 
2016). Another important risk component is the structure 
of trade routes, through which pathogens and pests may 
move (Anderson et al. 2004, Nakato et al. 2013, Bebber et al. 
2014). Habitat connectivity represents a third component 
that, integrated with these other risk factors and, potentially, 
additional factors, such as deployment of resistance, can 
provide a more complete invasion risk assessment. The con-
nectivity of cropland regions helps to determine whether 
invasive species that are dependent on crops will become 
established before effective actions can be taken to mitigate 
them (Margosian et al. 2009, Sutherst 2014). Incorporating 

cropland connectivity risk with other risk factors for inva-
sion supports a number of integrated pest management and 
pest risk assessment strategies, from improved methods for 
detecting and mitigating new invasives to ongoing improve-
ments in policy (With 2004, Margosian et  al. 2009, Leung 
et al. 2015).

The invasion of species into new countries or continents 
is a common focus, but local invasion, or saturation, is also 
important (Cornell and Lawton 1992, Fox et al. 2000, Lion 
and Gandon 2009). Bebber and colleagues (2014) considered 
saturation in terms of the fraction of potentially habitable 
regions that are already occupied by a pest species. Similarly, 
in the present article, we define saturation as the process by 
which a species fills in a region, to occupy more and more of 
the potential habitat within the region. Defining the differ-
ence between invasion and saturation is often a question of 
the spatial resolution and extent being considered (figure 1). 
From the standpoint of pathogen and arthropod manage-
ment, a pest may have already invaded a country and be con-
sidered endemic, while at the same time there may be some 
fields it has never reached, and its population may frequently 
be suppressed by factors such as extreme weather condi-
tions so that it must resaturate. Some pathogens continue 
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to reemerge at different time points (Rugalema et al. 2009, 
Vurro et al. 2010), such as Phytophthora infestans (Fry et al. 
2015). For pathogens such as P. infestans, initial inoculum 
can be limiting. For example, unusually abundant initial 
inoculum probably played a key role in the devastating 
2009–2010 late blight epidemic in tomato in the northeast-
ern United States (Fry et al. 2013). Similarly, high inoculum 
associated with synergistic virus species interactions was a 
key driving factor behind the rapid spread of the cassava 
mosaic disease pandemic in Africa in the 1990s (Harrison 
et al. 1997, Legg et al. 2006). High cropland connectivity is 
a risk factor for saturation and reemergence, as well as novel 
invasions, when pathogens and arthropods spread from 
refugia or nearby regions after limiting weather conditions.

Network analysis offers a number of tools for under-
standing the strengths and vulnerabilities of network struc-
tures. In a geographic network analysis of species invasion 
or saturation, nodes represent geographic locations and 
the links between nodes represent functions such as the 
potential of movement of a pathogen or pest between the 
nodes (e.g., Buddenhagen et al. 2017, Andersen et al. 2019). 
Characterizing the network structure of cropland areas act-
ing as sinks or sources can inform the selection of key nodes 
for surveillance, mitigation, and management improvement 
(Margosian et  al. 2009). Nodes that are linked to many 
other nodes (nodes that have a high degree) and nodes 

acting as bridges between cropland regions (nodes with 
high betweenness centrality) may be particularly important 
for the spread of pathogens and pests and are important for 
evaluating invasion risk (Margosian et al. 2009, Hernandez 
Nopsa et  al. 2015). Network traits such as centrality (how 
important a particular node or link is; Newman 2010), 
local cohesiveness (how well connected a subset of nodes is 
compared with their connection to other subsets of nodes; 
Kolaczyk 2009), and affinity (degree of tendency for nodes 
to be linked with other nodes of similar centrality; Barrat 
et  al. 2004) can help to identify locations in networks that 
may be priorities for attention.

Risk assessment for epidemic invasion, coupled with risk-
based surveillance and mitigation, are key to efficient control 
of emerging pests and pathogens (Cameron 2012, Parnell 
et al. 2014, Hyatt-Twynam et al. 2017). Identification of loca-
tions for both surveillance and mitigation is necessary, and 
they are not always one in the same (Holme 2017, Holme 
2018, Andersen et al. 2019). Network analysis has been used 
to inform surveillance and mitigation in plant (Harwood 
et  al. 2009, Pautasso et  al. 2010, Sutrave et  al. 2012, Nelson 
and Bone 2015, Sanatkar et al. 2015, Buddenhagen et al. 2017, 
Gent et  al. 2019, Martinetti and Soubeyrand 2019), animal 
(Chaters et al. 2019), and human epidemic networks (Keeling 
and Eames 2005). In most of these plant pathogen and pest 
network studies, parameters were estimated for models of 
spread through networks, with links representing pathogen 
dispersal probability and nodes representing spatial units such 
as farms, greenhouses, or geographic administrative units. 
These analyses have typically been conducted for specific crop 
and pathogen species, with a restricted geographic range. The 
cropland connectivity analysis described in the present study 
can be performed before a particular pest or disease becomes 
important, for general surveillance of a crop or crops. As 
more information about a particular invasive species problem 
becomes available, a cropland connectivity analysis can itera-
tively be made more specific to that problem.

Lack of information about current distribution and disper-
sal probabilities is a common problem for parameterizing dis-
persal risk models, especially for new species. More general 
risk evaluations can draw on models that have proven useful 
across multiple systems. The inverse power law function is 
commonly used to model pathogen dispersal. Parameter 
estimates for six case studies—including plant and human 
pathogens and distances ranging from experimental field 
plots (32 meters) to continental scale (9329 km)—ranged 
from 1.75 to 2.36 (Mundt et al. 2009a). For cucurbit downy 
mildew, the observed maximum annual disease spread 
distance ranged from 1914 to 2221 km across 7 years, with 
inverse power law parameter estimates of approximately 2 or 
more (Ojiambo et  al. 2017). Gravity models are frequently 
used to describe the risk of movement between two locations, 
in applications including zoology, ecology, and epidemiology 
(Jongejans et al. 2014). In dispersal events, the risk of move-
ment between two locations is often a function of the product 
of the amount of inoculum potentially produced at the source 

Figure 1. Higher cropland connectivity will tend to 
increase the risk of both invasion and saturation. In the 
present figure, invasion and saturation (local invasion) 
are represented over time, where the pathogen or pest 
species is present in darker nodes and absent in lighter 
nodes. (a) In an invasion, a region is initially free of the 
species. During the process of invasion, the species enters 
the region and spreads over time. (b) In the process of 
saturation, a species is already present in a region but not 
in all potential locations. For example, a restricted subset 
of nodes in the region may act as refugia for overwintering 
or oversummering, or for persistence of the species during 
years with weather less conducive to the species. From 
these locations, the species can invade linked nodes when 
conditions are more conducive.
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location and the amount of potential host material at the sink 
location, as in a gravity model (Xia et al. 2004, Sutrave et al. 
2012, Jongejans et al. 2014).

Cassava mosaic disease (CMD) is an important example 
of the likely role of cropland connectivity in the spread of 
a plant disease epidemic (figure 2). Cassava mosaic bego-
moviruses (CMBs) cause CMD (Bock and Woods 1983), 
one of the most damaging constraints to cassava produc-
tion in Sub-Saharan Africa. Losses have been estimated at 
more than US$1 billion per year (Legg et  al. 2006). CMBs 
are dispersed via infected planting material and are vec-
tored by the whitefly, Bemisia tabaci (Dubern 1994). Severe 
disease results when there is coinfection of cassava plants 
with African cassava mosaic virus and East African cas-
sava mosaic virus (EACMV). A pandemic of severe CMD 
resulted from rapid spread of these synergistic mixed infec-
tions (Harrison et al. 1997, Legg et al. 2011). A heightened 
risk of disease spread was predicted for areas of widespread 
cassava cultivation, and slower spread was anticipated where 
there were major topographical barriers, such as lakes or 
dense forests (Legg 1999, Legg 2010). More specifically, con-
trasting rates of CMD spread down the east and west sides of 
Lake Victoria have been attributed to more contiguous cul-
tivation of cassava on the western side of the Lake, and the 
physical barrier imposed by the Winam Gulf on the eastern 
side of Lake Victoria in western Kenya. The limited cas-
sava in central Kenya and central regions of Tanzania likely 
served as a barrier to the spread of the pandemic associated 
with the Ugandan strain of EACMV to coastal regions of 
East Africa (Szyniszewska et al. 2017).

Evaluating the potential role of locations in spread 
networks
We evaluate the global cropland connectivity risk associated 
with cassava and four other crops of particular importance 

to food security for smallholder farmers in the tropics. These 
crops are vegetatively propagated, with the associated high 
risk of transmission of pests and diseases through planting 
materials. Cropland connectivity captures some elements of 
the risk of transmission through movement of pathogens 
and pests independent of crop plants (through flight or 
passive dispersal in wind, for example), as well as risk due 
to movement of planting materials and farm equipment. 
Because information about relevant dispersal kernels is 
often unavailable, uncertainty quantification (or sensitiv-
ity analysis) may be needed to understand how dispersal 
parameters influence estimates. The objectives of this article 
are to characterize the network structure of global cropland 
for banana and plantain, cassava, potato, sweet potato, and 
yam (Dioscorea spp.); to evaluate the network structure in 
terms of its potential impact on pest and disease risk due 
to dispersal, using an index summarizing key metrics for 
cropland connectivity risk based on a gravity model, with 
associated uncertainty quantification; and to use the net-
work structure to identify geographic priorities for surveil-
lance and management of emerging pests and diseases, and 
for saturation of endemic species. We discuss the geographic 
spread of diseases in the context of cropland connectivity 
using as examples some key diseases and pests, including 
banana bunchy top disease, Xanthomonas wilt of bananas, 
potato yellow vein, and Guatemalan potato tuber moth.

Model of risk of movement between geographic nodes.  We described 
the risk for pathogen and pest movement between each pair 
of nodes in a gravity model (Jongejans et al. 2014) incorporat-
ing the distance between the nodes and the cropping density 
associated with the nodes. An adjacency matrix summarizes 
this risk, such that each entry in the matrix corresponds to 
the risk for a pair of nodes. The distance effect on the risk was 
calculated as a function of the Vincenty ellipsoid (Hijmans 

Figure 2. (a) Cassava mosaic disease in Tay Ninh, Vietnam, and (b) cassava brown streak disease in Mkuranga, Coast 
Province, Tanzania. Photographs: James Legg.
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et  al. 2017b) distance between the centers of nodes i and j 
(dij) for two common models of dispersal risk: an inverse 
power law function, dij

–b, and a negative exponential func-
tion, exp(–γdij) (Gregory 1968, Campbell and Madden 1990, 
Mundt et al. 1999, Madden et al. 2007, Mundt et al. 2009b, 
Severns et al. 2014). For convenience, the distance in meters 
was further scaled by dividing by 111,319.5 (one degree of 
Vincenty ellipsoid distance in meters at the equator). Higher 
values of the parameters β and γ reflect lower likelihood 
of long-distance dispersal. Three levels (0.5, 1.0, and 1.5) 
of parameter β were considered for the inverse power law 
function in uncertainty quantification (table 1), generating a 
71%, 50%, and 35% chance of movement, respectively, across 
a distance of 2 degrees. Five levels (0.05, 0.1, 0.2, 0.3, and 1.0) 
of parameter γ were evaluated in uncertainty quantification, 
generating corresponding chances of movement across a dis-
tance of 2 degrees of 90%, 82%, 67%, 55%, and 14%, respec-
tively (before adjustment for the proportion harvested area in 
the two linked pixels). The risk due to greater cropland area 
for any two nodes i and j was accounted for by multiplying 
together the mean cropland area (c) associated with each of 
the nodes (cicj). Therefore, in the first step the weights in the 
adjacency matrix indicating the overall risk of movement 
between two geographic nodes were cicjdij

–β for the inverse 
power law function and cicjexp(–γdij) for the negative expo-
nential function. In the uncertainty quantification we also 
evaluated results across three threshold minimum values 
(0.001, 0.0001, and 0.00001) for entries in the matrix indi-
vidually and set the weights below that to be zero. Network 
models and metrics for the cropland connectivity for each 
of the five crops were analyzed for the Eastern and Western 
Hemispheres separately. We used the igraph package (Csárdi 
and Nepusz 2006) in the R programming environment 
(R Core Team 2020) to evaluate the networks, as well as the 
packages raster (Hijmans et al. 2017a), geosphere (Hijmans 
et al. 2017b) and viridis (Garnier et al. 2018).

Network metrics to evaluate invasion and saturation risk.  We con-
sider a set of network metrics that have often proven useful 
for evaluating the role of nodes in network processes. To 
simplify comparisons, we also summarize across metrics in 
a cropland connectivity risk index (CCRI). To emphasize 
the importance of the node as a bridge, the index empha-
sizes betweenness centrality (supplemental figures S2–S6), 
based on the number of shortest paths through the network 
that include the node being evaluated. The other half of the 
weight is given to other metrics that measure how well con-
nected is a node, its neighbors, and its neighbors’ neighbors: 
node strength (the sum of a node’s link weights), the sum 
of a node’s nearest neighbors’ node degrees (the sum of the 
number of links associated with each nearest neighbor), and 
eigenvector centrality (giving each node a score proportional 
to the sum of the scores of its nearest neighbors and more 
distant neighbors). The summary index (the CCRI) was 
calculated as a weighted sum of 1/2 betweenness central-
ity, 1/6 node strength, 1/6 sum of nearest neighbors’ node 

degrees, and 1/6 eigenvector centrality, such that each of the 
four metrics was scaled before summing by dividing by the 
maximum value observed for that metric. The weighting 
emphasizes betweenness because betweenness will particu-
larly capture a potential role as a bridge that is not obvious 
when individual cropland area is considered alone, and also 
to include connectedness of a node at different scales.

Illustration of features captured by the cropland connectivity risk 
index.  Before we consider cropland connectivity risk for 
global crop systems, figure 3 is an illustration of how the 
four metrics described above (betweenness, node strength, 
the sum of nearest neighbors’ node degree, and eigenvector 
centrality) capture different elements of cropland connec-
tivity. Suppose this hypothetical map represents cropland 
density for a target crop species. In this example, most of the 
cropland units have a low crop proportion (indicated by light 
green shading), whereas one unit has a high crop propor-
tion (indicated by blue shading). A network (figure 3b) is 
constructed using the gravity model described above, from 
the corresponding data for the cropland geographic map 
(figure 3a), based on one parameter combination for the dis-
persal model. Note that this is the network for one particular 
parameter combination, whereas the later components of 
figure 3 represent summaries across uncertainty quantifica-
tion, as described more below. The sum of the node degrees 
for nearest neighbors (figure 3c) captures how well connected 
the nodes’ neighbors are. Node strength (figure 3d) indicates 
a node’s importance in terms of how connected it is to its 
neighbors. Betweenness centrality identifies nodes acting as 
bridges to connect other regions in the network (figure 3e). 
Eigenvector centrality (figure 3f) shows how well connected 
a node is through nearest neighbors, their neighbors, and 
beyond. The CCRI (figure 3g) is the weighted mean of these 
metrics. In addition to the high-risk locations with high 
crop density, other locations with high risk because of their 
role as bridges were identified. The results of an uncertainty 
quantification (supplemental figure S1) for the CCRI in this 
hypothetical map are also shown (figure 3h–l), illustrating 
how a summary across parameter combinations (beyond the 
parameter combination illustrated in figure 3b) can reveal 
other features of a cropland landscape. Finally, we identify 
locations in which CCRI rank among locations is higher than 
the rank based solely on crop density (figure 3i). These are 
locations in which the network analysis reveals potentially 
important roles for a location that would not be as apparent 
in a simpler point-wise analysis of crop density.

Global cropland area.  Now we expand this cropland connectiv-
ity analysis to the global cropland for five crops. We analyzed 
two standard data sets representing the global geographic 
distribution of individual crop species: data representing the 
conditions circa 2000 from Monfreda and colleagues (2008), 
referred to in the present article as the Monfreda data set, 
and IFPRI’s Spatial Production Allocation Model (SPAM) 
data 2005 v3.2 (IFPRI and IIASA 2016), referred to in the 
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Table 1. Components of a summary measure of cropland connectivity risk index that were evaluated in uncertainty 
quantification.

Method Parameter Levels Interpretation

Total mean 

C5mingridi
 is the cropland proportion of the  

ith 5 minute grid within a 2 degree grid

C5mingridi
The sum of cropland proportion of all 5 × 5 
minute grids within a 2° × 2° grid is divided 
by the total number of 5 × 5 minute grids 
aggregated in a 2° × 2° grid 

Land mean

C5mingridi 
is the cropland proportion of the  

ith 5 minute grid within a 2 degree grid

#water denotes the total number of 
5 minute grids with water rather than 
agricultural land

C5mingridi
The sum of cropland proportion of all 5 × 5 
minute grids within a 2° × 2° grid is divided 
by the total number of 5 × 5 minute grids 
containing only land (5 × 5 minute grids with 
water are excluded) aggregated in a  
2° × 2° grid 

Dispersal risk

model (DRM)

DR = cicjdij
–β

DR = cicj  
exp(–γdij)

Inverse power law model

dij
–β

dij is the distance between nodes i and j

ci is the fraction harvested area with the 
crop of interest at the ith node

β β1 = 0.5
β2 = 1.0
β3 = 1.5

Potential changes in model to describe 
different types of pests and dispersal 
mechanisms

Negative exponential model

exp(–γdij)

dij is the distance between nodes i and j

ci is the fraction harvested area with the 
crop of interest at the ith node

γ γ1 = 0.05
γ2 = 0.1
γ3 = 0.2
γ4 = 0.3
γ5 = 1.0

Potential changes in model to describe 
different types of pests and dispersal 
mechanisms

Cropland
proportion

Minimum cropland proportion for inclusion 
of node in analysis

pc pc1 > 0.0015
pc2 > 0.002
pc3 > 0.0025

Lower thresholds result in more nodes 
retained in the network 

Link weight Minimum link weight for inclusion of link in 
network

pl pl1 > 0.001
pl2 > 0.0001
pl3 > 0.00001

Lower thresholds result in more links 
retained in the network 

Note: Each combination of the levels of the values indicated was evaluated. The combinations included varying the form of the mean (total mean 
or land mean) and varying the dispersal model (inverse power law or negative exponential), as well as the parameters of the model selected.

present article as the SPAM data set. Each of the two global 
cropland data sets was analyzed individually using the meth-
ods described below (supplemental figures S2b, S3b, S4b, 
S5b, S6b). We also evaluated a combined data set, ‘Monfreda 
and SPAM’, in an ensemble map, based on the mean of the 
harvested area fraction from the two data sources.

For each of these three data sets, we evaluated the harvested 
cropland area for banana (supplemental figure S2a), cassava 
(supplemental figure S3a), potato (supplemental figure S4a), 
sweet potato (supplemental figure S5a), and yam (supplemen-
tal figure S6a). In the present article, we use the term banana 
to refer to both bananas and plantains (Beed et al. 2012). Data 
were spatially aggregated by finding the mean harvested area 
for each crop across 24 × 24 grids of the original 5 × 5 minute 
grids, for a resolution of 120 × 120 minutes (2 × 2 degrees [°]). 
We used two methods to calculate the mean of the crop har-
vested area per grid: the land mean (the sum of the harvested 
area fractions within an aggregated 2° × 2° unit divided by 
the number of 5 × 5 minute units within the aggregated unit 
that contain only land; supplemental figures S2a2, S3a2, S4a2, 
S5a2, S6a2) and the total mean (the same sum divided by the 

total number of 5 × 5 minute units within an aggregated 2° × 
2° unit; figures supplemental S2a1, S3a1, S4a1, S5a1, S6a1). 
These two formulations of the mean are different particularly 
on coastlines and for islands; the uncertainty quantifica-
tion below addresses both formulations. To focus on more 
important production areas, we considered three threshold 
values for inclusion of nodes in the analysis: 0.0015, 0.002, and 
0.0025 mean proportion cropland harvested area.

Uncertainty quantification and data quality.   We performed an anal-
ysis of model sensitivity to parameter shifts to evaluate how 
consistent results were under changes in model parameters 
and to determine which nodes had high cropland connectiv-
ity risk across all or most model scenarios and which nodes 
had high risk only for a limited range of model scenarios. 
On the basis of the combinations of functions, thresholds, 
and parameters used, 144 cropland connectivity risk index 
maps were generated for each crop (table 1). For each cell in 
the maps, we calculated the mean, max, min, and variance 
across the 144 maps. And, for reference, we summarize the 
data quality assessment provided by Monfreda and colleagues 
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Figure 3. An illustration of the evaluation of cropland connectivity risk for a simple hypothetical scenario. Note that panels 
(a–g) illustrate one scenario, whereas panels (h–l) illustrate a summary across multiple scenarios in a sensitivity analysis 
or uncertainty quantification. (a) The map of cropland density indicates the fraction harvested area for a crop species in a 
hypothetical small region in which white areas have none of the crop species, light green areas (1–16 and 18–19) have a low 
fraction of land planted to the crop species, and the blue area (17) has a high fraction planted to the crop species. (b) The network 
of cropland connectivity that corresponds to the map in a, indicating the links for one set of threshold parameters (negative 
exponential function with γ = 0.7 was used to calculate the link weight, and a threshold of 0.001 was used to determine whether 
a link exists). The high density region (blue node 17) and bridging region (light green node 10) are indicated. (c) A map of the 
sum of nearest neighbors’ degrees for the network in b. Nearest neighbors are those with direct links to a reference node, and 
node degree is the number of links to a node. (d) A map of node strength for the network in b. Node strength is the sum of the 
weights of links to a reference node. (e) A map of betweenness centrality for the network in b. Betweenness centrality indicates 
the number of shortest paths in the network that pass through a reference node. (f) Eigenvector centrality for the network in b. 
Eigenvector centrality is a measure of how well connected a node is in terms of immediate neighbors, their neighbors, etc. (g) The 
CCRI for the network in b. CCRI is a weighted mean of the four measures of connectedness in maps c through f. Note that this is 
the CCRI for one parameter combination, whereas additional combinations are illustrated in the supplemental material (figure 
S1). (h) A map of the mean CCRI from uncertainty quantification for networks corresponding to map a for a range of parameter 
combinations (table 1). (i) The difference between ranked values of the mean CCRI from a uncertainty quantification, and the 
ranked values in map a. This difference indicates locations in which the fraction of land planted to the crop species does not 
capture all the features of connectivity in the CCRI. Red colors indicate regions in which the CCRI rank is higher than the ranked 
values of map a, and blue colors indicate regions in which the CCRI is lower. (j) Map of the maximum CCRI from uncertainty 
quantification. (k) Map of the minimum CCRI from uncertainty quantification. (l) Map of the variance in CCRI across 
realizations in uncertainty quantification.
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(2008; supplemental figures S2c, S3c, S4c, S5c, S6c). We also 
compared how locations rank on the basis of CCRI with how 
they rank on the basis of harvested crop fraction (crop den-
sity). Those locations in which the CCRI rank is substantially 
higher than the crop density rank are locations that might have 
particularly important roles in epidemic spread but that would 
not be identified if analysis looked solely at crop density.

Cropland connectivity and the risk of major pests 
and diseases of roots, tubers, and bananas
Mapped areas with a higher CCRI are likely to have higher 
risk for dispersal of pathogens or pests of banana and 
plantain, cassava, potato, sweet potato, and yam, based on 
cropland connectivity (figure 4). Cropland connectivity is a 
risk factor for movement through wind dispersal, active pest 
movement, vector movement, seed exchange, farm tools, or 
trade. The locations we identified are candidates for priori-
tizing surveillance and mitigation programs (Smolinski et al. 
2003, Woolhouse et al. 2005), especially if information about 
weather conduciveness to invasion—for example, suitable 
temperature (Kroschel et  al. 2016)—and other risk factors 
such as documented trade patterns (Andersen et al. 2019), 
also support the high-risk designation.

A cropland connectivity risk index will often be an impor-
tant component of integrated geographic risk assessment, along 
with weather/climate risk factors, genetic resistance deploy-
ment, and trade. We demonstrated how a cropland connectivity 
risk index can be designed to go beyond simply identifying as 
high risk those land units that have high crop fraction, especially 
if the index captures how locations may function as bridges by 
incorporating a measure such as betweenness centrality. Land 
units with high crop fraction will tend to be identified as high 
risk, although less so if they are isolated, because the gravity 
model weights crop fraction in evaluation of the probability 
of movement. However, the cropland connectivity risk index 
also identifies locations that have an important role as bridges 
between cropping regions, even if the cropping density within 
the bridge land units is not particularly high (the red regions in 
figure 3i and figure 5). Therefore, analysis of cropland connec-
tivity can identify additional risk areas on the basis of the larger 
landscape, beyond those identified through a simple unit-by-
unit scan for high cropping density.

High variance at a location (figure 4) suggests that more 
information is needed to be confident about that location’s 
role, such as dispersal model parameter estimates specific to 
the disease or pest in question, or more information about 
cropping density to support analysis of the CCRI. Locations 
with the combination of high mean and low variance may be 
particularly good candidates for surveillance and mitigation 
prioritization, because these locations are more likely to have 
a high risk across all model assumptions evaluated.

Banana and plantain.  A combination of high mean CCRI and 
low variance in CCRI in uncertainty quantification was 
observed for central, north central and southern Uganda, 
northwest Tanzania (figure 4a1, 4a2), Rwanda, Burundi, 

the Inter-Andean valleys in Colombia, central and western 
Ecuador, and Haiti. The highest global CCRI was found 
in the border region of Uganda, Rwanda, and Tanzania 
(figure 4a1). High variance in CCRI was observed in limited 
regions of Colombia and Ecuador (figure 4a2). The CCRI 
rank was substantially higher than the rank based on crop-
land density alone in multiple locations in Africa, particu-
larly in Tanzania (figure 5a).

Two banana diseases illustrate how pathogen inva-
sion and spread can be linked to cropland connectivity. 
Banana bunchy top disease, caused by Banana bunchy top 
virus (BBTV, genus Babuvirus), causes devastating losses. 
Phylogenetic studies of BBTV spread in Africa, along with 
farmers’ observations, suggest dual introduction events for 
BBTV—in Egypt and then in the Democratic Republic of 
Congo—before further virus spread in Sub-Saharan Africa 
(Kumar et al. 2011, Leung et al. 2015). Movement of plant-
ing material, and long-distance spread facilitated by migrant 
workers, likely have contributed to the gradual expansion 
of BBTV in Sub-Saharan Africa. Ubiquitous distribution 
of the vector, the banana aphid (Pentalonia nigronervosa), 
contributed to local spread of the virus. Xanthomonas wilt of 
banana (caused by Xanthomonas vasicola pv. musacearum) 
often causes yield reductions of up to 100% (Tushemereirwe 
et  al. 2004, Ndungo et  al. 2006, Tripathi et  al. 2009). This 
disease is mainly spread by infected planting material, insect 
vectors, farm tools, browsing animals, and occasionally by 
bats, birds, and weevils (Yirgou and Bradbury 1974, Gold 
and Bandyopadhyay 2006, Tinzaara et al. 2006, Were et al. 
2015). The disease had been limited to the Ethiopian enset 
growing belt until 2001 when it appeared in banana fields in 
central Uganda and eastern Democratic Republic of Congo 
(Ndungo et al. 2006, Tushemereirwe et al. 2004). Highly con-
nected and susceptible Musa ABB type production systems 
dominate in lower elevation central Uganda, where there is 
high insect activity, and this, combined with often poor plot 
management, likely produced the particularly fast spread of 
the disease. In contrast, and despite a high level of connec-
tivity of banana cultivation zones, disease spread has been 
slower in the Albertine rift valley mountainous region of 
east Democratic Republic of Congo. This is probably mainly 
due to elevation effects on insect vector transmission and the 
predominance of the Musa AAA-EA subgroup, which are 
less susceptible to insect vector transmission. In this region, 
disease spread mainly occurs through garden tool use. The 
adjacent Congo basin lowlands to the west of the rift valley 
are dominated by dense tropical forests, with bananas and 
plantains only in villages along road or river axes, and often 
low connectivity. As a result, disease spread into the Congo 
basin has, over a period of nearly 20 years, been very limited.

Cassava.  The CCRI for cassava was particularly high 
throughout southern Nigeria, south central Ghana, western 
Burundi, northern Brazil (Bahia and Amazonas states), 
southern Brazil (Parana and Mato Grosso states), south-
west Paraguay, and northeast Argentina (figure 4b1). High 



Overview Articles

https://academic.oup.com/bioscience 	 September 2020 / Vol. 70 No. 9 • BioScience   751   

variance in the CCRI was observed in the border region 
shared by Paraguay, Brazil, and Argentina (figure 4b2). The 
CCRI rank was substantially higher than the rank based on 
cropland density alone in locations in Nigeria, Cameroon, 
and the Democratic Republic of Congo (figure 5b).

Cassava frogskin disease is an economically important 
disease of cassava across Latin America and the Caribbean, 

where up to 90% yield loss was reported in severely infected 
fields in the 1980s (Pineda et al. 1983). The disease has been 
associated with several pathogens, and transmission is typi-
cally via asymptomatically infected cassava planting material 
(Alvarez et al. 2009, Carvajal-Yepes et al. 2014). Until 1971, 
the disease had been found only in Colombia, but since 
then, it has been reported in Panama, Costa Rica, Venezuela, 

Figure 4. The mean and variance observed for cropland connectivity risk index components in uncertainty quantification 
for banana/plantain, cassava, potato, sweet potato, and yam (based on the mean of crop density estimates from Monfreda 
et al. 2008 and SPAM, IFPRI and IIASA 2016).
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Figure 5. Maps of the difference in cell rank between 
harvested area fraction and the mean cropland connectivity 
risk index for banana and plantain, cassava, potato, 
sweet potato, and yam (based on the mean of crop density 
estimates from Monfreda et al. 2008 and SPAM, IFPRI 
and IIASA 2016). The locations at which the CCRI has 
substantially higher rank than the crop density could have 
important roles in spread that would not be identified if 
analyses were limited to crop density.

Peru, and Brazil, (Chaparro-Martinez and Trujillo-Pinto 
2001, Calvert and Thresh 2002, Calvert et  al. 2012, Di Feo 
et  al. 2015). A more recent threat to cassava production is 
the reemergent cassava common mosaic disease (CCMD), 
caused by the mechanically transmitted potexvirus Cassava 
common mosaic virus. Originally reported to cause sig-
nificant yield losses in southern Brazil since the 1940s (for a 
review, see Lozano et al. 2017), recent outbreaks of CCMD 
have been reported in Peru and Argentina (Di Feo et  al. 
2015, Fernandez et al. 2017, Zanini et al. 2018). Because of 
the likely spread of these pathogens through asymptom-
atic planting material, it is probable that patterns of spread 
throughout Latin America are related to high intensity areas 
of production. For example, CCMD is reported in high 
intensity areas of production in northeast Peru and northeast 
Argentina, where high CCRI was observed in our analysis.

In contrast to CMD (discussed earlier), cassava brown 
streak disease (CBSD; figure 2b) is less readily spread by 
vectors. Its rate of spread into Central Africa was likely also 
slowed because of a lack of cassava cropland connectivity, 
associated with the massive barrier of the great forests of the 
Congo Basin. High levels of cassava cropland connectivity 
in West Africa, from western Cameroon westward, suggest 
that if CBSD is introduced to this area, there is likely to be 
rapid spread further westward. Both cassava pandemics are 
being driven by superabundant populations of the whitefly 
vector, Bemisia tabaci. Cropland connectivity is also likely 
to be important for Bemisia whitefly populations, because 
the whitefly genotypes occurring on cassava have a strong 
preference for this crop (Wosula et al. 2017).

Potato.  The CCRI for potato was particularly high in north-
central Europe, including northern and central Ukraine, cen-
tral Poland, central and southern Belarus, and southwestern 
Russia. CCRI was also high in locations in the United States 
(Idaho, Washington, Colorado, and the northern Great 
Lakes region), New Brunswick in Canada, locations in Peru 
and central Colombia, and central China (figure 4c1). In 
Africa, the Lake Kivu region has a high CCRI. High variance 
in the CCRI was observed in central Colombia and central 
Peru, and around the border between India and Bangladesh 
(figure 4c2). The CCRI rank was substantially higher than 
the rank based on cropland density alone in multiple loca-
tions in Eastern Europe and Eastern China (figure 5c).

Potato yellow vein is an important potato disease in the 
northern Andean region caused by Potato yellow vein virus 
(PYVV). PYVV is transmitted by the greenhouse white-
fly (Trialeurodes vaporariorum), through seed potato and 
underground stem grafts (Salazar et  al. 2000). Originally 
reported in northern Ecuador and west central Colombia, 
the virus has spread, probably via infected seed tubers, 
throughout the central Andes, particularly to the most 
important potato-producing areas of Colombia (Guzmán 
et  al. 2006), Venezuela, and northern Peru. Interestingly, 
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PPVV has not moved further south over the last 20 years 
despite predicted favorable conditions for whiteflies in these 
regions (Gamarra et  al. 2016). Likely a gap with reduced 
cropland connectivity and limited potato seed exchange 
between northern and southern Peru has contributed to this 
lack of spread, although other factors, such as cultivar resis-
tance, may also be important factors. Central Peru should 
be a priority area for monitoring to prevent further spread 
of the disease to southern Peru and Bolivia, whereas spread 
to other regions is likely only possible through long distance 
transport of infected potato.

The potato tuber moth, Tecia solanivora, is a challenging 
potato pest in Central and South America (Kroschel and 
Schaub 2013). Guatemala is understood to be the country 
of origin. In 1970, the pest was accidently introduced with 
infested seed into potato growing regions of Costa Rica—in 
1983, into Venezuela and, in 1985, into Colombia. In 2010, 
T. solanivora was reported for the first time from southern 
Mexico and, in 1996, from Ecuador. In 1999, T. solanivora 
appeared on Tenerife, Canary Islands. Since then, the pest has 
been considered a major threat to potato crops throughout 
southern Europe and was listed as a quarantine pest by the 
European and Mediterranean Plant Protection Organization 
(EPPO 2005). Schaub and colleagues (2016) confirmed the 
suitable climatic conditions in southern Europe. However, 
because T. solanivora is strongly monophagous and potato 
is its only host plant, the movement of infested seed is the 
main potential pathway of its spread into new potato grow-
ing regions, especially if there is not a high level of cropland 
connectivity among the regions. The pest was therefore con-
tained in Tenerife for many years before it was first detected 
in mainland Spain in Galicia in 2015 and in Asturias in 2016 
(Jeger et al. 2018). In contrast, the South American tomato 
leafminer, Tuta absoluta, after its transatlantic invasion and 
first detection in Spain in 2006, rapidly spread across south-
ern Europe, Africa, and Asia (https://gd.eppo.int/taxon/
GNORAB/distribution). Compared with T. solanivora, also 
a Lepidopteran pest of potato, the very rapid spread of T. 
absoluta is likely due at least in part to its very wide host 
range in the Solanaceae, and the very high level of connec-
tivity of these combined species. Therefore, considering the 
low level of connectivity of the potato crop in many regions 
(e.g, in southern Europe and much of Africa), it will likely 
be more difficult for a monophagous potato pest such as T. 
solanivora to invade new potato growing regions.

Sweet potato.  The CCRI for sweet potato was high in locations 
in central China, the Caribbean (Haiti and the Dominican 
Republic; figure 4d1), and in central Uganda, with central 
China having the highest ranked global risk. High variance 
in the CCRI was observed in the area north of Lake Victoria 
in Uganda (figure 4d2). The CCRI rank was substantially 
higher than the rank based on cropland density alone in 
multiple locations in China (figure 5d).

In sweet potato, several weevils important to yield loss 
exist worldwide. Sweet potato viruses such as sweet potato 

chlorotic stunt virus (SPCSV), sweet potato feathery mottle 
virus, and some begomoviruses are already present glob-
ally, whereas other viruses such as sweet potato mild mottle 
virus are found only in certain regions. Some strains of sweet 
potato viruses, such as the severe EA strain of SPCSV, are 
geographically localized. Movement of planting material 
(sweet potato vines) through trade can cover long distances 
(Rachkara et  al. 2017). Whereas some sweet potato pests 
such as viruses are easily spread through planting material 
(Gibson and Kreuze 2015) and can form permanent reser-
voirs in wild host species (Tugume et al. 2008, Tugume et al. 
2013, Tugume et al. 2016), others, such as weevils, are not 
readily spread through planting material, have no known 
alternative hosts, and are unable to travel long distances by 
themselves.

Yam.  Of the crops evaluated, yam had the lowest overall 
global harvested area. The highest CCRI observed for yam 
was in locations in southcentral Nigeria, Benin, Togo, Ghana, 
and the Ivory Coast, along with locations in the Caribbean 
including Haiti (figure 4e1). High variance in the CCRI was 
observed at the border of Mali and Côte d’Ivoire (figure 4e2). 
The CCRI rank was substantially higher than the rank based 
on cropland density alone in locations in eastern Nigeria, 
Togo, western Ivory Coast, and the Dominican Republic 
(figure 5e).

Yam is a multispecies crop grown for its tubers by mil-
lions of smallholder farmers in West Africa. Nearly 94% 
of global edible yam production is in West Africa (Benin, 
Cameroon, Côte d’Ivoire, Ghana, Nigeria and Togo), and 
Nigeria alone produces 66% of global production (FAOstat 
2016). Major constraints to yam production in West Africa 
are mosaic disease caused by Yam mosaic virus and Yam 
mild mosaic virus (genus Potyvirus), and anthracnose 
caused by Colletotrichum gloeosporioides. Damage to yam 
by nematodes—Scutellonema bradys, Pratylenchus spp., and 
Meloidogyne spp.—is responsible for significant pre- and 
postharvest deterioration of tubers. All these agents are 
endemic in all the yam production regions in West Africa, so 
saturation is the main consideration within that region, and 
anecdotal evidence clearly links the spread of yam viruses 
and nematodes to the movement of planting material in 
West Africa.

Incorporating cropland connectivity in risk 
assessments
These analyses illustrate general cropland connectivity 
risk across a large spatial extent and for a fairly coarse 
spatial resolution. The maps of mean CCRI for each crop 
are available through links at garrettlab.com/cropland-
connectivity, along with information for reading the data 
into R for potential further analysis or integration with 
other risk factors. Follow-up analyses for specific loca-
tions and particular pathogen or pest species may be use-
ful, especially when more detailed data are available for 
mapping cropland fraction and for selecting appropriate 
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functions as dispersal kernels for specific time scales, 
and potentially other system-specific factors. The results 
presented in this article have a greater confidence for 
certain crops such as potato and certain regions because 
of the quality and quantity of the original data available 
for assembly by Monfreda and colleagues (2008) and in 
SPAM 2005 v3.2 (IFPRI and IIASA 2016). Examples of the 
application of network analysis to invasions of particular 
species include Phytophthora ramorum (Harwood et  al. 
2009, Shaw and Pautasso 2014) and Phakopsora pachyrhizi 
(Sutrave et al. 2012, Sanatkar et al. 2015). The role of a land 
unit will depend on the species of pathogen or pest being 
considered, and its dispersal kernel. A particular land 
unit evaluated for species that tend to move only short 
distances might be isolated, whereas for species that tend 
to move longer distances it might be an important bridge 
node (Calabrese and Fagan 2004).

Individual pathogen or pest data and implications for 
trade can be disseminated via actively updated Regional 
Pest Risk Assessment working documents, to support stan-
dards established by the International Plant Protection 
Convention to prevent introduction, establishment and 
spread of pests and diseases, implemented by National and 
Regional Plant Protection Organizations (Miller et al. 2009, 
IPPC 2012, Beed et  al. 2013). A general measure such as 
the CCRI can usefully become a standard feature of PRAs, 
as a starting point in addressing a pest or disease for which 
there is limited information available. As more attention is 
focused on the invasive species and data collection increases, 
scenario analyses of management options, supported by 
epidemic simulation, could inform increasingly targeted 
surveillance and mitigation efforts (e.g., Garrett et al. 2018, 
Andersen et al. 2019).

Other useful points for future research to refine crop-
land connectivity risk assessments include the following. 
The current analysis is based on geographic data for 2000 
(Monfreda et al. 2008) and 2005 (IFPRI and IIASA 2016), 
so areas in which crop densities have increased rapidly in 
recent years are not represented in these global maps yet. 
An important example is cassava production in Southeast 
Asia, where production has quickly expanded and is now 
experiencing an invasion of Sri Lankan cassava mosaic virus 
(Wang et al. 2015, Delaquis et al. 2018). The cropland density 
data are summarized across global data sets that vary widely 
in quality from region to region. The resolution we selected 
for our analyses was intended to represent a compromise—
avoiding too high a spatial resolution because it might have 
little data to back it up in many regions, and also avoid-
ing too coarse a resolution that might obscure the roles of 
specific locations. Where more complete data are available 
or can be collected, more detailed and higher resolution 
analyses can be performed. Likewise, the current analysis 
does not take into account geographic features that could 
have important effects on the likelihood of active or passive 
movement of pathogens and pests, or weather features such 
as wind patterns (Sutrave et al. 2012). Roads and rivers may 

increase pathogen movement, whereas other water bodies, 
deserts, and mountains may isolate nodes (Meentemeyer 
et al. 2012). And the distribution of individual crop species 
captures only some aspects of risk for many pathogens and 
pests that can use multiple host species. Conversely, if resis-
tance genes are widely deployed, pathogens and pests may 
only be able to use a subset of the planted fraction (Brown 
and Hovmoller 2002, Garrett et al. 2017). Extreme weather 
patterns may be responsible for many important regional 
or global introductions of pathogens and pests, such as the 
potential introduction of soybean rust to the United States 
in hurricane Ivan (Schneider et  al. 2005). Flooding may 
move some soilborne pathogens to new locations. Finally, 
heterogeneity in time may alter patterns of cropland con-
nectivity. Markets may drive longer term trends in planting 
patterns, and for shorter season crops such as potato and 
sweet potato, geographic heterogeneity in planting seasons 
may disrupt the cropland connectivity suggested when sea-
sons are aggregated.

We present analyses for the crop species individually. 
However, as an overall measure of cropland connectiv-
ity risk for pathogen and pest invasion and saturation for 
these crops, a cross-crop index constructed by adding the 
individual species risk indices may be useful for evaluating 
strategies for general purpose surveillance and management 
strategies for the set of crops. Combining across host spe-
cies might also be useful for special cases in which a target 
pathogen or pest uses multiple host species.

Two regions in Africa, the Great Lakes Region and the 
region between Ghana and Nigeria, have high cropland 
connectivity risk for multiple crops. The Ugandan strain of 
the East African cassava mosaic virus caused famine in East, 
Central, and West Africa (Anderson et al. 2004), and wheat 
stem rust race Ug99 also emerged in Uganda (Pretorius et al. 
2000). It is an interesting open question if the geographic 
position of Uganda in cropland networks had some influ-
ence on disease emergence, or if it was simply a matter of 
higher sampling effort that made detection more likely.

Areas identified with low connectivity and low risk can 
also be prioritized to produce disease-free seed. This has 
often happened naturally—for example, where particularly 
dry regions that are not optimal for crop production and, 
therefore, are often isolated from other crop production 
regions may produce seed with low disease risk. Seed 
production areas play an outsize role in the risk of disease 
spread, even where cropping density is low. The risk of 
pathogen spread through seed networks is a key compo-
nent for integration with risk on the basis of cropland con-
nectivity (Garrett et  al. 2018, Andersen et  al. 2019). The 
movement of pathogens through the international seed 
trade is an important risk factor for many crops (Anderson 
et al. 2004, Wylie et al. 2008, Rodoni 2009). In Sub-Saharan 
Africa, movement of plant material and farming tools is a 
key factor for the dispersal of banana diseases such BXW 
(Tripathi et  al. 2009, Beed 2014) and through cuttings for 
cassava virus diseases, particularly CBSD (Bock 1994, Legg 
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et al. 2015). The United States late blight pandemic in 2009 
was caused by the movement of infected tomato plants 
via trade from a single national supplier (Fry et  al. 2013). 
During 2009–2010, an epidemic of P. infestans in tomato 
was reported in southwest India with the suggestion that 
the pathogen was introduced via seed potato imported from 
the UK and Europe before 2009 (Chowdappa et al. 2013). 
Cropland connectivity is likely to capture at least a portion 
of the risk associated with movement of seed, transplant, 
and agricultural equipment, to the extent that trade and 
movement of equipment and agricultural workers tends 
to follow a path through areas that produce a particular 
crop. Of course, at the same time that cropland connectiv-
ity represents a risk for the spread of pathogens and pests, 
connectivity may also confer advantages for efficiency in 
deployment of equipment and personnel, as well as market-
ing of seed and produce.

In summary, cropland connectivity constitutes a risk com-
ponent important for most pests and diseases. It can comple-
ment risk assessments based on the effects of climate, genetic 
resistance, and formal trade networks. The integration of 
these risk assessment layers will make the best use of avail-
able data to evaluate risk and guide targeted surveillance and 
mitigation in global strategies such as the proposed Global 
Surveillance System for plant disease (Carvajal-Yepes et al. 
2019). Uncertainty quantification can help in interpreting 
analyses when information about dispersal kernels is not 
available, or when a more general analysis is desired, and 
in targeting data collection to the most important data for 
improving key parameters. Availability of high quality data 
related to cropping density, deployment of genetic resis-
tance, and weather patterns will improve risk assessments. 
Developing optimal methods for integration across cropland 
connectivity and other risk data layers is an important chal-
lenge for risk analysis and offers the promise of more effec-
tive risk assessment in the future.
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