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Abstract

Background: Deregulation of biological pathways has been shown to be involved in the turmorigenesis of a variety of
cancers. The co-regulation of pathways in tumor and normal tissues has not been studied in a systematic manner.

Results: In this study we propose a novel statistic named AR-score (average rank based score) to measure pathway activities
based on microarray gene expression profiles. We calculate and compare the AR-scores of pathways in microarray datasets
containing expression profiles for a wide range of cancer types as well as the corresponding normal tissues. We find that
many pathways undergo significant activity changes in tumors with respect to normal tissues. AR-scores for a small subset
of pathways are capable of distinguishing tumor from normal tissues or classifying tumor subtypes. In normal tissues many
pathways are highly correlated in their activities, whereas their correlations reduce significantly in tumors and cancer cell
lines. The co-expression of genes in the same pathways was also significantly perturbed in tumors.

Conclusions: The co-regulation of genes in the same pathways and co-regulation of different pathways are significantly
perturbed in tumors versus normal tissues. Our method provides a useful tool for better understanding the mechanistic
changes in tumors, which can also be used for exploring other biological problems.
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Introduction

Cell behavior is under precise regulation by biological

pathways, which consist of a series of biochemical reactions

(metabolic pathways) or signal transduction events (regulatory

pathways) [1,2,3,4]. In normal cells, different pathways often act in

a coordinated manner for regulating biological processes.

However, in tumor cells, many important pathways are deregu-

lated and cooperation between pathways is perturbed [5]. The

involvement of specific pathways in tumorigenesis has been

investigated intensively in previous studies [6,7,8,9]. For example,

the association of the mitogen-activated protein kinase (MAPK)

signaling pathway with cancers has been reviewed in Wagner et al

[10] and in Dhillon et al [11].

Microarray experiments provide the expression levels of tens of

thousands of genes simultaneously, and have been widely used to

understand the cancer mechanisms [12]. In recent years, interest

has moved from single gene based analysis (e.g. identifying dif-

ferentially expressed genes) to gene set based analysis [13,14,15].

The goal of most gene set based methods (more specifically, the

pathway analysis) is to identify the cancer-associated pathways. This

problem has been investigated in previous studies by examining the

over-representation of pre-defined gene sets (pathways) in differen-

tially expressed genes [16], or calculating more well-defined

statistics based on gene expression profiles [17,18,19]. For instance,

one of the most popular pathway analysis methods, called gene set

enrichment analysis (GSEA) [19], calculates an enrichment score

for each pathway. This score can be regard as a weighted

Kolmogorov–Smirnov-like statistic and reflects the difference of

the pathway between two sample groups (e.g. tumor vs normal).

The statistical significance of the score is then estimated by using an

empirical phenotype-based permutation test procedure. These

methods are sensitive and powerful for identifying significant

pathways associated with cancers. However, they cannot be used to

explore the relationships between different pathways, which is also

an important issue for cancer studies.

In this study, we calculated the normalized average rank of

genes in pathways in a gene expression profile, denoted as AR-

score (average rank based score), to represent the activity of the

pathway. Similar rank-based statistics have been proposed in

previous studies [20,21], e.g. to understand microRNA regulation

in breast cancer. Since the AR-score is rank based, it is robust to

the systematic variance of samples (arising from inappropriate or

incomplete normalization) in a microarray data set. AR-scores are

thereby highly comparable between different pathways and

samples. We applied the statistic to a large number of well-

selected microarray expression data sets for normal tissues,

different types of tumors and cell lines. We calculated the AR-
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scores of KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathways [22] in these samples and found that the resulting

activity profiles are capable of distinguishing tumor/normal tissues

or classifying different tumor subtypes. Moreover, we found that

both the co-expression patterns of genes in the same pathway and

the coordination between different pathways have been deregu-

lated in tumor samples/cell-lines with respect to the normal

tissues. In practice, the method we propose here can also be

readily applied to other gene expression data for better under-

standing relevant biological problems.

Results

Calculation of AR-score for pathways
The human genome contains more than 23,000 protein-coding

genes. Their protein products are organized into a complex

network, in which they function coordinately to regulate many

important biological processes. Specifically, the network is formed

by a variety of intertwined biological pathways, which consist of a

series of chemical reactions or signal transduction events. The

activities of many pathways vary substantially among different

tissues/cell-types, and are often subjects to considerable modifica-

tions in tumors with respect to the corresponding normal tissues.

We defined a new measurement called AR-score (AS) to

quantify the activity of pathways in a biological sample based on its

gene expression profile from microarray experiment. The AR-

score for a pathway is calculated as the average rank of the relative

expression levels of all genes in this pathway normalized by the

total gene number. It takes a value from 0 to 1. A higher score

indicates that genes in the pathway are overall highly expressed

and therefore this pathway is highly active. The rank based score is

robust by nature and can be directly used to compare pathway

activities between different samples, even though they are not from

the same microarray dataset. Moreover, the activities of pathways

with different sizes (i.e. different in their gene numbers) are directly

comparable.

Pathway activities in human tissues
We calculated the AR-scores of 186 KEGG pathways in 79

human tissues for which the expression profiles were measured by

microarrays [23]. For each of the pathways, we obtained an

activity pattern, indicating the activities of the pathway across

these tissues. We found that the activities of many pathways varied

substantially between different tissues. For instance, the ‘‘CELL_-

CYCLE’’ pathway shows much higher activities in the tumor

samples such as colorectal adenocarcinoma (AS = 0.65), B-

lymphoblast (AS = 0.75) and leukemia promyelocytic hl60 cells

(AS = 0.71) than in normal tissues. It also shows higher activity in

the labile cells (cells that multiply constantly throughout life) such

as CD71+ early erythroid bone marrow cells (AS = 0.74) than the

quiescent cells such as cerebellum cells (AS = 0.35). Moreover, in

fetal tissues the ‘‘CELL_CYCLE’’ pathway often shows higher

activity than the corresponding adult tissues (e.g. AS = 0.65 in fetal

liver, while AS = 0.38 in adult liver). These results were consistent

with the functions of ‘‘Cell_Cycle’’ pathway genes in regulation of

mitotic cell division: they are more highly expressed in tissue/cells

with more active cell division.

On the other hand, the scores for the 186 KEGG pathways in a

tissue give rise to an activity profile of the tissue. The pathway

activity profile characterizes a tissue and can be used to investigate

the similarity of different tissues in their metabolic/regulatory

states. We performed the hierarchical clustering analysis for the 79

human tissues based on their pathway activity profiles. As shown

in Figure 1, tissue/cells with relevant tissue origins are grouped

into the same cluster (e.g. the blood cell cluster and the neuron cell

cluster), suggesting that they have similar biological characteristics.

Tumor tissues or cell lines form another cluster, indicating that

they share common metabolic changes with respect to normal

tissues (e.g. enhanced activity of ‘‘CELL_CYCLE’’ pathway).

Coupling of different pathways in normal tissues
As the components of a whole network, different pathways often

function in a coordinated manner to participate in many critical

biological processes. To understand the inter-relationships among

the KEGG pathways, we calculated the correlations of their

activity profiles across the normal human tissues based on the

dataset by Su et al [23]. We noted that many pathways overlapped

in their gene members, which might lead to artificial positive

correlations in their activity profiles. To overcome this problem,

we excluded the shared genes between two pathways for their

activity profile calculation and then calculated the correlation of

the resulted activity profiles.

Our results indicated that the pathways were highly correlated

in their activity in normal tissues. Among the 17,205 possible

pathway pairs, 809 have a Spearman correlation coefficient $0.6

and 221 have a correlation #20.6, corresponding to a P2value

#1028 (see Table S1 for all of the correlations). Figure 2 shows the

correlation network of the 186 KEGG pathways using a more

stringent cut-off value (|r|.0.75, P = 2610214). As shown, many

pathways were positively correlated in their activity profiles (red

edges), namely they are presumably coupled with each other. For

example, the activity profile of the ‘‘CELL_CYCLE’’ pathway is

positively correlated with those of the ‘‘DNA_REPLICATION’’,

the ‘‘MISMATCH_REPAIR’’, the ‘‘NUCLEOTIDE_EXCI-

SION_REPAIR’’ and 4 other KEGG pathways. More interest-

ingly, we found that the ‘‘CITRATE_CYCLE_TCA_CYCLE’’

pathway was highly correlated with the ‘‘PARKINSONS_

DISEASE’’, ‘‘ALZHEIMERS_DISEASE’’ and ‘‘HUNTING-

TONS_DISEASE’’ pathways. The high correlation of the pathway

activity profiles indicated that different pathways were coupled with

one another to achieve normal biological processes.

Pathways with different AR-scores between normal
tissues and tumors

To investigate the pathway modifications in tumor cells, we

applied the pathway analysis to 9 cancer microarray data sets,

representing 7 different cancer types: liver, lung, kidney, pancreas,

prostate, stomach and thyroid cancers (see Table S2 for

information about these data sets). For two of the cancer types

(kidney and pancreas), we collected two independent data sets.

These 9 data sets were carefully selected, each containing $15

tumor samples and $15 matched normal tissue samples. For each

data set, we calculated the AR-scores of the 186 KEGG pathways

in each of the samples, and then compared the AR-scores between

the tumor samples and the normal tissues using the t2test. Figure 3

demonstrates the differential activities of these pathways in the 9

data sets, with red and blue representing pathways that show

significantly higher activity in tumors and in normal tissues,

respectively. For example, among the 186 KEGG pathways, 69

showed significantly higher activities in kidney cancer and 55

showed significantly higher activities in normal kidney samples

(P,0.001) based on the ‘‘Kidney_Jones’’ data set. Thus, in kidney

cancer the activities of a large fraction of the KEGG pathways

(,65%) are significantly affected, indicating substantial metabolic

and regulatory modifications in tumor cells. We noted that the

sensitivity of detecting pathway activity changes in cancer depends

on the sample size of the microarray data sets. Thus, the number

of differential pathways in the 9 data sets might not be directly
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comparable. In spite of this, the results were similar between

different data sets for the same cancer type, e.g. the ‘‘Kidney_

Dalgleish’’ and ‘‘Kidney_Jones’’. Detailed information about

differential pathways for each of the 9 data sets can be found in

Table S3.

AR-scores of pathways distinguish tumor and normal
tissues

Given the substantial difference in the activities of many

pathways between tumor and normal tissues, we then examined

the effectiveness of classifying normal and tumor samples based on

their activity profiles. Here we used the ‘‘Liver_Tsuchiya’’ data set

as the example. The data set contained the expression profiles for

43 tumor and 44 non-tumor liver tissues surgically resected from

patients with HCV-associated hepatocellular carcinoma. We

established a support vector machine (SVM) to classify the tumor

and non-tumor samples using the activity profiles for KEGG

pathways as the classifiers, and examined the accuracy of the

model based on the leave-one-out cross-validation method (see

‘‘Method and Materials’’ for details). When 62 pathways with

significant activities between tumor and non-tumor samples

(P,1025) were used as the classifiers, the SVM model achieved

95% accuracy (83 out of the 87 samples). The same accuracy was

obtained when the 11 most significant pathways were used

(P,10210). Impressively, a SVM model based on only 5 pathways

(P,10212) could still result in correct classification for 82 samples

(94%). In contrast, the average classification accuracy was 0.85

when 5 randomly selected pathways were used as the classifiers.

The classification power of these 5 pathways is also shown Figure 4:

a simple hierarchical clustering analysis can roughly separate

samples into tumor and normal groups. These results indicated

that the activity profiles of KEGG pathways were highly

informative for distinguishing tumor tissues from the normal

tissues.

Figure 1. Hierarchical clustering of 79 human tissues based on their activity profiles. For each sample, the activity profile consists of the
AR-scores for 186 KEGG pathways. The two lines mark the cancer cluster (left) and neuron cell cluster (right). The details are accessible in high-
resolution images linked from the website.
doi:10.1371/journal.pone.0027579.g001
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We then examined the effectiveness of classifying tumor

subtypes based on the pathway activity profiles. As an example,

we applied the SVM method to classify estrogen receptor positive

(ER+) and negative (ER2) samples in the breast cancer data [24],

which contained the expression profiles for 53 ER+ and 44 ER-

breast cancer samples. The SVM method achieved 86%

classification accuracy (83 out of 97 samples) when 65 most

significant pathways (P,0.01) were used. Even when we reduced

the number of pathways into 10 (P,1025), the model still gave rise

to a classification accuracy of 85% (83 out of 97 samples). The

hierarchical clustering results based on these 10 pathways were

shown in Figure 5. Thus, the activity profiles of pathways were

capable of discriminating the subtypes of cancers.

We also examined the capability of the pathway activity profiles

for predicting prognosis. In the breast cancer data from van’t Veer

et al [24], the disease free survival (DFS) times for patients were

available. We divided the patients into two groups based their DFS

times: good-prognosis group (DFS$60 month) and poor-prognosis

group (DFS,60 month). We identified 5 pathways that showed

significant activities between the two groups (P,0.001) and used

them as the classifiers for the SVM model. Our model correctly

classified 70 out of the 98 patients (71%). A logistic regression

model based on expression levels of 70 genes instead achieves a

prediction accuracy rate of 83% [24]. Despite the much decrease

in classification accuracy, our results indicated that the pathway

activity profiles were, to some extent, useful for predicting

prognostic outcomes of cancer patients.

Gene-based classification of tumors has been intensively

described in previous studies [24,25]. Since the AR-score of a

pathway summarizes the expression changes of all genes, we would

expect more consistent results for different datasets of the same

cancer type at the pathway level than at the gene level. Therefore,

in comparison with genes, pathways are more stable classifiers for

distinguish sample classes. For example, we examined the

classification accuracies of 10 pathways and 20 genes in two

independent kidney cancer data, the Dalgliesh data and the Jones

data. These pathways and genes were the most differential ones

between the cancer and the normal kidney samples in the

Dalgliesh data [26]. In the same data, out of 160 samples a SVM

model correctly classified 153 samples (96%) based on the 10

pathways, and 158 samples (99%) based on the 20 genes. In

contrast, when applied to the Jones data, the pathway-based

model still achieved high accuracy (86 out of 92 samples, 94%),

whereas the gene-based model dropped to 90% (83 out of 92

samples).

Reduced correlation of activity profiles between
pathways in tumors

In normal cells, behavior is regulated by a number of pathways

that cross-talk and are highly coordinated with each other.

Cancer, in many ways, can be regarded as a disease of mis-

regulated signal transduction. Thus, we would expect to see the

decoupling of pathways in cancer with respect to normal cells. To

investigate this issue, we carefully selected five microarray gene

expression data sets, three for normal tissues (contain expression

profiles for 73, 353 and 36 normal tissues, respectively) [23,27,28],

one for cancers (contains 341 expression profiles for 6 different

cancer types) [29], and one for NCI-60 cell lines (contains

Figure 2. Correlation network of the KEGG pathways. Each node represents a KEGG pathway. The pathways that are positively (.0.75) or
negatively (,20.75) correlated are connected by "red" and "green" edges, respectively. The size of a node indicates the number of genes in the
corresponding pathway. The details are accessible in high-resolution images linked from the website.
doi:10.1371/journal.pone.0027579.g002
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expression profiles for 60 tumor cell lines) [30]. These data sets

represented a variety of normal tissues, tumor samples, or cell

lines. In comparison with datasets containing only a single normal

or tumor tissue type, these data sets carried more biological

variations and therefore were more suitable for correlation

analysis.

We calculated the Spearman correlation coefficients for all pairs

of the 186 KEGG pathways in the 5 data sets. Our results showed

that the activity profiles of pathways were more correlated (either

positively or negatively) in the normal data sets (Normal_Su,

Normal_Roth, and Normal_Ge) than in the tumor and the NCI-

60 data sets (NCI-60). Figure 6 shows the correlation patterns of

the pathway activity profiles in Norml_Roth and the NCI-60 data

sets (see Figure S1 for correlation patterns in all of the five data

sets). Apparently, the pathways were decoupled in tumor samples

and cell lines with respect to the normal tissues. Furthermore, the

Figure 3. Pathways with differential activities between tumor samples and the corresponding normal tissues. The activity difference of
a pathway in tumor and normal tissues was examined by the t2test and 2log10(P2value) was color coded. Red indicates higher activity in tumors,
and blue indicates higher activity in normal tissues. The results for 9 tumor/normal data sets are shown, representing 7 different cancer types.
doi:10.1371/journal.pone.0027579.g003

Figure 4. Hierarchical clustering of heptocellular carcinoma and normal liver samples based on the AR-scores for 5 pathways.
doi:10.1371/journal.pone.0027579.g004
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t-test showed that the correlation coefficients of the 17,205

pathway pairs in the normal data sets were significantly higher

than those in the tumor data set and the NCI-60 cell line data:

Normal_Su vs. tumor (t2score = 58), Normal_Su vs. NCI-60

(t2score = 61), Normal_Roth vs. tumor (t2score = 69), Normal_

Roth vs. NCI-60 (t2score = 72), Normal_Ge vs. tumor

(t2score = 45) and Normal_Ge vs. NCI-60 (t2score = 47), all

corresponding to a very significant P2value (P,102308). In

addition, we examined the correlations of pathways in tumor and

normal samples from the same dataset (see the 9 datasets described

in Section ‘‘Pathways with different AR-scores between normal

tissues and tumors’’), which confirmed the conclusion that

pathways were more correlated in normal tissues than in can-

cers. For example in the ‘‘Kidney_Dalgliesh’’ data, correlations

(absolute values) between pathways are significantly higher in

kidney cancers than in the normal kidney controls (t2score = 46,

P,102308).

Reduced correlation of expression profiles for genes from
the same pathway in tumors

We have shown that the correlations of activity profiles between

the pathways were reduced significantly in tumor samples or cell

lines. We then asked: do the correlations of the expression profiles

for genes in the same pathway also reduced in tumors? For each

pathway we calculated the Spearman correlation coefficients for

all gene pairs in the three normal data sets as well as in the tumor

and NCI-60 data sets. The average of these pairwise correlations

was then computed to represent the co-regulation of genes in a

pathway. As shown in Figure 7, the expression profiles of genes in

the same pathway were more correlated in the normal tissues than

in the tumor and the NCI-60 data sets. For example, the average

correlations of all gene pairs in the ‘‘RIBOSOME’’ pathway were

0.81, 0.76 and 0.72 in the three normal data sets, whereas the

value was 0.41 in the tumor data set and 0.48 in the NCI-60 cell

line data set (see Table S4 for the average correlations of all

pathways). The reduced co-regulation of genes within the same

pathway in tumors were further confirmed by comparing the

average correlations of all the 186 pathways using the t2test:

Normal_Su vs. tumor (P = 3610211), Normal_Su vs. NCI-60

(P = 5610218), Normal_Roth vs. tumor (P = 2610213), Normal_-

Roth vs. NCI-60 (P = 2610217), Normal_Ge vs. tumor

(P = 2610211) and Normal_Ge vs. NCI-60 (P = 3610215).

Comparison with the GSEA method
To further validate our results, we repeated the above-described

analysis using the ES scores (enrichment scores) introduced in the

GSEA method. Specifically, for each sample in a microarray data

we calculated the ES-scores of all KEGG pathways. We compared

the ES-scores of pathways in cancer versus normal samples to

identify the differentially expressed pathways using the Wilcoxon

test. The results we achieved are very consistent with those

obtained from the AR-score based analysis (note that the t2test

was used for comparing AR-scores). As an example, in the Liver

cancer data we identified 88 significant pathways based on AR-

scores and 85 significant pathways based on ES2scores

(P,0.001). Among these pathways, 64 are identified by both

methods. More importantly, among them the up-regulated and

down-regulated pathways identified by the two methods are

perfectly matched (see Table S5).

We also examined the correlation between different pathways in

normal and cancer data sets based on their ES2scores. This

analysis further validated our conclusion that the co-regulation of

pathways tended to be decoupled in cancers with respect to

normal tissues (see Figure S2). The correlation coefficients of

ES2scores of pathways in the normal data sets were significantly

higher than those in the tumor/cell-line data sets: Normal_Su vs.

tumor (t2score = 32, P = 102208), Normal_Su vs. NCI-60

(t2score = 39, P,102308), Normal_Roth vs. tumor (t2score = 41,

P,102308), Normal_Roth vs. NCI-60 (t2score = 45, P,102308),

Normal_Ge vs. tumor (t2score = 28, P = 56102163) and Nor-

mal_Ge vs. NCI-60 (t2score = 33, P = 16102226).

Discussion

Previous studies have reported the association of a number of

pathways with cancers [8,9,11]. In fact, it has been shown that

Figure 5. Hierarchical clustering of ER+ and ER- breast cancer samples based on the AR-scores for 11 pathways.
doi:10.1371/journal.pone.0027579.g005
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Figure 6. Reduced correlations of activities between pathways in cancer cell lines respect to normal tissues. The bottom left half shows
the correlation matrix for 186 KEGG pathways in normal tissues. The top right half shows the correlation matrix for 186 KEGG pathways in NCI-60 cell
lines.
doi:10.1371/journal.pone.0027579.g006

Figure 7. Reduced correlations of expression profiles for genes in the same pathways. For each of the 186 KEGG pathways, the average
Spearman correlation coefficient was calculated across all pairs of genes in the pathway. (A) Distributions of the average correlations of the 186
pathways. (B) Average correlations of the 186 pathways in normal tissues and NCI-60 cell lines. Note most of the pathways show stronger gene co-
expression in normal tissues than in cancer cell lines.
doi:10.1371/journal.pone.0027579.g007
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many oncogenes and tumor suppressor genes function as key

factors in specific pathways [31,32]. These studies, however, were

centered mostly on the differential expression of individual genes

or pathways. The co-expression of genes in the same pathways and

the inter-relationships between different pathways have not been

compared between tumor and normal tissues. In this study, we

systematically investigated this issue using a large number of

microarray data sets that contained expression profiles for normal

tissues, different types of cancer tissues and cell lines. In cancer

tissues and cell lines we observed the reduced correlation in

expression profiles between genes from the same pathways as well

as in activity profiles between different pathways. These results

apparently suggested the connection of de-regulation of genes and

pathways with carcinogenesis.

Several methods for pathway analysis have been previously

proposed, such as Gene Set Enrichment Analysis (GSEA) [19].

These methods can be effectively used to detect pathways

associated with cancer, but they are not designed for examining

inter-relationships between pathways. The AR-score we propose

captured the relative expression levels of genes in a pathway and

can be used for understanding the co-regulation between

pathways. As a rank based statistic, the AR-score is robust to

noise and incomplete normalization of samples, and is highly

comparable between pathways and samples. Despite of these

advantages, it also has its limitations. When a pathway is active in

a sample, we should not expect all proteins in the sample to be

highly active. Only a fraction of active proteins may be active as a

result of their functional redundancy. In a pathway, the proteins

act either as activators or repressors. For repressors in an active

pathway, we may not expect high expression of the corresponding

genes. Instead, their expression may be down-regulated to activate

a pathway. Moreover, the activities of some pathways may be

largely regulated at the post-translational levels rather than at the

mRNA level [33]. Thus the calculation of the AR-score can still be

improved by taking these issues into account. In addition, it might

also be improved by taking into account the variance of ranks of

genes in a pathway, instead of simply averaging them.

The aforementioned limitations, however, are not likely to affect

our main conclusions. Although genes in a pathway could be

either up- or down- regulated in cancer versus normal, our results

suggest that they tend to be regulated into the same direction.

First, genes in the same pathway are more likely to be positively

correlated in their expression profiles, which is particularly true in

normal tissues (Figure 7). Second, for many pathways up- or

down-regulated genes are predominant in the differentially

expressed genes between tumor and normal. As an example, we

counted the fraction of genes that were up-regulated in kidney

cancer with respect to normal kidneys (Dalgliesh data), and found

that in 56 out of 186 KEGG pathways $90% differentially

expressed genes were actually up-regulated (Table S6). Third, the

relative expression levels of genes were measured in Van’t Veer’s

breast cancer data (log ratios from the two-channel arrays), for

which positive and negative values indicate up- and down-

regulation, respectively. We examined the results of using a

modified way to calculate the AR-scores of pathways. Namely, we

ranked genes based on the ‘‘absolute’’ rather than the original

values of their expression levels (log ratios). In this way, both the

up- and down- regulated genes were taken into account, instead of

canceling out with each other. Analysis based on the modified AR-

scores again indicates perturbed co-expression of genes in the same

pathway as well as perturbed co-regulation between different

pathways in breast cancer with respect to normal tissues.

During human tumor development, the tumor cells have to

obtain several capabilities, such as sustaining proliferative signaling

and resisting cell death (Hanahan et al. 2001). Acquirement of

these capabilities is often involved in the de-regulation of related

pathways such as the apoptosis pathway. To de-regulate a

pathway, the expression of a different subset of its genes might

be perturbed in different tumor samples even for the same type of

cancer. For this reason, the alteration of pathways is often more

consistent than that of genes in tumor samples of the same type.

For example, we compared the differentiation of pathways and

genes between tumor and normal samples in two independent

kidney cancer data sets. Specifically, the t-scores were calculated

by comparing the AR-scores of pathways or expression levels of

genes in tumors versus normal. The t-scores for pathways are more

correlated (R = 0.81) between the two data sets than those for

genes (R = 0.42), indicating high consistency between tumor

samples at the pathway level. Such a consistency is only valid

for those well-defined biological pathways, not for the random

gene sets, which are mechanistically less informative. We

examined the classification power of a number of random gene

sets that are significantly different between tumor and normal

samples. These random gene sets resulted in a classification

accuracy (driven by several differentially expressed genes) that is

only slightly lower than that of the real pathways. When applied to

another data set, these gene sets are no longer effective for

classification.

In brief, we propose a statistic to measure the pathway activities

in gene expression profiles. We applied the method to a large

number of microarray gene expression data sets to investigate

changes of pathways in their activities and relationships in cancers

with respect to normal tissues. We found that the AR-score we

defined is capable of classifying samples into biological meaningful

groups, e.g. normal vs tumor liver, and ER+ vs ER- breast cancer

subgroups. We also found that in tumor samples and cell lines, the

co-regulation of genes in the same pathways and between

pathways was significantly perturbed with respect to normal

tissues. More intensive investigation of the relationship changes

between pathways would be helpful for further understanding the

mechanisms of carcinogenesis.

Materials and Methods

Microarray gene expression data sets
A total of 14 microarray data sets were used in this study,

among which three are for normal tissues, one is for cancer cell

lines and ten are for tumor/normal samples. The breast cancer

data was from van’t Veer et al [24], whereas the others were

downloaded from the (GEO) database [34]. The accession IDs for

normal tissues are GSE1133 by Su et al [23], GSE3526 by Roth et

al [27], and GSE2361 by Ge et al [28]. The accession ID for the

NCI-60 cell line data set is GSE5720 [30]. The accession IDs for

the tumor/normal samples are GSE17895 and GSE15641 for

kidney cancer [26,35], GSE17856 for liver cancer [36],

GSE12771 for lung cancer [36], GSE15471 and GSE16515 for

pancreas cancer [37,38], GSE6919 for prostate cancer [39],

GSE13911 for stomach cancer [40], as well as GSE5364 for

thyroid cancer [29]. All of these tumor/normal data sets contain

gene expression profiles for $15 tumor samples and $15

corresponding normal tissue samples.

Gene set information of pathways
The pathway information was downloaded from the database

called Kyoto Encyclopedia of Genes and Genomes (KEGG) at

http://www.genome.jp/kegg/ [22], where gene products were

structured into 186 metabolic or signaling pathways.
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Preprocessing of Microarray data
Except for the breast cancer data from [24]and the liver cancer

data from [36], the majority of gene expression data used in this

work are performed using one-channel arrays. In these data, the

absolute expression values of genes are measured. For each

dataset, we performed gene-wise standardization by subtracting

the mean and then dividing by the standard deviation of

expression values of a gene in all samples. This step converts the

expression of genes from absolute values into relative levels, which

reflect their expressional variation in different samples. For the

breast cancer and the liver cancer data, gene-wise standardization

was not required, since gene expression in these two datasets was

measured by two-channel arrays and represented originally as the

relative values.

Calculation of AR-score for pathways
Given the expression profile for a specific biological sample, we

first sorted the expression levels for all genes in decreasing order.

Then, we calculated the AR-score of a pathway by averaging the

ranks of all genes in this pathway and then normalizing the result

with the total gene numbers in the expression profile. Namely,

AR{score~

Pm
i~1

ri

m.n
, where ri is the rank of the ith in the pathway,

m is the number of genes in this pathway and n is total number of

genes in the gene expression profile. The AR-score takes a value

within (0,1), with a larger value indicating relatively higher

expression levels of genes in a pathway and therefore a higher

pathway activity.

Correlation of activity profiles between pathways
The co-regulation of two pathways can be inferred based on the

similarity of their activity profiles- their AR-scores in all of the

samples. Simply, the Spearman Correlation Coefficient (r)

between the activity profiles of two pathways can be used to

measure the similarity. However, this would over-estimate the

correlation if two pathways share common genes. To overcome

this problem, we first removed genes shared by two pathways and

calculated their AR-scores based on the remaining unique ones.

The resulting AR-score profiles were subsequently used for

estimating the correlation between the two pathways. Denote

{xi, i = 1,2, …, p} and {yi, i = 1,2, …, p} as the rank vectors (p is

the number of samples) for the AR-scores of two pathways, the co-

regulation is calculated as

rx,y~

X
i

xi{xð Þ yi{yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

xi{xð Þ2
X

i
yi{yð Þ2

q

.

Construction of correlation networks for pathways
We calculated the Spearman Correlation Coefficient for all

possible pairs of the 186 KEGG pathways, while taking into

account the shared genes between them (see Section ‘‘Correlation

of activity profiles between pathways’’). A total of 17,205

correlations were calculated, among which we observed much

more positively correlated pathway pairs than negatively correlat-

ed ones. We then set |r|.0.75 as the cut-off value for correlations

to select pathway pairs with similar AR-score profiles. Finally, all

the pathways with |r|.0.75 were connected to form a co-

regulation network for the pathways. The network contains both

positive (correlated pathways) and negative (anti-correlated

pathways) interactions. In normal tissues (Normal_Su), the above

analysis resulted in a network with 59 nodes (pathways) and 127

edges (co-regulation relationships, |r|.0.75), among which 110

are positive correlations and 17 are negative correlations.

Identification of differential pathways between different
sample types

We used the t2test to identify the pathways that show

differential activities between two sample groups (e.g. tumor

versus normal). For instance, to identify pathways related to lung

cancer, we compared the AR-scores of all pathways in lung tumor

samples with those in normal lung tissues using the t2test,

resulting a P2value for each pathway. To correct for multiple

testing, we calculated the corresponding Q2value (false discovery

rate, FDR) for each of the P2values using the method proposed by

Storey et al [41]. The pathways with a Q2value,0.01 (1% FDR)

were considered differential pathways between the two groups.

Hierarchical clustering of samples based on pathway
activity profiles

We performed hierarchical clustering to investigate the

similarity of normal human tissues based on the AR-scores of

the 186 KEGG pathways. Specifically, the ‘‘complete linkage’’

method was applied and the ‘‘Euclidian distance’’ was used as the

dissimilarity metric in the hierarchical clustering analysis.

Hierarchical clustering was also used to cluster tumor and normal

samples or to cluster different tumor subtypes. For this purpose, we

usually selected a number of pathways that showed differential

activities and performed hierarchical clustering based only on

these pathways. For example, Figure 5 was based on five pathways

that are most significantly different between normal liver and

heptocellular carcinoma.

Classification of samples based on pathway activity
profiles

We constructed support vector machine (SVM) models [42] to

classify different sample types. For example, we used the SVM

model to classify estrogen receptor positive (ER+) versus estrogen

receptor negative (ER2) based on the AR-scores of the five most

significant pathways. The classification accuracy was estimated by

using leave-one-out cross-validation method. Each time a single

sample was left out and the SVM mode was trained based on the

remaining samples. The trained model was then used to predict

the estrogen receptor (ER) status of the sample being left out. This

procedure was repeated until each sample was left out once and

we finally compared the predictions with the actual ER status to

estimate the prediction accuracy of the classification model.

The SVM models were also used to classify normal versus

tumor samples, and to predict the clinical outcome (good- or poor-

prognosis groups) of patients.

Correlation of expression profiles of genes in the same
pathway

We calculated the Spearman correlation coefficient of the

expression profiles for all possible pairs of genes in the same

pathway. Then these correlations were averaged to represent the

strength of co-expression of genes in this pathway. The average

correlations were calculated for all of the 186 KEGG pathways.

The average correlations for most pathways are positive values,

particularly in normal tissues, indicating that genes in the same

pathway tend to be co-expressed.
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Calculation of enrichment scores for pathways
To confirm our findings using the AR-score based method, we

also performed all analysis using the statistic, ‘‘enrichment score’’

(ES), proposed by the GSEA method [19]. GSEA examines the

distribution of genes in a gene set in a ranked gene list, which is

sorted based on the correlations of genes with an interested

phenotype. When applied to the case-control microarray data,

GSEA is typically used to calculate the ES-scores for gene sets based

on class comparison, e.g. the t-scores of genes in tumor versus

normal. For comparison purposes, in this work we calculated the ES

scores of the KEGG pathways in each relative expression profiles of

a dataset, as we did for the AR-scores. The ES-score measures the

maximum deviation between two cumulative distribution functions,

and typically follows a bimodal distribution. In contrast, the AR-

score is normalized average ranks of genes, which follows

approximately a normal distribution (see Figure S3). Such a

favorable feature of AR-score facilitates the subsequent downstream

analysis, e.g. calculating correlation coefficient and comparing

scores between sample classes using t2test, etc.

All the calculation described above was performed using the R

language and packages available from http://www.r-project.org.

Supporting Information

Figure S1 Correlation patterns of pathway activities (AR-scores)

in five microarray data sets. The figure shows pairwise correlations

of all pathways in three normal tissue data sets, one multiple-

tumor data set and one NCI-60 cell line data set.

(PDF)

Figure S2 Correlation patterns of pathway activities (ES-scores)

in five microarray data sets. The figure shows pairwise correlations

of all pathways in three normal tissue data sets, one multiple-

tumor data set and one NCI-60 cell line data set. Note that ES-

scores are used to represent the pathway activities, whereas in

Figure S1 AR-scores are used.

(PDF)

Figure S3 Distribution of AR-scores and ES-scores. Distribu-

tions of the AR-scores (left panel) and ES-scores (right panel) for

pathways in Normal_Su data were shown. As shown, AR-scores

approximately follow a normal distribution, while ES-scores follow

a bimodal distribution with a positive and a negative peak.

(PDF)

Table S1 Correlations for all possible pairs of the KEGG

pathways. Spearman correlation coefficients of all the 17,205 pairs

of the 186 KEGG pathways were calculated.

(XLS)

Table S2 Information about the nine tumor vs normal data sets.

(XLS)

Table S3 Pathways showing differential activities between tumor

and normal tissues in nine data sets. T-test was used to compare

the activities of all the 186 KEGG pathways between tumor and

normal samples in nine microarray data sets.

(XLS)

Table S4 Average correlations of expression profiles across all

gene pairs in the same pathways. The table contains the average

Sperman correlation coefficients for all the 186 KEGG pathways

in three normal tissue data sets, one multiple-tumor data set and

one NCI-60 cell line data set. For each pathway, the correlations

for all possible pairs of genes in the pathway were calculated and

averaged.

(XLS)

Table S5 Comparison of the differential pathways identified by

the AR-score based and the ES-score based methods. The table

contains the pathways that show significantly activities in Liver

cancer and normal liver samples. The AR-scores of pathway in

cancer and normal are compared using the t-test, whereas the ES-

scores are compared using the Wilcoxon test. Note that pathways

identified by the two methods are highly consistent.

(XLS)

Table S6 Percentage of up-regulated genes in pathways. The

table contains the numbers of genes in each pathway, the fraction

of up-regulated genes (t-score.0) in all genes or in the

differentially expressed genes (P,0.001). Calculation is based on

the Dalgliesh kidney cancer data.

(XLS)

Acknowledgments

We thank the reviewers for their comments that help improve the method

significantly.

Author Contributions

Conceived and designed the experiments: HY CC WZ. Performed the

experiments: HY CC. Analyzed the data: HY CC. Contributed reagents/

materials/analysis tools: CC WZ. Wrote the paper: HY CC.

References

1. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model

organisms. Nature 408: 255–262.

2. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease.

Nature 430: 631–639.

3. Rathmell JC, Thompson CB (2002) Pathways of apoptosis in lymphocyte
development, homeostasis, and disease. Cell 109 Suppl. pp S97–107.

4. Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to
aging and cancer. Cell 132: 681–696.

5. Fritz V, Fajas L (2010) Metabolism and proliferation share common regulatory
pathways in cancer cells. Oncogene 29: 4369–4377.

6. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA
repair pathways as targets for cancer therapy. Nat Rev Cancer 8: 193–204.

7. Majumder PK, Sellers WR (2005) Akt-regulated pathways in prostate cancer.
Oncogene 24: 7465–7474.

8. Menashe I, Maeder D, Garcia-Closas M, Figueroa JD, Bhattacharjee S, et al.
(2010) Pathway analysis of breast cancer genome-wide association study highlights

three pathways and one canonical signaling cascade. Cancer Res 70: 4453–4459.

9. Goc A, Al-Husein B, Kochuparambil ST, Liu J, Heston WW, et al. (2010) PI3

kinase integrates Akt and MAP kinase signaling pathways in the regulation of
prostate cancer. Int J Oncol 38: 267–277.

10. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK
pathways in cancer development. Nat Rev Cancer 9: 537–549.

11. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways

in cancer. Oncogene 26: 3279–3290.

12. Russo G, Zegar C, Giordano A (2003) Advantages and limitations of microarray

technology in human cancer. Oncogene 22: 6497–6507.

13. Ackermann M, Strimmer K (2009) A general modular framework for gene set
enrichment analysis. BMC Bioinformatics 10: 47.

14. Liu Q, Dinu I, Adewale AJ, Potter JD, Yasui Y (2007) Comparative evaluation
of gene-set analysis methods. BMC Bioinformatics 8: 431.

15. Nam D, Kim SY (2008) Gene-set approach for expression pattern analysis. Brief
Bioinform 9: 189–197.

16. Pandey R, Guru RK, Mount DW (2004) Pathway Miner: extracting gene
association networks from molecular pathways for predicting the biological

significance of gene expression microarray data. Bioinformatics 20: 2156–2158.

17. Tsai CA, Chen JJ (2009) Multivariate analysis of variance test for gene set

analysis. Bioinformatics 25: 897–903.

18. Oron AP, Jiang Z, Gentleman R (2008) Gene set enrichment analysis using

linear models and diagnostics. Bioinformatics 24: 2586–2591.

19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

20. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for
global discovery of conserved genetic modules. Science 302: 249–255.

Analysis Reveals Deregulation of Pathways

PLoS ONE | www.plosone.org 10 November 2011 | Volume 6 | Issue 11 | e27579



21. Cheng C, Fu X, Alves P, Gerstein M (2009) mRNA expression profiles show

differential regulatory effects of microRNAs between estrogen receptor-positive
and estrogen receptor-negative breast cancer. Genome Biol 10: R90.

22. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res 28: 27–30.
23. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad
Sci U S A 101: 6062–6067.

24. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. (2002) Gene

expression profiling predicts clinical outcome of breast cancer. Nature 415:
530–536.

25. Dagliyan O, Uney-Yuksektepe F, Kavakli IH, Turkay M (2010) Optimization
based tumor classification from microarray gene expression data. PLoS One 6:

e14579.
26. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, et al. (2010)

Systematic sequencing of renal carcinoma reveals inactivation of histone

modifying genes. Nature 463: 360–363.
27. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, et al. (2006) Gene

expression analyses reveal molecular relationships among 20 regions of the
human CNS. Neurogenetics 7: 67–80.

28. Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, et al. (2005)

Interpreting expression profiles of cancers by genome-wide survey of breadth of
expression in normal tissues. Genomics 86: 127–141.

29. Yu K, Ganesan K, Tan LK, Laban M, Wu J, et al. (2008) A precisely regulated
gene expression cassette potently modulates metastasis and survival in multiple

solid cancers. PLoS Genet 4: e1000129.
30. Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, et al. (2007)

Transcript and protein expression profiles of the NCI-60 cancer cell panel: an

integromic microarray study. Mol Cancer Ther 6: 820–832.
31. Croce CM (2008) Oncogenes and cancer. N Engl J Med 358: 502–511.

32. Sherr CJ (2004) Principles of tumor suppression. Cell 116: 235–246.

33. Wang X, Jiang X (2008) Post-translational regulation of PTEN. Oncogene 27:

5454–5463.

34. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository. Nucleic Acids Res 30:

207–210.

35. Jones J, Otu H, Spentzos D, Kolia S, Inan M, et al. (2005) Gene signatures of

progression and metastasis in renal cell cancer. Clin Cancer Res 11: 5730–5739.

36. Tsuchiya M, Parker JS, Kono H, Matsuda M, Fujii H, et al. (2010) Gene

expression in nontumoral liver tissue and recurrence-free survival in hepatitis C

virus-positive hepatocellular carcinoma. Mol Cancer 9: 74.

37. Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I (2008) Combined gene

expression analysis of whole-tissue and microdissected pancreatic ductal

adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

Hepatogastroenterology 55: 2016–2027.

38. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, et al. (2009) FKBP51 affects

cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell

16: 259–266.

39. Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, et al. (2007) Gene

expression profiles of prostate cancer reveal involvement of multiple molecular

pathways in the metastatic process. BMC Cancer 7: 64.

40. D’Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, et al. (2009) Genome-

wide expression profile of sporadic gastric cancers with microsatellite instability.

Eur J Cancer 45: 461–469.

41. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW (2005) Significance

analysis of time course microarray experiments. Proc Natl Acad Sci U S A 102:

12837–12842.

42. Liu HX, Zhang RS, Luan F, Yao XJ, Liu MC, et al. (2003) Diagnosing breast

cancer based on support vector machines. J Chem Inf Comput Sci 43: 900–907.

Analysis Reveals Deregulation of Pathways

PLoS ONE | www.plosone.org 11 November 2011 | Volume 6 | Issue 11 | e27579


