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Abstract: The gut microbiome is hypothesized to play a crucial role in the development of obesity
and insulin resistance (IR); the pathways linking the microbiome to IR in pediatrics have yet to
be precisely characterized. We aimed to determine the relationship between the gut microbiome
composition and metabolic functions and IR in children with obesity. In a cross-sectional study,
fecal samples from children with obesity (10–16 years old) were collected for taxonomical and
functional analysis of the fecal microbiome using shotgun metagenomics. The homeostatic model
assessment for insulin resistance (HOMA-IR) was determined using fasting glucose and insulin.
Associations between HOMA-IR and α-diversity measures as well as metabolic pathways were
evaluated using Spearman correlations; relationships between HOMA-IR and β-diversity were
assessed by permutational multivariate analysis of variance. Twenty-one children (nine males;
median: age = 12.0 years; BMI z-score = 2.9; HOMA-IR = 3.6) completed the study. HOMA-IR
was significantly associated with measures of α-diversity but not with β-diversity. Children with
higher HOMA-IR exhibited lower overall species richness, Firmicutes species richness, and overall
Proteobacteria species Shannon diversity. Furthermore, HOMA-IR was inversely correlated with
the abundance of pathways related to the biosynthesis of lipopolysaccharides, amino acids, and
short-chain fatty acids, whereas positive correlations between HOMA-IR and the peptidoglycan
biosynthesis pathways were observed. In conclusion, insulin resistance was associated with decreased
microbial α-diversity measures and abundance of genes related to the metabolic pathways. Our
study provides a framework for understanding the microbial alterations in pediatric obesity.

Keywords: gut microbiome; microbiota; shotgun metagenomics; insulin resistance; HOMA-IR;
childhood obesity

1. Introduction

Childhood obesity is commonly associated with an impaired metabolic profile char-
acterized by insulin resistance, dyslipidemia, and low-grade inflammation [1–5]. In fact,
insulin resistance is a risk factor for youth-onset type 2 diabetes mellitus (T2DM) and cardio-
vascular diseases [6]. Several mechanisms have been proposed to explain the pathogenesis
of insulin resistance in the pediatric population, including an unfavorable lipid partitioning
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profile [7], early age of puberty onset [8], a family history of T2DM [9], and less healthy
lifestyle choices, including suboptimal dietary intake and low physical activity [10,11]. The
homeostasis model assessment (HOMA) is a widely used surrogate measure of insulin
resistance that has been validated in children and adolescents against more established
techniques, such as the euglycemic clamp and frequently sampled intravenous glucose
tolerance test [12,13]. HOMA-IR is calculated using fasting glucose and insulin concen-
trations as previously described [14]. Although several studies have attempted to define
cut-off values for insulin resistance (ranged from 2.5 to 4.0), there is a lack of consensus on
the optimal value that should be applied across all pediatric populations [14–19].

Increasing evidence points toward the gut microbiome as an important modulator
of both obesity and insulin resistance [20–23]. Animal experiments have established an
involvement of gut microbiome in weight gain, adiposity, inflammation, and metabolic
diseases through the interaction with dietary components [24,25]. A diet poor in fiber
intake in particular, is associated with suboptimal production of microbial-derived short-
chain fatty acids (SCFAs), limiting the beneficial secretion of anorexigenic hormones, anti-
inflammatory cytokines and mucin in the protective intestinal mucus layer [26–28]. Studies
in humans have shown marked reductions in gut microbiota diversity in adults with obe-
sity and metabolic abnormalities [29,30]. In some studies, an abundance of specific bacterial
species, such as Prevotella copri and Bacteroides vulgatus, were found to drive the associations
between insulin resistance and the biosynthesis of key metabolites (e.g., branched-chain
amino acids (BCAA), tryptophan, and lipopolysaccharides (LPS)) implicated in metabolic
disease [23,31]. Therefore, shifts in gut microbiota composition during growth and devel-
opment could alter the symbiotic relationship between gut bacteria and the human host,
contributing to the development of obesity-related comorbidities.

While numerous associations between the gut microbiome and insulin resistance
in adults have been documented, there remains a lack of understanding of how gut
microbiota may be involved in the development of metabolic diseases in the pediatric pop-
ulation [32,33]. Measures of α-diversity have been used to estimate microbial variability in
terms of richness and evenness within a sampled community [34,35]. For instance, children
with abnormalities of glucose metabolism have been shown to have either lower [36,37],
higher [38], or similar microbial α-diversity [39] compared to metabolically healthy chil-
dren. After following children of normal weight for four years prospectively, a recent
study showed that those children who had a low microbial diversity profile and unhealthy
diet were more predisposed to obesity and metabolic inflammation than those with a
higher microbial diversity [40]. However, it remains unclear whether these microbial im-
balances were a causal factor in the development of obesity. Moreover, many studies have
profiled the gut microbiota of children and adolescents using 16S rRNA gene amplicon
sequencing to compare taxonomic composition across weight status [41–44], but only a few
have explored the associations between markers of insulin resistance and gut microbiome
functions [36–38,45,46]. None of these studies have used shotgun metagenomics, which is a
more robust approach allowing researchers to catalogue all genes present in a sample, iden-
tify the taxonomic composition at a species level resolution, and characterize the functional
potential of the gut microbiome [47]. Thus, the use of shotgun metagenomics in our study
may help to advance the understanding of associations between microbiome composition,
functions, and human metabolic diseases. The main objective of the present study was to in-
vestigate the relationship of the gut microbiome composition and functions, as determined
by shotgun metagenomics, with insulin resistance in children and adolescents with obesity.
In addition, we also investigated relationships between the gut microbiome, microbially
derived metabolites, clinical characteristics, dietary intake, and physical activity to explore
potential mechanisms by which the gut microbiome may influence clinical outcomes.
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2. Materials and Methods
2.1. Study Sample

This study was a cross-sectional study including twenty-one children aged 10 to
16 years with a body mass index (BMI) at or above the 95th percentile for age and sex
(equivalent to a BMI z-score of ≥1.64) [48,49]. Exclusion criteria included children with a
diagnosis of conditions associated with impaired muscle mass, chronic diseases (e.g., dia-
betes, chronic liver disease) leading to obesity, acute infections, being pregnant or lactating,
taking medications known to influence body composition or antibiotics (two months prior
to the study visit), or taking probiotic or dietary fiber supplements for three weeks prior to
the study visit. Between August 2018 and March 2020, participants were recruited from the
Pediatric Centre for Weight and Health (PCWH) and the surrounding pediatric community
in Edmonton (AB, Canada) by either direct contact with the research team or via study ads
(i.e., posters, flyers, animated video). A total of 99 children and adolescents were screened
for eligibility, but only 21 of those who met the inclusion criteria agreed to provide stool
samples. This study was approved by The University of Alberta Health Research Ethics
Board (Pro00082135); written parental consent and written child assent were obtained from
all participants.

2.2. Clinical Assessments

Participants attended two study visits held at least seven days apart (median (in-
terquartile range, IQR) = 11 (9–14) days) at the University of Alberta Human Nutrition
Research Unit. Demographic characteristics, medical history information, and self-reported
puberty stage were collected at visit 1. Dietary intake and physical activity were assessed
at home using a three-day dietary record and accelerometer, respectively. Anthropome-
try, body composition (by air-displacement plethysmography), and blood pressure were
measured at visit 2 (see the Appendix A for additional information).

2.3. Blood Sampling and Biochemical Analysis

At visit 2, blood samples were collected after a 12-h overnight fast into silicone-
separator gel and EDTA tubes; serum and plasma aliquots were then isolated respectively
and stored at −80 ◦C until further analysis. Serum glucose was measured with an enzy-
matic hexokinase method (lower limit of detection [LLOD]: 0.2 mmol/L) and C-reactive
protein (CRP (inflammatory marker); LLOD: 0.5 mg/L) with an immunoassay method
using a clinical chemistry analyzer (Siemens Atellica system). Plasma insulin was also
evaluated using an immunoassay method with the Abbott Architect analyzer (LLOD:
7.2 pmol/L). Other inflammatory markers, such as plasma concentrations of interleukin-6
(IL-6; R&D Systems Quantikine, Minneapolis, MN, USA; LLOD: 0.7 pg/mL) and tu-
mor necrosis factor alpha (TNF-α, R&D Systems Quantikine, Minneapolis, MN, USA;
LLOD: 6.23 pg/mL) [50], were assessed by ELISA. As a measure of intestinal barrier func-
tion, we also evaluated LPS (Abbexa Ltd., Cambridge, UK; LLOD: <0.005 EU/mL), and
lipopolysaccharide-binding protein (LBP; USCN Life Science and Technology, Huston,
USA; LLOD: 1.21 ng/mL) using ELISA [51]. Glucose and insulin were used to calculate
the homeostatic model assessment of IR (HOMA-IR = fasting insulin (mU/mL) × fasting
glucose (mmol/L)/22.5) as a marker of glucose metabolism [13,14]. One participant was
not able to complete the blood draw at the time of study but had blood work done within
11 days of visit 2 in the same core laboratory for medical purposes; data on glucose and
insulin were therefore extracted from the participant’s electronic medical record.

2.4. Stool Sampling

Stool samples were collected at home using a collection tube with stabilizer (OM-
NIgene GUT; OMR-200 kit; DNA Genotek, Ottawa, ON, Canada) [52], according to the
manufacturer’s instructions. Participants were advised to collect one stool sample at any
time during the week between study visits and store the collection tube at room temper-
ature. Samples were brought to the research unit at visit 2 and transferred to labelled
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cryovials within 60 days of collection according to manufacturer’s instructions, which
were then stored at −80 ◦C until further analysis. Samples were sent frozen to Micro-
biome Insights Inc. (Vancouver, BC, Canada) following standardized procedures for the
quantification of fecal SCFAs and shotgun metagenomic analyses.

2.5. Short Chain Fatty Acid Quantification

Fecal SCFA concentrations were determined using gas chromatography (Thermo
Trace 1310, Thermo Fischer Scientific, Waltham, MA, USA) with a flame ionization detector
following a protocol adapted from Zhao et al. [53]. Briefly, stool samples were first diluted in
MilliQ-grade water and homogenized for 1 min at 4.0 m/s using the FastPrep instrument
(MP Biomedicals, Santa Ana, CA, USA). Hydrochloric acid (5M) was then added to a
final pH of 2.0. The samples were next centrifuged at 10,000× rpm. Supernatants were
then analyzed for SCFAs by gas chromatography. Concentrations of acetate, propionate,
butyrate, valerate, isobutyrate, isovalerate were normalized to the amount of input material
(SCFA (in mmol)/fecal content (in kg)).

2.6. Stool DNA Extraction and Shotgun Metagenomic Sequencing

DNA was extracted from homogenized samples using a commercial extraction kit (Qi-
agen MagAttract PowerSoil DNA) optimized for the Thermo Scientific KingFisher system,
according to manufacturer’s instructions. Sequencing libraries were prepared using the
Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA). Shotgun metage-
nomic sequencing was performed on a NextSeq 500 System with a paired-end 150-bp
protocol in medium-output mode. Metagenomic reads were processed with the Sunbeam
pipeline [54] and the quality of reads was evaluated using FastQC v0.11.5 [55]. In brief,
adapter sequences were removed with cutadapt v2.6 [56], trimming was conducted using
Trimmomatic v0.36 [57], low-complexity reads were identified and discarded by Komplex-
ity v0.3.6 [54], and host-derived sequences were identified, based on the human genome
(Genome Reference Consortium Human Reference 37) and removed from downstream
analyses. An average of 17.9 M ± 2.5 M reads (mean ± SD) (2.4 G ± 0.4 G bases) remained
per sample. The quality-controlled reads were taxonomically classified by MetaPhlAn3 [58].
Functional potential of microbial communities was then evaluated using HUMAnN3 [59]
based on the MetaCyc Metabolic Pathway Database [60]. Carbohydrate-Active enZYmes
(CAZy) [61] were also analyzed as previously described [62]. α-Diversity (Shannon di-
versity and species richness) and β-diversity (Bray−Curtis dissimilarity) indices of the
taxonomic composition and functional potential were calculated, based on bacterial species
and pathway abundance, respectively.

2.7. Statistical Analysis

Continuous data (i.e., clinical characteristics, metabolic and inflammatory markers,
and SCFAs) are described using median and interquartile range (IQR, 25th–75th percentile)
due to the small sample size; categorical data are described using percentage. Differences
of continuous variables and categorical variables between sex were evaluated using the
Mann Whitney U-test and the Fisher’s exact test, respectively. As several HOMA-IR
cut-off points have been proposed for insulin resistance in children and adolescents [15]
with no consensus reached for the optimal cut-off point, we categorized participants
into three subgroups using data-driven tertiles of HOMA-IR as follows: lowest tertile
(HOMA-IR ≤ 2.87), middle tertile (HOMA-IR between 2.87 and 3.94), and highest tertile
(HOMA-IR ≥ 3.94). The use of tertiles as previously described [63–65], allowed for the
variability in microbial composition and functions to be investigated across the entire
spectrum of insulin resistance levels. Differences between HOMA-IR tertiles were analyzed
using Kruskal−Wallis test, and post hoc comparisons were performed using Dunn’s test
with Benjamini−Hochberg correction (continuous variables) or the Fisher’s exact test
(categorical variables). The correlations between HOMA-IR (as a continuous variable) and
participants’ characteristics were assessed using Spearman correlations (rs).
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Factors influencing the β-diversity of the microbiome were identified by permuta-
tional multivariate analysis of variance (PERMANOVA, using the vegan package in R) and
principal coordinates analysis (PCoA). Canonical correspondence analysis (CCA) was used
to study the relationship between β-diversity and diet, physical activity, inflammation
markers, gut barrier markers, and SCFAs. Correlations between HOMA-IR and α-diversity,
bacterial species abundance, and metabolic pathway abundance were assessed using Spear-
man correlations. Partial or semipartial Spearman correlation tests were conducted as
sensitivity analysis controlling for age. Dunn’s test with the Benjamini−Hochberg correc-
tion was used for comparisons between three groups. Correlations between abundance of
selected species and pathways were tested using Spearman correlation test. We performed
similar models with CRP as an exploratory outcome in association analyses. Statistical anal-
yses were conducted using R software (v.3.6.1), and the threshold for statistical significance
was set at α ≤ 0.05.

3. Results
3.1. General Characteristics

Twenty-one children (9 males and 12 females; median age = 12.0 (IQR, 10.8–13.3) years)
were included in the analysis. Children had a median BMI z-score of 2.9 (IQR, 2.4–3.5)
and HOMA-IR of 3.6 (IQR, 2.4–4.4). Most were Caucasian (66.7%), delivered vaginally
(66.7%), and exclusively breastfed during infancy (52.4%). While 52.4% of children were at
pre−early puberty, 47.6% were at more advanced pubertal stages (i.e., mid−late puberty).
Only two children (9.5%) met the recommendations for moderate and vigorous physical
activity, and two other children (9.5%) met the recommendations for dietary fiber intake.
There were no significant differences between males and females in terms of HOMA-IR,
body composition, and inflammatory markers (Table S1).

Correlation coefficients for the relationships between HOMA-IR and clinical char-
acteristics, dietary intake, physical activity, and gut metabolites are reported in Table S2.
HOMA-IR was correlated with age (rs = 0.82, p < 0.001), sedentary behavior (rs = 0.54,
p = 0.012), time spent in light physical activity (r s = −0.54, p = 0.011), and fat mass index
(rs = 0.54, p = 0.013). However, HOMA-IR was not significantly correlated with inflamma-
tory markers or SCFAs. Comparisons between HOMA-IR tertiles revealed that children
in the highest HOMA-IR tertile were in fact older and at more advanced pubertal stages
(i.e., mid−late puberty) than children in the lowest tertile (i.e., pre−early puberty) (Table 1).
Although no differences between tertiles were observed for BMI z-score, children in the
highest HOMA-IR tertile had greater fat mass and fat-free mass indices. Furthermore, they
spent less time in light physical activity and greater time in sedentary activities compared
to children in the lowest HOMA-IR tertile. We did not observe any significant intergroup
differences in the inflammatory markers or SCFAs.

Table 1. Participants’ characteristics stratified by data-driven tertiles of the homeostatic model assessment for insulin
resistance (HOMA-IR) (N = 21).

HOMA-IR
p-Value *Lowest Tertile

(n = 7)
Middle Tertile

(n = 7)
Highest Tertile

(n = 7)

Age (years) 10.7 (10.2–10.9) 12.1 (11.7–13.0) a 13.4 (13.2–15.6) b 0.001
Sex (% male) 4 (57.1) 3 (42.9) 2 (28.6) 0.854

Sexual maturation
Pre−early puberty (%) 6 (85.5) 4 (57.1) 1 (14.3) 0.040

Race/ethnicity
White (%) 3 (42.9) 7 (100) 4 (57.1) 0.096

Born preterm (%) 1 (14.3) 0 (0) 2 (28.6) 0.742
Vaginal birth (%) 6 (85.7) 3 (42.9) 5 (71.4) 0.381

Exclusively breast fed (%) 4 (57.1) 4 (57.1) 3 (42.9) 1.000
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Table 1. Cont.

HOMA-IR
p-Value *Lowest Tertile

(n = 7)
Middle Tertile

(n = 7)
Highest Tertile

(n = 7)

Dietary intake
TEI (kcal/day) 2000 (1790–2010) 2000 (1700–2380) 1660 (1020–2020) 0.310

CHO (g/1000 kcal) 113.6 (108.6–119.8) 132.4 (127.5–136.2) a 124.3 (99.0–133.6) 0.074
Fat (g/1000 kcal) 40.7 (39.5–43.6) 37.0 (35.6–38.7) 35.9 (32.9–42.1) 0.106

Protein (g/1000 kcal) 41.6 (41.3–44.7) 41.5 (36.0–44.2) 45.7 (44.5–52.7) 0.134
Fiber (g/1000 kcal) 8.9 (8.0–9.3) 11.5 (9.9–11.9) 8.3 (7.6–9.8) 0.103

Total fiber intake (g/day) 15.3 (14.3–17.6) 20.6 (18.7–28.5) c 10.2 (7.8–20.5) 0.056
High fiber (%) 1 (14.3) 1 (14.3) 0 (0) 1.000

Physical activity
Sedentary time (min) 488 (470–532) 640 (581–694) a 698 (617–713) b 0.016

Light PA (min) 191 (167–245) a,b 116 (101–143) 112 (100–149) 0.022
MVPA (min) 48 (40–63) 26 (19–39) 34 (27–44) 0.133

Low MVPA (%) 5 (71.4) 7 (100) 7 (100) 0.300

Anthropometrics and body composition
Body weight (kg) 56.1 (53.6–70.9) 78.8 (59.2–90.6) 101.6 (79.1–118.0) b,c 0.020

BMI z-scores 2.5 (2.0–3.4) 2.9 (2.5–3.1) 3.3 (2.8–4.0) 0.382

%BF, males/females (%) 40.9 (39.4–42.9)/38.9
(33.4–39.9)

42.5 (36.4–48.6)/42.4
(39.5–45.0)

39.5 (37.0–41.9)/50.3
(45.3–53.5) 0.146

FMI, males/females (kg/m2)
12.4 (10.4–13.7)/9.3

(7.6–10.0)
11.7 (10.4–17.9)/12.8

(11.3–13.9)
12.4 (11.5–13.3)/18.7

(14.5–25.3) b 0.059

FFMI, males/females
(kg/m2)

16.4 (15.5–17.3)/15.4
(15.0–15.4)

20.0 (17.9–20.4)/16.5
(15.8–17.7)

18.9 (18.4–19.5)/19.8
(18.5–21.9) b 0.042

Metabolic parameters
Glucose (mg/dL) 86.4 (82.8–90.0) 84.6 (81.9–87.3) 90.0 (90.0–91.80) c 0.035
Insulin (pmol/L) 67.4 (54.9–76.1) 113.2 (109.4–119.5) a 177.1 (155.6–210.1) b,c >0.001

HOMA-IR 2.20 (1.61–2.32) 3.55 (3.18–3.68) a 5.67 (4.94–6.92) b,c >0.001
CRP (mg/L) 2.0 (1.4–4.4) 2.2 (0.9–4.3) 9.7 (1.1–14.6) 0.549
IL-6 (pg/mL) 24.0 (6.6–44.1) 13.8 (6.9–51.2) 9.6 (6.0–12.0) 0.748

TNF-α (pg/mL) 27.5 (5.2–71.5) 7.35 (6.8–15.0) 32.10 (5.8–39.2) 0.795
LBP (ug/mL) 15.1 (12.8–39.5) 33.6 (15.9–46.6) 27.4 (22.3–33.1) 0.714
LPS (EU/mL) 0.66 (0.44–0.77) 0.38 (0.33–0.49) 0.48 (0.39–0.93) 0.243

SCFAs †

Acetate (mmol/kg) 35.8 (34.4–38.7) 25.6 (22.7–33.9) 33.9 (24.5–50.9) 0.120
Propionate (mmol/kg) 7.9 (4.8–8.1) 2.8 (0.4–7.1) 7.6 (5.2–12.5) 0.227

Butyrate (mmol/kg) 12.8 (8.5–18.5) 9.4 (7.4–10.2) 9.3 (6.1–13.9) 0.483
Valerate (mmol/kg) 1.1 (0.9–2.0) 0.9 (0.3–1.0) 1.2 (0.9–1.6) 0.246

Isobutyrate (mmol/kg) 2.9 (1.4–3.8) 0.0 (0.0–1.6) 1.0 (0.2–2.1) 0.198
Isovalerate (mmol/kg) 1.9 (1.4–2.6) 0.7 (0.5–1.2) 1.2 (1.0–2.2) 0.198

Total SCFAs (mmol/kg) 55.8 (51.0–80.8) 41.0 (33.4–57.4) 55.8 (41.7–77.7) 0.205

Data is presented using median and interquartile range (25th percentile–75th percentile), except for categoric data shown as count (%).
Abbreviations: %BF, percent body fat; CHO, carbohydrate; FFMI, fat-free mass index; FMI, fat mass index; HOMA-IR, homeostatic model
assessment of insulin resistance; CRP, C-reactive protein; IL-6, interleukin-6; IQR, interquartile range; LBP, lipopolysaccharide binding
protein; LPS, lipopolysaccharides; MVPA, moderate-to-vigorous physical activity; PA, physical activity; SCFAs, short-chain fatty acids; TEI,
total energy intake; TNF-α, tumor necrosis factor alpha. a Significant difference between the lowest and middle HOMA-IR tertiles (p < 0.05).
b Significant difference between the lowest and the highest HOMA-IR tertiles (p < 0.05). c Significant difference between the middle and
highest HOMA-IR tertiles (p < 0.05). * p-values for comparisons between HOMA-IR tertiles. Continuous variables were presented as
median (interquartile range (IQR)) and were compared using Kruskal−Wallis test, and post hoc comparisons were performed using Dunn’s
test with Benjamini−Hochberg correction. Categorical variables were shown as count (%) and were compared using the Fisher’s exact test.
† Short-chain fatty acids (SCFAs) were normalized to the amount of input material (SCFA (in mmol)/fecal content (in kg)).
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3.2. Fecal Microbiome Composition
3.2.1. Diversity Patterns

We found that HOMA-IR was negatively correlated with overall species richness
(rs = −0.51, p = 0.019), Firmicutes species richness (rs = −0.43, p = 0.049), and Proteobacteria
Shannon diversity (rs = −0.48, p = 0.029). Only the relationship between HOMA-IR and
Shannon diversity of Proteobacteria species (rs = −0.59, p = 0.006) remained significant
when controlling for age (Table S3). Comparisons between subgroups revealed that children
in the highest HOMA-IR tertile had lower species richness than those in the first tertile
(p = 0.022) (Figure 1). Differences in the number of observed species were identified
particularly for the Firmicutes (p = 0.034) and Proteobacteria (p = 0.045) phyla. Furthermore,
children in the highest HOMA-IR tertile also exhibited the lowest Shannon diversity for
the Proteobacteria phylum (p = 0.042). In contrast to the α-diversity findings, HOMA-IR
was not associated with measures of β-diversity at the species level using PERMANOVA.

In the exploratory analysis, species richness correlated with age (rs = −0.44, p = 0.046),
sedentary time (rs = −0.63, p = 0.002), and time spent in light (rs = 0.54, p = 0.013) and
moderate-to-vigorous (rs = 0.47, p = 0.030) physical activity; however, no associations with
body composition and inflammatory markers were observed. We found that the overall
Shannon diversity was negatively correlated with CRP independent of age (rs = −0.46,
p = 0.046), but this inflammatory marker did not correlate with measures of β-diversity.
Furthermore, positive associations were identified between β-diversity and SCFAs (par-
ticularly propionate and acetate [R2 = 0.19, p = 0.001]), adjusted fiber intake (R2 = 0.13,
p = 0.030), BMI z-score (R2 = 0.11, p = 0.041) as well as reports of jaundice at birth (R2 = 0.19,
p = 0.013). Using CCA, we found that these associations could be explained by variability
in the diversity of several species; the top five species (with the lowest p-values) were
Prevotella. copri, Paraprevotella xylaniphila, Lachnospira pectinoschiza, Paraprevotella clara, and
Faecalibacterium prausnitzii (Table S4).
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3.2.2. Differentially Abundant Species

The composition of the gut bacterial community in the total study cohort was domi-
nated by the phyla Bacteroidetes (median abundance = 69.5%), Firmicutes (23.3%), Acti-
nobacteria (0.6%), and Proteobacteria (0.3%). Nevertheless, there were no significant
differences in the median abundance of these phyla across HOMA-IR tertiles (Figure S1A).
The five most abundant bacterial species (based on median values) in the total study cohort
were B. vulgatus (6.7%), F. prausnitzii (6.4%), Bacteroides uniformis (3.8%), Alistipes putredi-
nis (3.3%), and Bacteroides caccae (1.2%); however, these species did not differ in median
abundance between HOMA-IR tertiles (Figure S1B).

The abundance of the five species was negatively correlated with HOMA-IR, including
two bacterial species related to butyrate production (Oscillibacter sp. CAG 241 (rs = −0.62,
p = 0.002), Agathobaculum butyriciproducens (rs = −0.46, p = 0.037)) and three Gram-negative
species (Haemophilus parainfluenzae (rs = −0.56, p = 0.008), Veillonella parvula (rs = −0.53,
p = 0.013), and Dialister invisus (rs = −0.50, p = 0.020)). After adjusting for the effects of age,
only the correlations between HOMA-IR and Oscillibacter sp. CAG 241 (rs = −0.59, p = 0.006)
as well as H. parainfluenzae (rs = −0.45, p = 0.049) remained significant. Children in the
highest HOMA-IR tertile had lower abundance of Oscillibacter sp. CAG 241 (p = 0.004), V.
parvula (p = 0.032), and D. invisus (p = 0.021). Furthermore, the Firmicutes to Bacteroidetes
(F/B) ratio and Prevotella to Bacteroides (P/B) ratio were not associated with HOMA-IR
(Table S2). In exploratory analysis, abundance of eleven species correlated negatively
with CRP levels (Figure S2); however, positive correlations of CRP to bacterial species
related to propionate (Bacteroids eggerthii; rs = 0.49, p = 0.030) and butyrate production
(Anaerotruncus sp. CAG 528; rs = 0.46, p = 0.042) were identified.

3.3. Fecal Microbiome Functions
3.3.1. Diversity Patterns

We found that HOMA-IR was not associated with α-diversity and β-diversity of
the MetaCyc pathways, while CRP was negatively correlated with the Shannon diversity
of these pathways (rs = −0.63, p = 0.004, semipartial correlation adjusting for age). In
the exploratory analysis, we observed that β-diversity of the MetaCyc pathways was
associated with obesity indices (BMI z-score (R2 = 0.26, p = 0.004), and fat mass index
(R2 = 0.25, p = 0.003)), total SCFAs (R2 = 0.24, p = 0.006), acetate (R2 = 0.36, p = 0.001),
propionate (R2 = 0.32, p = 0.001), and CRP (R2 = 0.32, p = 0.006). Canonical correspondence
analysis showed that approximately 52% of the identified pathways were significant drivers
of β-diversity, including those ones related to the metabolism of BCAA (rs range: 0.49–0.96,
all p ≤ 0.011) (Figure 2B).
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3.3.2. Differentially Abundant Pathways

We identified 18 pathways related to either metabolic or biological functions of the
gut microbiome to be significantly associated with HOMA-IR (Figure 3 and Figure S3). Of
these, HOMA-IR was negatively correlated with pathways linked to arginine, glutamine,
and phenylalanine biosynthesis. Although there were no significant associations between
HOMA-IR and circulating LPS and LBP (Table S2), negative correlations were observed
between HOMA-IR and pathways for LPS. Higher HOMA-IR also correlated with a lower
abundance of pathways related to folate biosynthesis, pyruvate, and coenzyme A as well
as SCFAs production.

Conversely, HOMA-IR was positively correlated with pathways related to bacteria
cell wall biosynthesis, particularly of peptidoglycans. Most of these correlations remained
significant after including age as a covariate (Table S3). Furthermore, we observed that
eleven out of the eighteen pathways were reduced in children in the highest HOMA-IR
tertile; however, children in the third tertile had the greatest abundance of a pathway related
to bacteria cell wall synthesis. Because there is evidence supporting the role of BCAA in
the development of insulin resistance [31,66], and we detected an association between
BCAA-related pathways and β-diversity, we also examined whether BCAA pathways
differed between HOMA-IR tertiles; however, no differences were found. In the exploratory
analysis, an abundance of 89 MetaCyc pathways were correlated with CRP (Figure S2).

Microorganisms 2021, 9, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 3. Heat map showing correlations of gut microbiome composition and functions with the homeostatic model 
assessment for insulin resistance (HOMA-IR) in 21 children with obesity (unadjusted analysis). 

3.4. Carbohydrate-Active Enzyme (CAZyme) Analysis 
CAZyme β-diversity was not shown to be associated with HOMA-IR. In contrast, 

significant associations between CAZymes β-diversity and lipopolysaccharide-binding 
protein (LBP) (R2 = 0.14, p = 0.043), SCFAs (especially acetate (R2 = 0.13, p = 0.044), and 
propionate (R2 = 0.13, p = 0.047)) were observed, although neither of these associations 
remained significant after p value correction. Canonical correspondence analysis showed 
that associations between β-diversity and SCFAs were driven by enzymes from the 
carbohydrate esterase families 6 and 11; in contrast, associations between β-diversity and 
jaundice at birth may be explained by the glycoside hydrolase families 18 and 76 as well 
as the glycosyltransferase family 20 (Figure 2C). In addition, the total abundance of 
CAZyme families was not different between HOMA-IR tertiles (Figure S4). 

4. Discussion 
This study in children with obesity shows that the β-diversity of the gut microbiome 

was not associated with HOMA-IR, consistent with previous studies in adolescents and 
adults [45,67]. The overall microbial α-diversity (using the Shannon diversity) has been 
reported to be negatively correlated with HOMA-IR [36] or type 1 diabetes mellitus status 
in children [37]. We identified that species richness, but not overall α-diversity, had a 
negative association with HOMA-IR. Of note, we report for the first time that children 

Figure 3. Heat map showing correlations of gut microbiome composition and functions with the homeostatic model
assessment for insulin resistance (HOMA-IR) in 21 children with obesity (unadjusted analysis).



Microorganisms 2021, 9, 1490 10 of 18

3.4. Carbohydrate-Active Enzyme (CAZyme) Analysis

CAZyme β-diversity was not shown to be associated with HOMA-IR. In contrast,
significant associations between CAZymes β-diversity and lipopolysaccharide-binding
protein (LBP) (R2 = 0.14, p = 0.043), SCFAs (especially acetate (R2 = 0.13, p = 0.044), and
propionate (R2 = 0.13, p = 0.047)) were observed, although neither of these associations
remained significant after p value correction. Canonical correspondence analysis showed
that associations between β-diversity and SCFAs were driven by enzymes from the car-
bohydrate esterase families 6 and 11; in contrast, associations between β-diversity and
jaundice at birth may be explained by the glycoside hydrolase families 18 and 76 as well as
the glycosyltransferase family 20 (Figure 2C). In addition, the total abundance of CAZyme
families was not different between HOMA-IR tertiles (Figure S4).

4. Discussion

This study in children with obesity shows that the β-diversity of the gut microbiome
was not associated with HOMA-IR, consistent with previous studies in adolescents and
adults [45,67]. The overall microbial α-diversity (using the Shannon diversity) has been
reported to be negatively correlated with HOMA-IR [36] or type 1 diabetes mellitus status
in children [37]. We identified that species richness, but not overall α-diversity, had a
negative association with HOMA-IR. Of note, we report for the first time that children with
higher HOMA-IR levels had lower species richness and Proteobacteria species Shannon di-
versity, independent of age. Particularly, the abundance of H. parainfluenzae was negatively
correlated with HOMA-IR in our study, which corroborates the findings of Del Chierico
et al. in youths with obesity, aged 9 to 18 years [68].

Previous research showed a detrimental role of bacterial LPS translocation (termed
endotoxemia) on insulin sensitivity by activating Toll-like receptors 4 (TLR4) and trig-
gering the secretion of proinflammatory cytokines [36,69–71]. Our study demonstrated
negative correlations between HOMA-IR and the abundance of genes associated with LPS
biosynthesis pathways. Specifically, we showed the downregulation of the UDP-N-acetyl-
d-glucosamine pathway in children with high HOMA-IR (Figure 3), which is involved in
the synthesis of the lipid A structure of LPS that binds to TLR4 [72]. We therefore speculate
that there may be other altered functional attributes of the gut microbiome likely initiating
inflammatory responses in young individuals.

In our study, positive correlations were found for HOMA-IR with two pathways
related to the biosynthesis of peptidoglycans. This is relevant in light of emerging evidence
suggesting that these bacteria cell-wall components, when sensed by multiple pattern-
recognition receptors, have also been shown to contribute to insulin resistance through
modulating the immune response, increasing the translocation of bacterial components,
and promoting vascular and adipose tissue inflammation [70,73–78]. However, future
studies are required to better elucidate mechanisms regulating the interactions between
peptidoglycans metabolites and changes in metabolism during childhood.

Another functional attribute of the gut microbiome related to insulin resistance is
amino acid metabolism. Prior studies have revealed beneficial immunomodulatory ef-
fects of some amino acids; for example, glutamine and arginine can lower inflammation
and are precursors for the adequate functioning of neutrophils, macrophages, and entero-
cytes [79]. Remarkably, acute treatment with L-glutamine enhanced insulin-response and
increased glucagon-like peptide-1 (GLP-1) in adults with well-controlled T2DM [80]. Thus,
children with higher HOMA-IR in our study might not have benefited from bacterial pro-
duction of amino acids as they presented with lower abundance of genes linked to amino
acid biosynthesis. Despite these beneficial roles, metabolomics studies have consistently
reported strong associations between circulating BCCA levels and insulin resistance in
diverse populations [31]. Our study did not find such associations, but the abundance of
BCAA pathways were positive drivers of β-diversity of the MetaCyc pathways, which was
associated with obesity indices and inflammation.
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The inflammatory processes have been shown to be altered in children with obesity
and associated with the development of insulin resistance [5,81]. In our exploratory
analyses to examine the relationships between the gut microbiome and inflammation,
we found that taxonomic α-diversity (overall Shannon diversity) reduced with increases
in CRP in children with obesity. This observation aligns with previous studies in the
adult population, as reported in a systematic review and confirmed in a large scale study
published recently [82,83]. Negative associations were also found between CRP and
abundance of several SCFAs producers, suggesting the beneficial immune response to
these bacterial metabolites. In contrast, we showed that abundance of B. eggerthii (which
has been shown to form propionate in the presence of vitamin B12 [84]) was positively
correlated with CRP levels. Although we did not evaluate SFCAs from plasma samples, one
study showed significant positive associations between circulating SCFAs and adiposity
measurements in adolescents [85]. Coupled with these findings, it was demonstrated that
the microbiota from adolescents with obesity had a greater ability to ferment carbohydrates
than those of normal weight. However, our study showed a similar capacity of the gut
microbiota with regard to carbohydrate metabolism in children with and without insulin
resistance as the diversity and abundance of CAZymes did not differ across HOMA-
IR tertiles. These findings might be explained by the lack of a relationship between
Bacteroidetes and insulin resistance, as this phylum encodes more diverse CAZymes than
other phyla of gut microbiota [86].

In this study, we used shotgun metagenomic analysis, and thus were able to profile
and compare taxonomic compositions at a species-level resolution, as well as profile
functional potentials of the microbiome more accurately than estimates from 16S rRNA
gene amplicon sequences [47]. We also evaluated a series of factors previously shown to be
determinants of metabolic health using reference techniques, such as body composition
by air-displacement plethysmography, physical activity using accelerometry, and dietary
intake by three-day food records. However, our sample size of 21 individuals limited the
ability to adjust the analysis for multiple covariates simultaneously and investigate which of
the identified pathways contributed to insulin resistance to the greatest extent. Considering
the COVID-19 pandemic, a sufficient number of Canadian children of both sexes were
still recruited in a timely manner before research activities were put on hold. Challenges
in recruiting children with obesity, specifically those with metabolic abnormalities, are
well-documented in several pediatric studies [87,88]. Although we did not enroll children
without obesity as controls (i.e., case-control design), our results provide evidence of
distinct taxonomic and functional profiles of the gut microbiome across HOMA-IR tertiles
even in the presence of obesity. Another limitation of our study is that only a small subset
of metabolites was explored. Fecal metabolome, as well as blood metabolome should be
evaluated to understand to what extent the microbiota-derived metabolites may affect host
physiology. Along the same lines, future studies should consider measuring both plasma
and fecal SCFAs, as previous clinical studies have shown that plasma but not fecal SCFAs
were associated with markers of insulin sensitivity and the degree of SCFA absorption to
circulation is not the same across individuals [89,90].

5. Conclusions

Children with obesity and higher HOMA-IR levels, reflecting insulin resistance, ex-
hibited lower α-diversity metrics for Proteobacteria species as well as a lower abundance
of bacteria related to butyrate production and Gram-negative bacteria. Notably, our study
is one of the few that have examined the functional potentials of gut bacteria communities
in children with obesity (Figure 4). We further reported that higher HOMA-IR levels were
also associated with a lower abundance of amino acids and SCFAs biosynthesis pathways,
possibly limiting the beneficial contribution of these metabolites to insulin sensitivity.
Moreover, positive associations between HOMA-IR and the pathways related to pepti-
doglycan biosynthesis are in line with previous mechanistic studies suggesting a role of
these cell-wall components to the development of insulin resistance. While findings should
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be interpreted with caution due to the limited sample size, our study provides a frame-
work for future investigations on: (i) the mechanisms regulating the interactions between
peptidoglycans metabolites and changes in metabolism; and (ii) the taxonomic drives of
functional imbalances associated with glucose metabolism abnormalities in children with
obesity (using both metagenomics and metabolomics). Furthermore, prospective cohort
studies evaluating children at high risk for T2DM during pubertal growth are extremely
valuable in depicting factors that determine the progression of insulin resistance to T2DM.
Collectively, these studies may inform interventions targeting both bacterial communities
and their functional attributes, with the potential to improve the efficacy of pediatric obesity
and metabolic disease treatment.
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Appendix A

Appendix A.1. Clinical Assessments

Appendix A.1.1. Demographics and Clinical Variables

We collected data on age, sex, and race/ethnicity. We classified race/ethnicity into
three categories: white, indigenous, and others (e.g., Latino, black, Arabic). Parents
completed a medical history questionnaire, reporting child’s gestational age, birth weight
at delivery, birth mode, jaundice at birth, and feeding practices during the first year of life.
Preterm birth was defined as gestational age less than 37 weeks. Size for gestational age was
calculated in PediTools using the 2013 Fenton growth charts [91]. Exclusive breastfeeding
was defined as infant receiving only human breast milk for ≥ 6 months since birth [92].

Children completed a self-assessment puberty questionnaire containing descriptions
and drawings of genitals, breasts, and pubic hair development stages [93]. Participants
were classified into two pubertal groups: pre−early (Tanner stages 1 and 2) and mid−late
(Tanner stages 3 to 5) [94].

Appendix A.1.2. Anthropometric and Body Composition Assessment

Anthropometric and body composition assessment were conducted by the same
trained researcher during study visit 2. Children were asked to abstain from high intensity
physical activity for 24 h and water consumption for 4 h prior to the visit. All measurements
were taken with children wearing minimal clothing (i.e., a tight-fitting bathing suit) and
barefooted, after they had emptied their bladders.

One measurement of body weight was measured to the nearest 0.1 kg using a cali-
brated scale coupled to the air-displacement plethysmography (ADP, Bod Pod 1SB-060M,
Life Measurement Instruments, Concord, CA, USA) equipment. Height was measured
twice to the nearest 0.1 cm using a wall-mounted stadiometer. Body mass index z-score
was computed using the WHO Anthroplus software (v.1.0.4, Geneva, Switzerland).

Body composition was estimated using the ADP equipment according to the manu-
facturer’s instructions. Thoracic gas volume was predicted using a standard predictive
equation based on age, sex, and height [95]. From body volume measures and density
calculations, percent body fat (% BF) was estimated using the Lohman equation and fat-free
mass (FFM) was calculated by subtracting fat mass (FM) from total body weight [96]. Fat
mass and FFM (in kg) were divided by squared height (in meters) to calculate the FM index
(FMI) and FFM index (FFMI), respectively.

Appendix A.1.3. Dietary and Physical Activity Assessment

Children assisted by their parents were asked to complete a 3-day dietary record
over two weekdays and one weekend day, after receiving instructions on how to record
dietary intake and measure food portions. To ensure completeness, a member of the
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research staff reviewed the dietary records with the children and their parents upon return
(visit 2). Average daily macronutrient intake (protein, carbohydrate, and fat) and total
energy intake were determined using Food Processor SQL (v. 11.0.124, ESHA Research),
with the Canadian Nutrition File database as the main source for obtaining food nutrient
content. The United States Department of Agriculture Nutrient database or manufacturer’s
food labels were also used when food nutrient content was not available. The average daily
intake of macronutrients per 1000 kcal was used to calculate nutrient density [97]. The
adequate intake of total fiber was defined using dietary reference intakes specific for age
and sex (males aged 9–13 years = 31 g/day; males aged 14–18 years = 38 gm/day; female
aged 9–18 years = 26 g/day; Institute of Medicine, 2002) [98].

Physical activity was measured using accelerometry (4MB GT3X, Actigraph, Pensacola,
FL, USA), with epoch length set at 5 s. Children were instructed to wear the device on
their right hip attached to a belt over seven consecutive days during all waking hours
(except while bathing, showering, or swimming). Data was downloaded and screened for
compliance using the ActiLife6 software (v.6.13.4; ActiGraph, LLC, Pensacola, FL, USA);
those participants with a minimum of 10 h wear time on at least three days were retained
for analysis. The Evenson cut-points were selected to categorized accelerometry data into
three intensity levels: sedentary behavior, light intensity, and moderate plus vigorous
physical activity (MVPA) [99]. Time spent in each category was reported in minutes and as
proportion of total wear time. Children spending less than 60 min in MVPA per day were
considered as not meeting the physical activity recommendations [100].
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