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Abstract: Soil nitrogen content is one of the important growth nutrient parameters of crops. It is
a prerequisite for scientific fertilization to accurately grasp soil nutrient information in precision
agriculture. The information about nutrients such as nitrogen in the soil can be obtained quickly
by using a near-infrared sensor. The data can be analyzed in the detection process, which is
nondestructive and non-polluting. In order to investigate the effect of soil pretreatment on nitrogen
content by near infrared sensor, 16 nitrogen concentrations were mixed with soil and the soil samples
were divided into three groups with different pretreatment. The first group of soil samples with strict
pretreatment were dried, ground, sieved and pressed. The second group of soil samples were dried
and ground. The third group of soil samples were simply dried. Three linear different modeling
methods are used to analyze the spectrum, including partial least squares (PLS), uninformative
variable elimination (UVE), competitive adaptive reweighted algorithm (CARS). The model of
nonlinear partial least squares which supports vector machine (LS-SVM) is also used to analyze the
soil reflectance spectrum. The results show that the soil samples with strict pretreatment have the
best accuracy in predicting nitrogen content by near-infrared sensor, and the pretreatment method is
suitable for practical application.
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1. Introduction

The soil, whose main role is to provide nutrients in the process of plant growth [1,2], is the
foundation and an important part of agriculture. Nitrogen and other nutrients in farmland are
important factors affecting crop growth. It is very important to obtain the soil nitrogen content
information quickly and reasonably for proper fertilization and agricultural production [3]. However,
the traditional chemical testing method called “soil testing and fertilization” has the disadvantages of
taking a long time, and being a complex and high cost process, which greatly limits the detection of
soil nutrients [4].

Near-infrared sensors applied to the detection of soil nitrogen can quickly obtain information
such as nitrogen nutrient levels in the soil and realize data analysis and the detection process is
non-destructive and pollution-free [5,6]. In recent years, many scholars have used near infrared
sensors to study the nitrogen content in the soil. Mouazen et al. compared the PLS and BPNN
modeling methods on a visible near-infrared sensor, and found that the BPNN method was superior to
the PLS modeling method in detecting soil organic nitrogen [7]. Kuang et al. collected soil samples from
five farms and detected soil organic carbon and inorganic nitrogen by a near infrared sensor, finding
that organic carbon RPD (residual prediction deviation) were (2.66–3.39) and inorganic nitrogen RPD
were (2.85–3.45) [8]. Shi used a multiple linear regression method to estimate organic nitrogen content
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in soils based on visible/near infrared (NIR) spectra, and proposed the 1450, 1850, 2250, 2330 and
2430 nm bands as the characteristic bands for this purpose [9]. Cecillon et al. used near-infrared sensor
(NIR) techniques and estimated organic matter in the soil and extracted the relevant characteristic
wavelengths based on principal component analysis and genetic algorithms [10]. He et al. used a
near-infrared sensor to detect N, P, K, organic matter and pH in the soil. It was proved that there was a
significant correlation between the reflectance spectra of soil and nitrogen, and the near infrared sensor
could predict the soil nitrogen and organic matter and other nutrients [11–13]. Li took three parts of
soil, including soil surface (0~30 cm), soil interlayer (30~48 cm) and soil bottom layer (48~60 cm) and
analyzed the absorption spectrum characteristics of soil samples at different levels and the variation of
soil water and nitrogen levels. The results showed that the method had obvious advantages in the
prediction of soil nitrogen content [14].

Near-infrared sensors have been widely used in soil nitrogen detection, and relevant scholars
have studied the characteristic bands, modeling methods and other aspects. However, in practice, the
nitrogen content detection accuracy is not high when the soil is not pretreated well because of the soil
water content [15], soil particle size and soil surface roughness [16]. Hernandez, et al. investigated
the effect of soil particle size and soil moisture content on soil spectral properties. It was found that if
the soil particle size is too large or too small it would affect the accuracy of near-infrared sensors to
predict soil organic nitrogen, and the NIR prediction results were not ideal when the soil water content
was heavy [17]. Wang studied the soil moisture by detecting the effect of soil organic matter with
different water contents using a near infrared sensor. The results showed that the water would mask
the characteristic wavelength bands of the soil organic matter and could interfere with the detection
of soil organic matter [18]. Zeng et al. studied the effect of water on the content of organic matter
detection in purple soil by near infrared spectroscopy. The genetic algorithm, two polynomial fittings
and PLS were used to process the spectral data. The results showed that the proposed method could
effectively eliminate the influence of purple soil moisture on the prediction of the organic matter
content [19]. Zhu used PLS to study the effects of soil moisture and soil particle size on total soil
nitrogen detection. The experimental results showed that the smaller the soil water content was and the
smaller the soil particles was and the better the accuracy and effectiveness of the detection were [20,21].
However, there are relatively few studies on the strict pretreatment of soil. Soil pretreatment can not
only improve the accuracy in detecting soil nitrogen content by near infrared reflectance sensor, but
also has a good scientific and practical value.

2. Materials and Methods

2.1. Sample Preparation

Soil samples in this experiment are pure natural soils from Hui Zhuang Agricultural Development
Company in Huainan City, Anhui Province, China. The soil texture after artificial screening was fine.
Nitrogen solutions with concentrations of 0%, 2%, 4%, 6%, 8%, 10%, 14%, 16%, 18%, 20%, 22%, 24%,
26%, 28%, 30% were prepared for the experiments. The soil samples were divided into three equal
groups and each group had 16 parts. First, solutions of different concentration and soil are fully mixed
and stirred. Second, the three groups of soil samples are dried at 80 ◦C for 8 h. Third, the first group
of soil samples are pretreated by grinding with 80 mesh (160 µm) sieve screening and pressing them
into 10 mm × 10 mm samples of 2 mm thickness under a the pressure of 10 MPa using a bench press
machine (Figure 1A). The second group of soil samples were dried and ground as shown in Figure 1B.
The third group of soil samples was dried without any pretreatment, as shown in Figure 1C. There are
10 samples of each soil sample of each concentration.
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Figure 1. (A) Strict pretreatment soil samples; (B) grinding and drying soil samples; (C) drying soil 
samples. 

2.2. Spectrometric Determination 

The spectral reflectance information of the three groups of soil samples was collected by a 
spectrometer. This experiment used a near infrared optical spectrum instrument from Wuling 
Company (Shanghai, China). The spectral range, standard rate and scanning times can be set based 
on the experimental requirements. The spectral acquisition range was from 900 nm to 1700 nm. The 
near infrared optical spectrum instrument can collect the light intensity, reflection and absorption 
information from soil. Each spectral acquisition is set up with 400 points and a spectrum was obtained 
by averaging three scans.  

2.3. Data Analysis 

The principle of near infrared sensor is the absorption of the molecule frequency doubling. NIR 
sensors can detect the energy not absorbed by the material due to the chemical composition. However, 
at the same time, it can also be affected by the surface texture, density and uneven distribution of 
internal components, which makes it very difficult for all the redundant information of the spectral 
information to be eliminated, such as the overlap of the spectral information, the large amount of 
noise and the sample background [22]. If these data were involved in modeling, it not only would 
result in a large amount of computation and model complexity, but also would influence the results’ 
accuracy. Therefore, in order to achieve the purpose of qualitative or quantitative analysis of complex 
mixtures, it is necessary to extract and analyze the weak chemical information in the spectral analysis 
by chemometrics [23]. In this paper, three different liner data processing methods and one nonlinear 
data method were used to model and analyze the reflectance spectra.  

2.3.1. Partial Least Squares Method 

Partial least squares regression is the most commonly used chemometrics modeling method in 
spectral data analysis [24,25]. The selection of the main factor is directly related to the actual 
prediction ability of the model when using this analysis method. If the number of main factors is too 
small, the spectral information of the sample cannot be fully expressed. On the contrary, if the number 
of main factors is too large, the increase of noise would reduce the prediction ability. Therefore, it is 
very important to establish the prediction model by taking into account the spectral matrix X and the 
physical and chemical value of Y in order to obtain the latent variables and reduce the influence of 
the useless variables. The advantage of this method is that it can be applied to complex analysis 
system and small sample multivariate data analysis [26]. 

2.3.2. No Information Variable Elimination Method 

The no information variable elimination method (Elimination of Uninformative Variables, or 
UVE) was originally proposed by Centner et al. [27]. Teófilo proposed combination algorithms on the 
basis of UVE [28]. The UVE algorithm establishes a variable selection method based on the PLS 
regression coefficients. It adds a small random variable matrix to the PLS model, and then establishes 

Figure 1. (A) Strict pretreatment soil samples; (B) grinding and drying soil samples; (C) drying
soil samples.

2.2. Spectrometric Determination

The spectral reflectance information of the three groups of soil samples was collected by a
spectrometer. This experiment used a near infrared optical spectrum instrument from Wuling
Company (Shanghai, China). The spectral range, standard rate and scanning times can be set based
on the experimental requirements. The spectral acquisition range was from 900 nm to 1700 nm.
The near infrared optical spectrum instrument can collect the light intensity, reflection and absorption
information from soil. Each spectral acquisition is set up with 400 points and a spectrum was obtained
by averaging three scans.

2.3. Data Analysis

The principle of near infrared sensor is the absorption of the molecule frequency doubling. NIR
sensors can detect the energy not absorbed by the material due to the chemical composition. However,
at the same time, it can also be affected by the surface texture, density and uneven distribution of
internal components, which makes it very difficult for all the redundant information of the spectral
information to be eliminated, such as the overlap of the spectral information, the large amount of
noise and the sample background [22]. If these data were involved in modeling, it not only would
result in a large amount of computation and model complexity, but also would influence the results’
accuracy. Therefore, in order to achieve the purpose of qualitative or quantitative analysis of complex
mixtures, it is necessary to extract and analyze the weak chemical information in the spectral analysis
by chemometrics [23]. In this paper, three different liner data processing methods and one nonlinear
data method were used to model and analyze the reflectance spectra.

2.3.1. Partial Least Squares Method

Partial least squares regression is the most commonly used chemometrics modeling method in
spectral data analysis [24,25]. The selection of the main factor is directly related to the actual prediction
ability of the model when using this analysis method. If the number of main factors is too small,
the spectral information of the sample cannot be fully expressed. On the contrary, if the number of
main factors is too large, the increase of noise would reduce the prediction ability. Therefore, it is
very important to establish the prediction model by taking into account the spectral matrix X and the
physical and chemical value of Y in order to obtain the latent variables and reduce the influence of the
useless variables. The advantage of this method is that it can be applied to complex analysis system
and small sample multivariate data analysis [26].

2.3.2. No Information Variable Elimination Method

The no information variable elimination method (Elimination of Uninformative Variables, or
UVE) was originally proposed by Centner et al. [27]. Teófilo proposed combination algorithms on
the basis of UVE [28]. The UVE algorithm establishes a variable selection method based on the PLS
regression coefficients. It adds a small random variable matrix to the PLS model, and then establishes
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the PLS model based on cross validation [29]. It calculates the mean of each variable coefficient and
the quotient of the standard deviation as the value of stability. Finally, it compares with the value of
the stability of the random variable matrix and the removal is considered to be the same as random
variables. The algorithm steps are as follows [30]:

(1) Regress the calibration matrix X (n × m) and the density matrix Y (n × 1) by PLS to determine
the optimal principal component number, where n is the number of samples in the calibration set
and m is the number of wavelengths in the spectrum.

(2) Produce a noise matrix R (n × m) by man-made and combine X and R into a new matrix XR
(n × 2m). The first m columns of the matrix are the spectral matrix and the m columns are the
noise matrices.

(3) Regress matrix XR (n × 2m) and Matrix Y (n × 1) to obtain the coefficient matrix B (n × 2m)
composed of n sets of regression coefficient vectors by eliminating one sample every time.

(4) Calculate the standard deviations (1 × 2m) and the average value m (1 × 2m) of B (n × 2m) and the
reliability of each variable. The mathematical expression of reliability is as follows. Ci = m(i)/s(i),
i = 1, 2..., 2m.

(5) Take the maximum absolute value of C in the interval [m × 2m] Cmax = max [abs (C)].
(6) Remove the variable C, (C = Cmax) in the spectral matrix X from the interval [1 × m].
(7) The remaining variables are grouped into a new matrix XUVE of the optimization variables

obtained by filtering the UVE variable.

2.3.3. Competitive Adaptive Weighting Method

The competitive adaptive weighted algorithm method, imitating the evolution of “survival of
the fittest” principle, phases out of the invariable wavelengths [31,32]. It uses Monte Carlo sampling
or random sampling method to select a part of the sample from the calibration set samples for PLS
modeling and repeats this process for hundreds of iterations. The algorithm steps are as follows:

(1) Collect the samples for n times by using Monte Carlo method. Randomly select a certain
proportion of samples each time from the sample set as the calibration set.

(2) Establish the PLS regression model by using the extracted spectral matrix X (n × m) and the
concentration matrix Y (n × 1)

(3) Use the exponentially decreasing function (EDF) to remove the wavelength points with small
absolute value of regression coefficient.

(4) Collect samples for i times and determine the retention rate of wavelength points where a and k
are constants according to EDF calculation formula. It is calculated as follows:

a =
(m

2

) 1
N−1 , k =

ln
(m

2
)

N − 1
(1)

It can be seen from the above equation, when sampling the first time, that is, ri = 1, m variables
are involved in the modeling.

In the process of N sampling, we retain the PLS regression model with the absolute value of the
PLS regression coefficient and establish the PLS regression model with the selected wavelength variable.
Calculate the RMSECV value of the model and select the minimum RMSECV value corresponding to
the subset of variables for the optimal subset of variables.

2.3.4. Partial Least Squares Support Vector Machine Method

Partial least squares support vector machine is a new promising classification technique proposed
in 1995 by the Bell Laboratory Research Group of AT&T led by Vapnik [33]. LS-SVM is a kind of
learning pattern recognition method based on the theory of statistics, mainly used in the field of
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pattern recognition. The core idea of LS-SVM is to find an optimal classification hyperplane satisfying
the classification requirements. The basic idea of LS-SVM is to map the nonlinear training data to a
higher dimensional feature space (Hilbert space) and to find a hyperplane where positive and negative
examples both edge isolation between the maximum in the high dimensional feature space [34].
The appearance of LS-SVM effectively solves the problems of traditional neural network, such as the
selection of results, the local minimum and over fitting. It shows very impressive performance for
small samples, and nonlinear and high dimensional data such as machine learning problems, so it has
been widely used in pattern recognition, data mining and other fields [35].

3. Results and Discussion

3.1. Near Infrared Spectrum Analysis

The spectral nitrogen concentration information of the three different pretreatments of the soil
samples collected by a Wuling near infrared portable optical spectrum instrument in this experiment
is shown in Figure 2A. In this paper, the spectral reflectance image is taken as the research object.
The five kinds of soil nitrogen content are selected from the soil samples of the three groups shown in
the Figure 2B, respectively. Their concentrations are 0%, 1.76%, 3.53%, 5.30%, and 6.62%, respectively.

Sensors 2017, 17, 1102 5 of 13 

 

data to a higher dimensional feature space (Hilbert space) and to find a hyperplane where positive 
and negative examples both edge isolation between the maximum in the high dimensional feature 
space [34]. The appearance of LS-SVM effectively solves the problems of traditional neural network, 
such as the selection of results, the local minimum and over fitting. It shows very impressive 
performance for small samples, and nonlinear and high dimensional data such as machine learning 
problems, so it has been widely used in pattern recognition, data mining and other fields [35]. 

3. Results and Discussion 

3.1. Near Infrared Spectrum Analysis 

The spectral nitrogen concentration information of the three different pretreatments of the soil 
samples collected by a Wuling near infrared portable optical spectrum instrument in this experiment 
is shown in Figure 2A. In this paper, the spectral reflectance image is taken as the research object. The 
five kinds of soil nitrogen content are selected from the soil samples of the three groups shown in the 
Figure 2B, respectively. Their concentrations are 0%, 1.76%, 3.53%, 5.30%, and 6.62%, respectively.  

 
(A) 

 
(B) 

Figure 2. (A) three near infrared reflectance spectra of different concentrations of soil nitrogen; (B) 
five different soil nitrogen content samples from the near infrared reflectance spectra of the three 
groups. 

According to the reflectance characteristics of soil samples with different nitrogen 
concentrations, in the first experiments, the spectral reflectance near the 925 nm band and 1410 nm 
band decreases significantly when the soil is not added with (CO(NH2)2), which shows that the 
absorption of nitrogen in this band is sensitive. With the increase of urea concentration, the spectral 
reflectance decreases gradually in the 1485 nm band and 1640 nm band, which shows that the 
nitrogen is sensitive to this band and gradually increases with the increase of nitrogen concentration. 
The curve trend of the second group of experimental samples is basically same as that of the first 
group, but the curve noise and the curve smoothness are worse than those of the first group and there 
was no significant different reflectance between the five groups with different concentrations of 

Figure 2. (A) three near infrared reflectance spectra of different concentrations of soil nitrogen; (B) five
different soil nitrogen content samples from the near infrared reflectance spectra of the three groups.

According to the reflectance characteristics of soil samples with different nitrogen concentrations,
in the first experiments, the spectral reflectance near the 925 nm band and 1410 nm band decreases
significantly when the soil is not added with (CO(NH2)2), which shows that the absorption of nitrogen
in this band is sensitive. With the increase of urea concentration, the spectral reflectance decreases
gradually in the 1485 nm band and 1640 nm band, which shows that the nitrogen is sensitive to
this band and gradually increases with the increase of nitrogen concentration. The curve trend of
the second group of experimental samples is basically same as that of the first group, but the curve
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noise and the curve smoothness are worse than those of the first group and there was no significant
different reflectance between the five groups with different concentrations of nitrogen. The reflectance
effects of the third group is significantly worse than that of the former two groups and its absorption
is not obvious at 925 nm and 1410 nm. With the increase of nitrogen concentration, the spectral
reflectance from 1420 nm to 1475 nm drops in the characteristic band from 1475 nm to 1520 nm and
fluctuates significantly. The relationship between spectral reflectance and soil nitrogen is not good in
the third group.

3.2. Linear Modeling and Analysis

In this paper, the full-spectrum spectral data after baseline correction and normalization are
taken as the independent variables X and the nitrogen content are taken as the dependent variable
Y. The optimal number of factors are determined by the minimum root mean square error of cross
validation (RMSECV, root mean square error of cross validation). At the same time, the spectral matrix
X and the concentration matrix Y are decomposed by PLS, UVE and CARS. The relationship between
them are taken into account to obtain the optimal correction model. In the experiment, 160 soil samples
are divided into 16 groups according to different nitrogen concentration. The calibration set and
validation set are modeled according to the ratio of about 5:3. The 100 samples are used for calibration
set and 60 samples are for the validation set. R is the determination coefficient and RMSEP (root mean
error of prediction) is the root mean square error of prediction. The smaller the RMSEP value is, the
better the predictive ability and the higher the precision are. As is shown in the Figures 3–5, it can be
concluded from the figures.

In Figure 3, the PLS model shows that the coefficient of determination is 0.9901 and the value of
RMESP is 0.002915 of the soil samples with strict pretreatment. The coefficient of determination is
0.9759 and the RMESP value is 0.00633 of the soil sample after drying and grinding. The coefficient of
determination is 0.7988 and the RMESP value is 0.0133 of the dried soil samples.
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Figure 3. PLS modeling and prediction of soil nitrogen in three groups; (a) Strict pretreatment soil
samples; (b) grinding and drying soil samples; (c) drying soil samples.
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Figure 4. Modeling and prediction of soil nitrogen with UVE method: (A) Strict pretreatment soil
samples; (B) grinding and drying soil samples; (C) drying soil samples.
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Figure 4 expresses the stability coefficient of the variables for each wavelength in the UVE
model. The dotted lines are cutoff lines, which are determined by the added random numbers.
The variables between the two cutoff lines are considered to be uninformative variables that need to
be eliminated. The coefficient of determination is 0.99 and the value of RMESP is 0.00286 in the first
group. The coefficient of determination is 0.9512, and the RMESP value is 0.00695 in the second group.
The coefficient of determination is 0.8006 and RMESP is 0.0134 in the third group.

Figure 5, it describes the variable selection process of CARS. RMSECV presents a decreasing trend,
which indicates that the eliminated variables are useless. RMSECV then starts to increase, and it may
eliminate useful variables. The coefficient of determination is 0.99 and the value of RMESP is 0.00275
in the first group. The coefficient of determination is 0.9732 and the RMESP value is 0.0054 in the
second group. The coefficient of determination is 0.7950 and RMESP is 0.0132 in the third group.

Therefore, a series of strict pretreatment soil samples, including drying, grinding, sieving and
pressing, have the best accuracy of nitrogen detection by near-infrared sensor. The soil samples after
drying and grinding have higher precision, while the precision of the soil samples only after drying is
the lowest. However, compared with other near infrared detection of soil nitrogen, the accuracy of this
experiment has been greatly improved. It is proved that the method is effective and reliable for the
detection of nitrogen in soil after strict pretreatment.

3.3. Non-Linear Modeling and Analysis

In order to further study the relationship between soil reflectance spectrum and soil pretreatment,
and eliminate the influence of different pretreatment, three groups of data are analyzed by Partial
least squares support vector machine (LS-SVM). The calibration set and validation set are modeled
according to the ratio of about 5:3. The results of the analysis are shown in Figure 6.
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Figure 6 presents the support vector machine modeling and prediction results. The modeling
coefficient of determination is 0.9117 and the value of RMESC is 0.0123. The prediction coefficient of
determination is 0.8682 and the value of RMESP is 0.014 in the first group. The modeling coefficient of
determination is 0.869 and the RMESC value is 0.0131. The prediction coefficient of determination is
0.8079 and the value of RMESP is 0.0161 in the second group. The modeling coefficient of determination
is 0.7507 and the value of RMESC is 0.0155. The prediction coefficient of determination is 0.7559 and
the value of RMESP is 0.0158 in the third group. This shows that the use of nonlinear support vector
machine method is not particularly desirable. Nevertheless, on the whole, the first set of pretreated
soil samples has the best accuracy.

3.4. Comparison of the Three Linear Modeling Methods

In order to study the effect of soil pretreatment on the detection of soil nitrogen by near infrared,
this paper used different pretreatments on three groups of soil samples and partial least squares
regression, uninformative variable elimination and competitive adaptive reweighted algorithm
methods. The data partitioning statistical results of the three groups of soil samples with conventional
methods are represented in Table 1.

Table 1. Descriptive statistics for sample measurements.

Group Dataset Number Average Std

1
cal 100 0.0317 0.0219
val 57 0.0363 0.0191

2
cal 100 0.0329 0.0207
val 60 0.0335 0.0200

3
cal 100 0.0322 0.0198
val 60 0.0378 0.0214

As can be seen from Table 1, 160 samples were tested in the experiment (three soil samples were
damaged in the first group). The data set is divided into two subsets using the sample set partitioning
based on joint X-Y distances (SPXY) method with a ratio of 5:3. Therefore there were 100 samples in
the calibration set for training the samples and establishing the model, and the remaining 60 samples
in the validation set are applied for testing the samples and verifying the performance of the model.
The average values of the predicted values of the three soil samples are 0.0036, 0.0035 and 0.0037,
respectively. The standard deviation values of three groups of soil samples are 0.0191, 0.0200 and
0.0214, respectively, which shows that the more stringent the soil pretreatment is, the smaller the
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standard deviation value is, and the better the detection effect is. On the other hand, the correlation
coefficients R and RMSECV of the three modeling methods are shown in Table 2.

Table 2. Comparison of three mathematical modeling methods.

Group Model Method R1 of the
Correction Set

R2 of the
Prediction Set

Calibration
Set RMSEC

Prediction Set
RMSEP

Strict
pretreatment
soil samples

PLS 0.9901 0.9865 0.00292 0.00330
UVE 0.9937 0.9900 0.00233 0.02860

CARS 0.9949 0.9900 0.00210 0.00275

grinding and
drying soil

samples

PLS 0.8548 0.9759 0.01071 0.00633
UVE 0.9176 0.9512 0.00821 0.00695

CARS 0.9202 0.9732 0.00808 0.00540

drying soil
samples

PLS 0.7872 0.7988 0.01216 0.01330
UVE 0.7860 0.8006 0.01219 0.01340

CARS 0.8169 0.7950 0.01137 0.01320

From Table 2, it is concluded that there are high correlation coefficients between the three kinds of
correction models and prediction models, and the RMSEC and RMSEP values are small. The results
shows that the pretreatment method has a good effect on the detection of soil nitrogen. Compared with
the first group, the three soil sample models after drying and grinding pretreatment are worse than
others. The possible reasons are that the particle size, the texture of the sample surface and the degree
of compaction of the soil samples that are not sieved and pressed have an influence on the accuracy
and expression of their reflectivity. The correlation coefficient of the soil samples after drying is only
about 0.8 and the results are unsatisfactory, indicating that the surface irregularity and roughness of
the soil samples cause diffuse reflectance, which resulted in great difficulties in the detection of soil
nitrogen by near infrared sensor.

4. Conclusions

In order to study the effect of soil pretreatment on the detection of soil nitrogen by using
near infrared sensors, this paper used (CO(NH2)2) to produce nitrogen solutions with 16 different
concentrations. First, the different concentrations of organic nitrogen solution were fully mixed and
stirred with soil. Second, the soil samples were divided equally into three groups and each group had
16 parts. Third, the three groups of soil samples were pretreated in different ways. The experiments
uses partial least squares, no informative variable elimination method and competitive adaptive
reweighted algorithm and partial least squares support vector machine. It is concluded that the soil
samples with strict pretreatment have the best nitrogen detection accuracy by using a near-infrared
sensor. The soil samples after drying and grinding have higher precision and the precision of the soil
samples after only drying is the lowest. The main conclusions are as follows:

First, according to the reflectance characteristics of soil samples with different concentrations,
when (CO(NH2)2) is not added to the soil, the spectral reflectance near the 925 nm and 1410 nm bands
decreases significantly. With the increase of urea concentration, the spectral reflectance decreases
gradually in the 1485 nm and 1640 nm bands. The reflectance of the third group is significantly worse
than that of the former two groups. The reflectance of soil nitrogen is small and the absorption is not
obvious on the 925 nm and 1410 nm bands. With the increase of nitrogen concentration, the spectral
reflectance from 1420 nm to 1475 nm drops and fluctuates significantly in the characteristic band from
1475 nm to 1520 nm.

Second, among the different mathematical modeling methods, on the one hand, the correlation
coefficients of PLS, UVE and CARS are good, and the RMSECV values are low in the first group of
experiments. The second group has higher precision and the precision in the third group is the lowest.
On the other hand, the use of nonlinear support vector machine method is not particularly desirable.
However, on the whole, the first set of pretreated soil samples had the best effect.
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Third, according to the soil pretreatment effect, the experiment with strict pretreatment reduces
soil moisture content, soil particle size, soil surface roughness and other negative impacts. Compared
with other soil nitrogen near infrared detection studies, the accuracy of this experiment has been
greatly improved. Therefore, the experimental effect of the first group is significantly better than that
of the latter two groups. Using this method, the detection of nitrogen content in soil by using a near
infrared sensor was reliable and accurate.
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