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Silencing of insulin receptor substrate—1 increases cell death in
retinal Miiller cells
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Purpose: To determine whether B-adrenergic receptors require insulin receptor substrate (IRS)-1 activity to regulate
apoptosis in retinal Miiller cells.

Methods: Miiller cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) medium grown in normal (5 mm)
or high glucose (25 mM) conditions. The medium was supplemented with 10% fetal bovine serum and antibiotics. Cells
were allowed to reach 80%—-90% confluence. After becoming appropriately confluent, cells were placed in medium with
reduced serum (2%) for 18-24 h to eliminate any effects of fetal bovine serum. Cells were then transfected with 10 ug of
IRS-1 small hairpin RNA (shRNA). Forty-eight hours following transfection, cells were lysed and harvested for protein
analysis using western blotting. In additional experiments, some cells were treated with 10 uM salmeterol for 24 h
following transfection with /RS-7 shRNA. To determine whether IRS-1 directly regulates apoptotic events in the insulin-
signaling pathway in retinal Miiller cells, a cell death assay kit was used. In tumor necrosis factor (TNF)a inhibitory
studies, cells were treated with 5 ng/ml of TNFa alone for 30 min or 30 min pretreatment with TNFa followed by salmeterol
for 4 h.

Results: Miiller cells treated with 5 ng/ml TNFa in 25 mM glucose significantly increased phosphorylation of
IRS-18¢307 Treatment with the selective beta-2-adrenergic receptor agonist, salmeterol, significantly decreased
phosphorylation of IRS-15¢307, Following IRS-1 shRNA transfectiont+salmeterol treatment, Bcl-2—associated X protein
(Bax) and cytochrome c levels were significantly decreased. Salmeterol+/RS-/ shRNA also decreased cell death and
increased protein levels of B-cell lymphoma-extra large (Bcl-xL), an anti-apoptotic factor.

Conclusions: In these studies, we show for the first time that salmeterol, a beta-2-adrenergic receptor agonist, can reduce
retinal Miiller cell death through IRS-1 actions. These findings also suggest the importance of IRS-1 in beta-adrenergic
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receptor signaling in the prevention of cell death in retinal Miiller cells.

Over the years, it has been widely accepted that changes
that occur in the diabetic retina occur in response to a variety
of insults, including high glucose, oxidative stress, and
increased expression of inflammatory markers [1-11]. During
the initial stages of diabetic retinopathy, Miiller cells become
activated and express increased glial fibrillary acidic protein
levels in diabetes [4,5,11-15]. This increase in glial fibrillary
acidic protein levels signals a transition of Miiller cells from
a quiescent to a reactive state, causing a dysfunction in the
regulation of inflammatory markers, glucose transport,
oxidative stress, growth factors, and cell survival [4,5,11,
15-18]. In diabetic retinopathy, the regulation of insulin
signaling, specifically that of insulin receptor substrate
(IRS)-1), is not well understood. IRS-1 is a 180 kDa
downstream substrate of the insulin receptor and plays a
central role in both insulin and insulin-like growth factor
(IGF-1) signaling [19-23]. IRS-1 has been shown to have
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numerous sites for phosphorylation by serine, threonine, and
tyrosine, with some sites serving to propagate insulin/IGF-1
receptor signaling, while other residues inhibit insulin/IGF-1
signaling. Tyrosine phosphorylation of IRS-1 is known to be
an important step in the propagation of the insulin/IGF-1
signal, while the role of serine and threonine phosphorylation
of IRS-1 has recently become of more significance as a
component of insulin resistance, since decreased insulin/
IGF-1 signaling is likely a key factor in diabetes [19-23]. One
of the serine residues on IRS-1 that has been suggested to
serve an inhibitory role in insulin signaling is serine 307
[19,23,24]. Previous studies have shown that increases in the
phosphorylation of IRS-1577 causes decreased insulin
receptor signaling, resulting in increased in apoptosis in
various tissues throughout the body [23-31].

In vitro and in vivo studies have shown that prolonged
exposure to a hyperglycemic environment produces several
cellular changes, including increased apoptosis [32,33].
Normal regulation of cell death in the mitochondria is tightly
controlled by the B-cell lymphoma 2 (Bcl-2) family, both pro-
and antiapoptotic members [10,34-39]. In a disease such as
diabetic retinopathy, where the hyperglycemic environment
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causes cellular stress and damage, Bcl-2—associated X protein
(Bax), a member of the Bcl-2 family, can become activated
and form pores as a passage for other proapoptotic proteins to
be released [10,34-39]. Release of proteins, such as
cytochrome c, along with increased Bax levels results in cell
death through increased levels of key caspases. In contrast, B-
cell lymphoma-extra large (Bcl-xL), an antiapoptotic member
of the Bcl-2 family, is known to prevent cell death by
inhibiting activation of the proapoptotic proteins [35,37-39].
These changes have been well studied in other diseases, as
well as other cell types in diabetic retinopathy [34,36].
However, the regulation of apoptotic proteins in retinal Miiller
cells is not well characterized. Furthermore, the potential role
for IRS-1 in this pathway in the regulation of Bax, cytochrome
¢, and Bcl-xL has not been investigated.

In this investigation, we hypothesize that silencing the
expression of IRS-1 will demonstrate that IRS-1 directly
regulates specific apoptotic markers in retinal Miiller cells.
Additionally, since we have previously demonstrated that
beta-adrenergic receptors can decrease tumor necrosis factor
(TNF)a levels [40], and TNFa is known to increase
IRS-1%¢307 we hypothesize that salmeterol, a beta-2-
adrenergic receptor agonist, requires IRS-1 actions to
decrease apoptosis of retinal Miiller cells.

METHODS

Miiller cell culture: Rat retinal Miiller cells (rtMC-1) were
cultured and passaged in Dulbecco's Modified Eagle Medium
(DMEM) medium (HyClone, Logan, UT) containing 5 mM
glucose (normal glucose) or 25 mM glucose (high glucose),
10% fetal bovine serum (FBS), and 2 mM L-glutamine. Once
the cells reached 80% confluency, the concentration of FBS
was decreased from 10% to 2% in 25 mM media starved cells.
Cells remained in this starved environment for 18-24 h to
reduce any serum effects from the medium. Immediately after
starvation, cells were treated with 10 uM salmeterol (beta-2-
adrenergic receptor agonist) dissolved into high glucose
medium for 6 h. Additionally, a specific number of dishes
were used as untreated controls for both treatments in both
25 mM glucose and 5 mM glucose for the duration of the
treatment. Following treatment, cells were harvested and
pelleted in lysis buffer.

Tumor necrosis factor—a inhibitory studies: In TNFa
inhibitory studies, cells were treated with 5 ng/ml of TNFa
alone for 30 min or 30 min pretreatment with TNFa followed
by 10 uM salmeterol for 4 h. Immediately after treatments,
cells were lysed with lysis buffer (1.58 g Tris base, 150 ml
sterile water, 1.80 g NaCl, 20 ml 10% Igepal-40, 5 ml 10%
Na-deoxycholate, 2 ml 100 mM EDTA, and 1 ug protease
inhibitors (all ingredients for lysis buffer; Sigma, Sigma-
Aldrich Corp, St. Louis, MO) and harvested at each of the
treatment time points.

shRNA library construction: The sequence for each of the 21
bp shRNA constructs was designed using Invitrogen Block-
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iT RNA designer™ (Invitrogen, Carlsbad, CA). The sequence
for rat IRS-1 (accession # NM 012969) was 5'-CGA GTT
CTG GAT GCA AGT GGA and the sequence of the
scrambled shRNA was 5'-GAC GAA CCC CTG TTC CGA
ATG. The Mir algorithm was used to design double-stranded
cDNAs. For rat /RS-1, the sequence of the forward primer was
5'-TGC TGT CCA CTT GCA TCC AGA ACTCGGTTTTG
GCC ACT GAC TGA CCG AGT TCT ATG CAA GTG
GA-3' and its complementary strand was 5-CCT GTC CAC
TTG CAT AGA ACT CGG TCA GTC AGT GGC CAA AAC
CGA GTT CTG GAT GCA AGT GGA C-3'. These synthetic
oligo constructs were hybridized and cloned into BLOCK-
iT™ Pol I miR RNAIi Expression Vector with EmGFP. Each
plasmid was grown on agar plates containing 50 pg/ml of
spectinomycin. Colonies were selected and sequenced to
verify insert sequence, and then a large plasmid preparation
was made using Qiagen kits (Qiagen, Baltimore, MD). Upon
transient transfection into cells, expression of the sShRNA was
monitored by green fluorescent protein (GFP) fluorescence
(Aex=488 nm, Aem=520 nm).

To determine the effect of transient expression of 5 pg of
each shRNA/60 mm plate on its target, we probed total RNA
by reverse transcriptase (RT)-PCR or protein by western
blotting using the anti-IRS-1 antibody (SC-559; Santa Cruz
Biotechnology, Santa Cruz, CA). For the RT-PCR procedure,
first-strand cDNA synthesis was performed using the
Transcriptor First-Strand cDNA Synthesis Kit from (Roche
Diagnostics, Indianapolis, IN) using 62 ng of RNA per assay.
The RT-PCR primers were designed using a web-based
design center (Universal prolibrary). The mRNA level for
each protein was quantified using the Universal prolibrary of
short hydrolysis-locked nucleic acid probes in combination
with the primers. The quantification of mRNA was
accomplished using the Roche Lightcycler 480 Real-time
PCR system and software (Roche diagnostics).

RNA interference transfection: For shRNA studies, cells were
passaged and cultured until 80% confluency, at which time
cells were transfected with shRNA to silence IRS-1 using
lipofectamine for 24 h. For /RS-1 shRNA + salmeterol studies,
following the 24 h of transfection, cells were treated with 10
uM salmeterol for an additional 6 h. Cells that were designated
as IRS-1 shRNA alone were harvested with no further
treatment following the 24 h transfection period. For
scrambled shRNA studies, cells were transfected with
scrambled shRNA using lipofectamine for 24 h.

Western blot analysis: Cells stored in lysis buffer containing
protease inhibitors (leupeptin 1 pg/ml, aprotinin 1 pug/ml) were
homogenized, sonicated, and protein concentrations were
determined by Bradford assay (Thermo Fisher Scientific,
Rockford, IL). Denaturing sample buffer (2x glass distilled
water [GDW], 1M Tris-HCL pH 6.8, 30% glycerol, -
mercaptoethanol, 0.05% bromophenol blue, and 0.125 g
recrystallized sodium dodecyl sulfate [SDS]) was added to
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Figure 1. Ratio of insulin receptor
substrate (IRS)-15¢r397 in Miiller cells. A
phosphorylation of IRS-15e307  jg
significantly increased in Miiller cells
following treatment with tumor necrosis
factor—a, but treatment with beta-2-
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30-50 pg of protein and loaded onto 10%—20% precast tris-
glycine gels (Invitrogen, Carlsbad, CA) for separation,
followed by transfer to nitrocellulose membranes.
Membranes were blocked overnight at 4 °C with 5% BSA and
with the following primary antibodies: IRS-1 Ser307 (diluted
1:500; Cell Signaling, Beverly, MA), total IRS-1 (diluted
1:500; Cell Signaling), Bel-xL (diluted 1:500; Cell Signaling),
Bax (diluted 1:500; Cell Signaling), Akt (diluted 1:500; Cell
Signaling), and cytochrome c (diluted 1:500; Cell Signaling).
All blots were washed and then incubated at room temperature
with the appropriate secondary antibodies conjugated to
horseradish peroxidase at 1:5,000 dilutions. Following
secondary antibodies, blots were washed and placed into
enhanced chemiluminescence (ECL) reagent (Pierce,
Rockford, IL) for chemiluminescent detection using the
Kodak ImageStation 4000MM (Rochester, NY). Mean
densitometry of immunoreactive bands was assessed using
Kodak software, and results were expressed in densitometric
units and compared to control groups for each individual
experiment.

Cell death assays: Cell death was assessed in tMC-1 cells
using a cell death assay kit (Roche Diagnostics) following the
manufacturer’s instructions. Miiller cell lysates were
transferred into a streptavidin-coated microplate that was
provided by manufacturer. Mixtures of anti-histone-biotin
and anti-DNA-POD antibodies were added to the cells for a
short incubation periods. During these periods, the mixture
was allowed to bind the nucleosomes and histones of cells
plated. Following incubation, washing took place to remove
any antibodies that did not bind during the incubation period.
Following these steps, plates were measured according to
manufacturer's instructions. This assay measures histone-
associated DNA fragments in a quantitative manner in retinal
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Miiller cells. Analysis from these experiments was performed
using absorbance values obtained at the appropriate
wavelength, followed by statistics using Prism 4.0 with
comparisons between the control and treatment groups using
Mann—Whitney as a post-hoc test with p<0.05 being accepted
as significant.

Statistical analysis: All statistical analyses for these
investigations were obtained using Prism 4.0b software.
Nonparametric tests were conducted for cell culture
experiments due to the small sample size for each experiment.
For all experiments, the 5 mM (#) and 25 mM (*) glucose
samples (controls) were compared to /RS-/ shRNA treatment
groups and salmeterol treatment groups using a Mann—
Whitney U test, with p<0.05 considered as significantly
different. Additionally, a separate comparison was conducted
with IRS-1 shRNA treatment + salmeterol versus salmeterol
treatment alone ($).

RESULTS

Salmeterol prevents phosphorylation levels of IRS-153%
induced by tumor necrosis factor—a: It is known that TNFa
preferentially phosphorylates IRS-153%7 in other cell types
[23,26,27,30,31]; we wanted to see if the same mechanism
occurs in retinal Miiller cells. Following treatment with
salmeterol, western blot analysis revealed that
phosphorylation of IRS-15%7 was significantly decreased as
compared to cells without treatment or with TNFa-only
treatment (Figure 1, *p<0.05 versus not treated, # p<0.05
versus TNFa alone).

Silencing of IRS-1 decreases total Akt levels: Previous data
has shown that increases in tyrosine phosphorylation of
insulin receptor results in increased Akt phosphorylation via
IRS-1. Knockdown of /RS-I with shRNA (Figure 2A,
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Figure 2. Verification of insulin receptor
substrate (IRS)-1 shRNA knockdown.
A: Mean densitometry and
representative  blot of IRS-1 levels
following transfection of shRNA
(IRS-1) in rat Miiller cells. Mean
densitometry was done for each blot
which consisted of taking the mean
optical densities of 4 different western
blots for each protein analyzed. B: Mean
Densitometry of Akt levels following
transfection of SiRNA (/RS-1) in Miiller
cells. Significance was determined by
Mann—Whitney test (*p<0.05 versus 25
mM, n=5).

shRNA-IRS-1

Cell Death
#

DNA Fragmentation

SmM Glucose
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Scr. sShRNA
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Figure 3. Cell death in insulin receptor
substrate (IRS)-1 knockdown. A: Cell
Death ELISA of rat Miiller cells
transfected with /RS-/ shRNA alone
and /RS-1 shRNA + beta-2-adrenergic
receptor agonist, salmeterol for 6 h.
Transfection with /RS- shRNA
significantly increased cell death levels
versus 5 mM glucose. Treatment with
salmeterol (SALM) alone in Miiller
cells significantly decreased levels of
cell versus 5 mM glucose and 25 mM
glucose. Statistical significance was
determined ~ Mann—Whitney  test
(*p<0.05 versus 25 mM glucose,
#p<0.05 versus 5 mM glucose, $p<0.05
versus SALM n=5 for ELISA assay).

- +

*p<0.05 versus 25 mM glucose) showed a significant decrease
in total Akt levels (Figure 2B, *p<0.05 versus 25 mM glucose)
cultured in a hyperglycemic environment. These results
suggest that IRS-1 signals to Akt in retinal Miiller cells.

Loss of IRS-1 increases cell death in retinal Miiller cells:
Treatment of cells with salmeterol alone prevented cell death
in retinal Miiller cells (Figure 3, p<0.05 versus 25 mM
glucose). Cell death analyses showed a significant increase in
response to silencing of IRS-1 in cells cultured in high glucose
versus normal glucose (Figure 3, #p<0.05 versus 5 mM
glucose). Salmeterol + IRS-1 shRNA showed a significant
increase in cell death compared to salmeterol alone (Figure 3,
$p<0.05 versus salmeterol alone), suggesting that beta-
adrenergic receptors signal through IRS-1 to reduce cell death
in retinal Miiller cells.

Silencing IRS-1 increases cytochrome C levels in retinal
Miiller cells: Previous studies have suggested the
mitochondria as a key regulator of apoptosis, with excess
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production of superoxides within the mitochondria initiating
cytochrome c being released from the cytosol to begin the
cascade of apoptotic signaling [35,37-39]. Our current
investigation shows that prolonged exposure of retinal Miiller
cells to hyperglycemia results in the excess release of
cytochrome C when compared to retinal Miiller cells cultured
in normal glycemic conditions (Figure 4, *p<0.05 versus
5 mM glucose). Western blot analysis further shows that
salmeterol alone treatment significantly reduced cytochrome
C levels, with the effect lessened when salmeterol was
combined with IRS-I shRNA (Figure 4, $p<0.05 versus
salmeterol alone). Taken together, these results suggest that
active IRS-1 is required for salmeterol to reduce cytochrome
C levels in retinal Miiller cells cultured in a hyperglycemic
environment.

Absence of IRS-1 causes an increase in Bax levels: In addition
to cytochrome C, we also investigated another member of the
Bcl-2 family, Bax. Western blot analyses showed significant
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Figure 4. Levels of cytochrome C
increased in insulin receptor substrate
(IRS)-1 knockdown. Equal loading was
verified using ponceau staining. Mean

1250+ densitometry was done for each blot
> which consisted of taking the mean
@ 1000+ optical densities of 4 different western
g blots for each protein analyzed. Mean
"'é S 750 densitometry displayed a significant
D increase in cytochrome c levels cultured
A< 5004 :
pos in 25 mM glucose versus 5 mM glucose
P 250 samples. Knockdown of IRS-1 protein
s significantly increased cytochrome C
0 - amaae| levels versus 5 mM and 25 mM glucose
samples. Western blot data showing that
5mM Glucose + _ _ _ _ _ treatment with salmeterol significantly
decreased levels of proapoptotic
proapop
25mM Glucose - & + t ¥ t cytochrome C (*p<0.05 versus 5 mM
Scr. ShRNA = = 4 = _ = glucose  [NT], $p<0.05  versus
salmeterol n=4 for western blot).
IRS-1 shRNA - - = & + =
Salmeterol - - - - + +
Figure 5. Bax protein levels increased in
B insulin receptor substrate (IRS)-1
- - knockdown. Protein levels of Bax were
Bax - - - | — —— 20kD  significantly increased 25 mM glucose
- versus 5 mM glucose samples.
12000 Transfection of /RS-1 shRNA in Miiller
2 10000 cells significantly increased levels of
£ 6000 pro-apoptotic Bax. Salmeterol (10 uM)
-,‘% s 4000 significantly decreased Bax levels
é‘:’ = 20 # activity after 6 h of treatment.
c :zgg -+ Significance was determined by the
£ o5 Mann—Whitney test (¥*p<0.05 versus 25
S I | HII"‘ mM glucose, $p<0.05 versus salmeterol
e '+ B n=4, #p<0.05 versus 5 mM glucose, n=4
251nM Glzzz:: _ i + - . for western blot). Equal loading was
Scr. ShRNA _ _ " _ _ verified using ponceau staining. Mean
IRS-I- HRNA _ _ 3 A . B densitometry was done for each blot
P which consisted of taking the mean
- - - - + +

optical densities of 4 different western
blots for each protein analyzed.

increases in Bax protein levels in high glucose samples
compared to normal glucose samples (Figure 5, #p<0.05
versus 5 mM glucose). Stimulation with salmeterol showed
that salmeterol could only reduce Bax when IRS-1 was active
(Figure 5, $p<0.05 versus salmeterol alone). These findings
were in agreement with previous findings that suggested
increased Bax levels in a hyperglycemic environment [2,36];
however, to our knowledge, these results are the first to link

beta-adrenergic receptors and IRS-1 to Bax levels in retinal
Miiller cells.

Antiapoptotic Bcl-xL is reduced with the loss of IRS-1:
Previous investigations suggest that IRS-1 plays a role in
antiapoptotic activities through proper control of the members
ofthe Bcl-2 family, such as Bcl-xL [2,36,41,42]. Mechanisms
of the interplay between IRS-1 and Bcl-xL are unknown
[42]. Protein levels of Bel-xL were significantly decreased in
high glucose samples compared to normal glucose samples
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Figure 6. Anti-apoptotic Bcl-xL levels
decreased in insulin receptor substrate
(IRS)-1 knockdown. Western blot
analysis showing significantly
decreased levels of Bel-xL versus S mM
glucose and 25 mM glucose. Salmeterol
treatment significantly increased levels
of Bcl-xL toward basal levels. Equal
loading was verified using ponceau
staining. Mean densitometry was done
for each blot which consisted of taking
the mean optical densities of 4 different
western blots for each protein analyzed.
Significance was determined by one-
tailed, nonparametric Mann—Whitney
tests on western blot data (*p<0.05
versus 25 mM Glucose, $p<0.05 versus
salmeterol n=4, #p<0.05 versus 5 mM
Glucose, n=4).

30kD

(Figure 6, #p<0.05 versus 5 mM glucose), suggesting that high
glucose promotes an apoptotic environment. Treatment with
salmeterol alone significantly increased Bcl-xL protein levels
compared to high glucose samples (Figure 6, *p<0.05 versus
25 mM glucose). Transfection of retinal Miiller cells with
IRS-1 shRNA showed a significant decrease in protein levels
of antiapoptotic Bcl-xL in a hyperglycemic environment
(Figure 6, #p<0.05 versus 5 mM glucose). These findings
suggest beta-adrenergic receptor modulation of antiapoptotic
Bcl-xL, which would promote an antiapoptotic environment.

DISCUSSION

Previously, our laboratory has suggested that hyperglycemia
can increase inflammatory cytokine production in retinal
Miiller cells [40]. The increase in inflammatory cytokines,
such as TNFa, in a hyperglycemic environment was
significantly reduced when cells were treated with the
nonselective beta-adrenergic receptor agonist, isoproterenol
[40]. These studies further suggested the presence of beta-
adrenergic receptors on retinal Miiller cells, and that the loss
of beta adrenergic receptor signaling may be involved in the
increased inflammatory markers observed in hyperglycemia
[40]. Recent studies by other groups have identified a potential
role for inflammation in the regulation of key signaling
pathways in diabetes [4,23-31,42-46]. These studies have
suggested that TNFa may mediate changes in insulin receptor
signaling by targeting downstream signaling proteins, such as
the IRS complex, to produce pathologic changes [4,23-31,
42-46].

The IRS complex proteins are responsible for mediating
the downstream actions of the insulin receptor. The IRS
complex consists of IRS 1-4, with each substrate playing a
significant role in the body; however, animal studies have
shown that a vast majority of insulin actions signal through
IRS-1 and IRS-2 [47]. The amino acid sequence of IRS-1
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possesses a unique signaling mechanism of tyrosine
phosphorylation sites and serine phosphorylation sites [23,
28-31,42,44,46,48] to  regulate  cellular  actions.
Phosphorylation of various tyrosine sites (Y*, Y'*°, Y151
and several serine sites (Ser?®, Ser3%, Ser’?, Ser®®) increase
the downstream signaling mediated by IRS-1. In contrast,
other serine residues (such as Ser’?’, Ser®, Ser®?) have been
shown to inhibit signaling downstream of IRS-1, suggesting
that IRS-1 phosphorylation may be a key regulator for
activation or inhibition of a multitude of signaling cascades.

Based on the literature on other cell types, with the onset
of diabetes, TNFa preferentially phosphorylates Ser’*” on
IRS-1 [6,48,49]. Phosphorylation of IRS-153%7 can play an
inhibitory role in insulin/IGF-1 receptor signal transduction,
potentially leading to the increased apoptosis noted in the
diabetic retina [6,48,49]. The present findings in Miiller cells
(Figure 1) confirm work in adipose tissue cells, suggesting
that TNF o negatively regulates insulin receptor signaling by
phosphorylating Ser’”” on IRS-1 to inhibit insulin action [6,
48]. In these studies, we began using a selective beta-2-
adrenergic receptor agonist, salmeterol, to selectively
stimulate the beta-2-adrenergic receptor, since we have
recently found that this receptor is active in retinal Miiller
cells. Our findings in this study with salmeterol demonstrate
that beta-2-adrenergic receptor stimulation may inhibit
cytokine release in retinal Miiller cells cultured in a
hyperglycemic environment, resulting in reduced IRS-153%7
phosphorylation, thereby leading to decreased apoptosis.

Additionally, we investigated whether beta-adrenergic
receptors regulate apoptosis of retinal Miiller cells through
IRS-1 signaling. Since we know that beta-adrenergic
receptors can decrease cell death in a high glucose
environment [50], we sought to determine whether
modulation of IRS-1 was involved. Knockdown of IRS-1
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showed a significant increase in cell death compared to
samples in 5 mM glucose, but stimulation of the beta-2-
adrenergic receptor with salmeterol prevented cell death
through IRS-1 in a hyperglycemic environment on retinal
Miiller cells.

Several factors can influence the increase in apoptosis.
An imbalance in the expression of antiapoptotic versus
proapoptotic members of the Bcl-2 family within the
mitochondria of retinal Miiller cells is one possibility. Retinal
Miiller cell samples cultured in a 25 mM glucose environment
showed a significant increase in cytochrome C and Bax levels
compared to samples cultured in 5 mM glucose. We found
that activation of cytochrome C and Bax in a hyperglycemic
environment was reduced following treatment with
salmeterol. Increases in cytochrome C and Bax were also
demonstrated with /RS-7 shRNA + salmeterol, indicative of
increased cell death following knockdown of IRS-1 versus
cells treated with salmeterol alone. Our results suggest that
beta-adrenergic receptors play a specific role in the regulation
of key apoptotic markers through alterations in IRS-1 levels.
In support of this finding, we also found that high glucose
decreased antiapoptotic Bcl-xL, but treatment with salmeterol
significantly increased Bcl-xL in a hyperglycemic
environment. Decreased Bcl-xL levels were also observed in
IRS-1 shRNA +salmeterol treatments, suggesting that the
antiapoptotic effects of Bcl-xL restored with treatment of
salmeterol required IRS-1 for activation.

To our knowledge, our research is the first to report that
salmeterol, a beta-2-adrenergic receptor agonist, can reduce
cell death activity in retinal Miiller cells using IRS-1
signaling. However, our results are not in agreement with
previous results that suggest that IRS-2 is the key mediator of
cell death in whole retinal samples [44,45]. The discrepancies
in our findings in relation to those of previous studies likely
stem from the fact that we concentrated solely on in vitro
studies using retinal Miiller cells. Previous studies have dealt
with in vivo and ex vivo experiments using whole retinal
samples, which contain a variety of retinal cell types. In other
work from our laboratory [50], we have found differences in
insulin receptor substrate signaling in retinal endothelial cells,
which tend to signal through an IGF-1 receptor/IRS-2-
dependent mechanism [50]. Thus, it appears that different cell
types in the retina may use different IRS complexes for
cellular signaling, which expands the signaling possibilities
of retinal cells.

While we recognize that IRS-1 is a key component of
insulin signaling, we chose to focus our investigations on beta-
adrenergic receptor regulation of apoptosis of retinal Miiller
cells through the actions of IRS-1 rather than insulin receptor
or IGF-1 receptor actions. Future studies may be directed at
beta-adrenergic receptor actions and cross talk with insulin
signaling.

In summary, these studies demonstrate that retinal Miiller
cells cultured in an hyperglycemic environment activate
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several mechanisms leading to increased cell death; 1) the
initial mechanism involves increases in phosphorylation of
IRS-15397 mediated by increased TNFa levels in the diabetic
retina [7]; 2) the second mechanism involves significant
increases in apoptotic markers Bax and cytochrome C,
coupled with a significant decrease in antiapoptotic Bcl-xL.
Both mechanisms of cell death were significantly inhibited
following treatment with a beta-2-adrenergic receptor agonist,
salmeterol. Taken together, these results suggest that beta-
adrenergic receptors require active IRS-1 to prevent cell death
in retinal Miiller cells.
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