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Simple Summary: Beyond mutations, epigenetic changes have been described as drivers for cancer
as well. While leaving the overall DNA structure intact, they can be responsible for tumor malignancy
by mediating the transcriptional upregulation of oncogenes. This provides the basis for “epigenetic
therapies” in cancer. Histone deacetylases (HDACs) are major players in epigenetic reprogramming.
HDAC inhibitors (HDACis), either with broad-spectrum activity on various HDAC isoforms or with
specific subtype specificity, have shown promising anticancer efficacies. The tremendous number
of genes potentially affected creates the possibility for the parallel targeting of multiple disease-
relevant pathways. Here, we give a comprehensive overview of various preclinical and clinical
studies on HDACis. A particular focus is placed on the detailed description of promising strategies
based on the combination of HDACis with other drugs. This also includes the development of new
bifunctional inhibitors as well as novel approaches for HDAC degradation, rather than inhibition,
via PROteolysis-TArgeting Chimeras (PROTACs).

Abstract: The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer
therapies based on specific inhibitors. Beyond “classic” oncogene inhibitors, epigenetic therapy is
an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering
the structure of the chromatin, the accessibility for transcription factors and thus the transcription of
genes. They rely on post-translational histone modifications, particularly the acetylation of histone
lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and
histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predomi-
nantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase
inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological can-
cers. Albeit HDACis show activity in solid tumors as well, further refinement and the development
of novel drugs are needed. This review describes the capability of HDACis to influence various
pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and
clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy
by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone-
or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for
HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
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1. Introduction
1.1. Histone Acetylation and Regulation of Gene Expression

Cancer is often considered as a disease driven by the mutation of genes involved
in growth or differentiation—in particular, so-called tumor oncogenes or suppressor
genes [1,2]. Yet, there exists a powerful machinery to drive malignancies without af-
fecting the DNA structure itself [3]. So-called “epigenetic” alterations alter the structure of
the chromatin and consequently influence the transcription of genes. They can occur at any
time during cancer progression but have also been described in other processes such as,
for example, the initiating step in malignant degeneration, thus emphasizing their overall
relevance [3]. Human cells contain the genetic code as chromatin. Nucleosomes display
the basic units composed of 147 bp DNA wrapped around an octamer of the four histones
H2A, H2B, H3 and H4 [4–7]. The N-terminal tails of the core histone contain many lysine
and arginine residues, which makes them prone to post-translational modifications [8,9].

A wide variety of possible modifications exists, including, for example, methyla-
tion, phosphorylation, sumoylation, deamination and, importantly, acetylation. Histone
acetylation was described as early as 1964 and already then considered to affect RNA
synthesis [10]. Acetylation of core histones neutralizes the positive charge of the lysine
residue, thereby weaking their interactions with the negatively charged DNA molecule. In
fact, two different states of chromatin exist. Euchromatin represents the “open”, mostly
acetylated state, which leads to unfolded DNA and access for transcription factors. In
contrast, heterochromatin is largely hypoacetylated, resulting in a tightly condensed DNA
less accessible for transcription and thus considered as “silent” [11]. Acetylation is a
reversable mechanism, with transition from one state to the other catalyzed by histone
acetyltransferases (HATs) on the one hand and histone deacetylases (HDACs) on the other.
While the HATs can be divided into three major families, HDACs include four families
with 18 different HDACs [5,6].

Several early findings led to increasing interest in HDAC inhibitors (HDACis) as
potent anticancer therapeutics—e.g., histone H4 is commonly deacetylated in human
primary malignancies [12] and HDAC family members are frequently overexpressed in a
variety of human cancers [13–17].

Of note, the application of HDAC inhibitors proved to be mainly useful in hematolog-
ical disease [18]. For example, HDAC inhibitor therapy has been shown as an efficacious
option in cutaneous T cell lymphoma (CTCL) [19]. Approximately 30% of CTCL patients
respond to HDACi treatment, which might be attributable to genetic changes, for example,
in adhesion pathways that can also be found in solid tumors [20]. However, outstand-
ing responses in CTCL are more likely due to distinct DNA accessibility features. For
example, one observed cluster showed increased access to the HDAC9 locus, responsible
for Foxp3-dependent suppression in T regulatory cells. This response to HDACis was
highly dependent on transcription factor enrichment of CTCF, affecting overall chromatin
structure. In contrast to solid tumors, the unique 3D DNA structure of CTCL rather than
oncogenic mutations might be accountable for effective monotherapy with HDACis in this
entity [21]. In contrast, monotherapy in solid tumors was found to be largely ineffective,
thus directing the focus towards combined inhibition strategies. Nevertheless, HDAC
inhibitors still offer great potential as powerful anticancer drugs in solid tumors, and
the topic of this review is on current strategies to unlock their potential. The text is also
supported by a comprehensive overview of clinical studies involving HDACis (Table A1).

1.2. HDAC Subtypes: Structure, Function, Subcellular Localization, and Expression Patterns

The family of histone deacetylases comprises four classes and 18 different isoforms.
The single enzymes were numbered according to their discovery, starting with HDAC1
in 1996 [22]. The distinction of the human HDACs into classes is based on their relations
to their yeast analogues: class I HDACs show similarities to yeast reduced potassium
dependency 3 (Rdp3) protein, class II HDACs are similar to yeast histone deacetylase-
A 1 (Hda1), class III enzymes are NAD+-dependent histone deacetylases similar to the



Cancers 2021, 13, 634 3 of 43

silent information regulator 2 (Sir2) protein, and class IV only includes HDAC11, with
low sequence homology to any of the other HDACs [23]. The HDACs also differ in
their subcellular locations and their general expressions, depending on specific tissues.
Class I enzymes (HDACs 1, 2, 3 and HDAC8) are localized in the nucleus and expressed
ubiquitously [8]. HDACs 4, 5, 7, and 9 (class IIa) show, at least to some extent, cytoplasmatic
localization and can be shuttled into the nucleus, whereas HDACs 6 and 10 (class IIb) are
primarily localized in the cytoplasm. Members of the class III HDACs can have a broad
impact on cellular growth or apoptosis as well; for example, SIRT1 is known to deacetylate,
and thus affect, the function the tumor suppressor p53 [24]. The catalytic domains of class
I and II HDACs are highly conserved. A similar mechanism of action was proposed for
the first time in Aquifex aeolicus in cocrystallization studies with HDAC inhibitors [25]. In
summary, a water molecule carries out a nucleophilic attack on the carbonyl carbon of the
acetylated lysine residue, supported by a polarizing zinc atom and histidine side chain
residues. This results in a carbon-nitrogen bond breakage [26].

Furthermore, the activity of histone deacetylases becomes more sophisticated as they
exert their activities, usually in huge protein complexes with different biological functions.
HDAC1 and -2 act mainly via nucleosome remodeling and deacetylase (NuRD), switch
independent 3 (SIN3), mitotic deacetylase (MiDAC) and corepressor of REST (CoREST)
complexes, whereas HDAC3 is exclusively recruited by the nuclear receptor corepressor
(SMRT/NCoR) complex [27]. The four class I HDACs were reported to act on histones
where the vast majority of cellular lysine acetylation takes place [28]. Moreover, even
though class IIa HDACs might still play a part in the histone deacetylation process through
complex formation with HDAC3, it is now questionable whether they exert any indepen-
dent deacetylase activity [29]. The class IIb isoform HDAC6 regulates Hsp90, tau and the
cytoskeleton through its interactions with tubulin and cortactin, and recognizes ubiqui-
tinated proteins to induce aggresome formation [30–35]. HDAC10, the only other class
IIb enzyme, functions as a polyamine deacetylase [36]. Since these findings no longer fit
into the established classification system, Ho et al. recently suggested the recategorization
of HDAC enzymes in accordance with their actual in vitro substrates [29]. Through their
versatile and crucial roles in various pathways, HDACs are presumed to contribute to the
development of cancer and to other pathological conditions such as neurodegenerative
disorders, viral infections and rare diseases [35,37–40]. There have been plenty of studies
demonstrating the aberrant expression of HDACs in different tumor entities. For example,
class I HDACs were found overexpressed in prostate [13], renal cell [14], bladder [15] and
breast tumors [16]. The latter study also showed HDAC2 and HDAC3 overexpression to
be associated with clinicopathological indicators of disease progression. In lung cancer,
HDAC3 overexpression was also associated with poor prognosis [17]. In gastric cancer,
high class I HDAC expression was related to nodal spread and identified as an independent
prognostic marker [41].

1.3. Structural Features of Zn2+-Dependent HDACs and Development of Subtype-Specific HDACis

So far, crystallographic data available have confirmed a highly conserved nature
for the HDAC isoforms. They all feature a variably sized cavity on the surface and a
narrow tunnel of mutable length and width, leading to a Zn2+ ion located in the active
site [36,42–46]. In accordance with the structural characteristics of the different isoforms,
a reliable pharmacophore for HDAC inhibitors has been established [47]. As illustrated
using the example of vorinostat (Figure 1), HDAC inhibitors (HDACis) typically comprise
a cap group occupying the entrance area to the active site, a zinc binding group (ZBG)
interacting with the Zn2+ ion in the catalytic center and a hydrophobic linker connecting
the two units through the enzyme’s channel rim [48]. This structural motif can be generally
applied to all isoforms, and when structural information on the different isoforms was
rare, most design attempts were based on this pharmacophore. Thus, inhibitors of the first
generation generally turned out to be rather unselective. Meanwhile, several structural
characteristics have been found that can be specifically addressed for discriminating be-
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tween the different isoforms. A 14 Å long cavity adjacent to the zinc ion, the so-called “foot
pocket”, has only been observed in class I HDACs, allowing suitable 2-aminoanilide ZBGs
to target them [43,49–51]. HDAC8, on the other hand, is smaller than HDACs 1–3 and
lacks a C-terminal domain, which is required for joining multiprotein complexes [29]. A
characteristic mutation present in the active sites of all class IIa isoforms is the replacement
of a catalytically crucial tyrosine by a histidine residue which can rotate to open the lower
pocket [52,53]. A crystal structure of the class IIa isoform HDAC7 further revealed the
existence of a hydrophobic binding site in proximity to the active site, which might be
required for protein–protein interactions [54].
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Figure 1. FDA/NMPA-approved histone deacetylase (HDAC) inhibitor (HDACi) and isoform-
preferential clinical candidates.

HDAC6 is the only isoform possessing two functional catalytic domains and an
additional zinc finger, serving as an ubiquitin-binding domain (HDAC6 UBD) [55]. For the
second catalytic domain (CD2) of HDAC6, the tunnel appears to be slightly more spacious
but shorter, while the entrance area on the enzyme’s surface is larger compared to other
isoforms [46]. Selectivity for HDAC6 can therefore be achieved by incorporating large cap
groups and benzyl linkers instead of aliphatic chains.

With the information obtained by X-ray cocrystal structure analysis and comprehen-
sive SAR studies, remarkable progress in the field of isoform-selective compounds has been
made over recent years [48,56]. Class I-selective HDACis such as entinostat were the first
group of selective HDACis to enter clinical trials and are now widely investigated for the
treatment of cancer and nononcological diseases. In 2015, the 2-aminoanilide tucidinostat
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was the first class I-selective compound to be approved by the NMPA in China and is now
undergoing late-stage studies in Europe and the US. Further Phase I and Phase II studies
investigate the effects of the HDAC6-preferential candidates ricolinostat and citarinostat
on multiple myeloma and other malignancies, including solid cancers.

2. Molecular Mechanisms of HDACi-Promoted Anticancer Effects
2.1. Apoptosis Induction

Induction of apoptotic cell death represents one of the main mechanisms of anticancer
effects promoted by HDAC inhibitors [57–61]. Regarding apoptosis signaling in cancer
cells upon treatment with HDAC inhibitors, divergent effects have been demonstrated
depending on the cellular context. This can result in desirable proapoptotic or in unwanted
antiapoptotic responses. This ambiguous impact on cancer cells with respect to apop-
tosis parallels the effects of HDAC inhibitors regarding the promotion of autophagy or
senescence, which may also result in tumor inhibiting or tumor promoting effects. In the
best-case scenario, treatment with HDAC inhibitors induces growth arrest or cell death of
cancer cells; however, under unfavorable conditions, these agents can impede the effect of
other anticancer therapeutics or may even promote tumor growth.

The complexity of HDAC inhibitor-dependent responses with regard to apoptosis
arises from the fact that these compounds affect virtually all components of the apoptotic
machinery. For example, HDAC inhibitors lead to the upregulation or sensitization towards
factors of the extrinsic apoptosis pathways [62–65]. Moreover, HDAC inhibitors can
increase the expression or activity of proapoptotic proteins of the intrinsic pathway, such
as Bax or Bak [63,66], or decrease the expression of antiapoptotic Bcl proteins such as Bcl-2
or Bcl-xL [67,68].

One important mechanism of how HDAC inhibitors affect apoptotic signaling is the
generation of reactive oxygen species (ROS) [69,70]. The increase in oxidative stress upon
HDAC inhibition can result from the upregulation of ROS-producing pathways or from
the downregulation of endogenous antioxidant factors such as thioredoxin [71–73]. The
importance of ROS generation for HDAC inhibitor-promoted cell death is underlined by
the observation that ROS scavengers such as N-acetyl cysteine (NAC) could decrease the
cytotoxicity of HDAC inhibitors in various cancer cell lines [74–76]. However, it has to be
noted that vitamin C or NAC treatment did not affect apoptosis induction in HeLa cells
treated with suberoyl bishydroxamic acid [77]. Some discrepancies in the relation of ROS
generation and apoptosis upon HDAC inhibition may be related to the fact that oxygen
stress can play a causative role in apoptosis induction but can also be a consequence of ROS-
independent apoptosis [78]. Moreover, ROS-dependent and -independent effects of HDAC
inhibitors can lead to the adaptive stimulation of the Keap1-Nrf2 pathway, which is a
central regulator of antioxidant molecules [79–82]. This effect has been mainly described in
nononcological conditions, but may be also relevant in cancer. Since Nrf2 is a transcription
factor responsible for the upregulation of cytoprotective factors [83–85], the activation of
the Nrf2 pathway by HDAC inhibitors could even result in unwanted prosurvival effects
in cancer cells [86].

Another pivotal effector in this context, which is critically affected by HDAC inhibitors,
is p53 [87]. Treatment of cancer cells with HDAC inhibitors can increase p53 expression
and restore p53 activity [88–90] mainly by downregulation of MDM2 or MDM4 [91,92]
or by increasing p53 acetylation [92]. The latter effect is an excellent example of histone-
independent effects of HDAC inhibitors. Acetylation of p53 is a post-translational modifica-
tion crucial for p53 function [93] and HDAC1 is a central regulator of this modification [94].
It appears plausible that restoration of p53 by HDAC inhibitors is particularly effective
in tumor cells with wild-type p53 status, whereas this mechanism is without relevance in
tumor cells with genomic p53 deletion and may even be detrimental in tumor cells with p53
mutations. However, the anticancer effects of HDAC inhibitors cannot be simply deduced
from the p53 status of the cancer cells. For example, the pan HDAC inhibitor vorinostat
increased the radiosensitivity of wildtype (wt) p53 glioblastoma cells, but this effect was
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not seen in p53-mutated cells [95]. In contrast, vorinostat increased the expression of p53,
but was equally effective against wt p53 and p53-deleted colon cancer cells, whereas the
efficacy of class-I-selective inhibitor entinostat was dependent on p53 status [91]. Of note,
vorinostat led to a downregulation of mutated p53 in colorectal cancer cells, but to an
upregulation of wt p53 [96]. The notion that effects on p53 differ with cellular context
is emphasized by the fact that in MDM2-amplified liposarcoma cells, HDAC inhibition
resulted in the downregulation of p53 irrespective of its mutational status, whereas in
cancer cells without MDM2 alteration no effect on p53 expression was observed [97].

2.2. Autophagy Induction

Several studies have investigated the role of autophagy in response to the inhibition
of histone deacetylases. Yet, it is still not clear whether increased induction of autophagy
promotes cell death or serves as a survival mechanism upon cellular stress. To some extent,
the effects of HDACis on cell viability have been shown to be nonapoptotic since knock-
down of proteins required for apoptosis, such as Apaf-1, or the inhibition of caspase via
Z-VAD-FMK was not able to prevent vorinostat-induced cell death [98]. Unifying several
studies, an increase in autophagic flux has been observed, as monitored by alterations
in the levels of proteins defined as hallmarks of autophagy. This includes increases in
LC3-II or Beclin-1 and a decrease in p62 [99–105]. In Tamoxifen-resistant breast cancer cells,
vorinostat treatment led to cell death with little activation of apoptosis, while elevated lev-
els of LC3-II and Beclin-1 were seen. Inhibiting the autophagic flux with 3-Methyladenine
(3-MA) led to significantly enhanced cytotoxic potential of vorinostat [105]. It remains
unclear whether an intact estrogen receptor is necessary to mediate these effects [100],
since in triple negative breast cancer (TNBC) cells, cotreatment with the autophagy in-
hibitor chloroquine and panobinostat led to prolonged survival of tumor bearing mice as
well [106]. Autophagy induction has been shown to be mediated via the transcription factor
FOXO1. FOXO1 knockdown prevented the expression of autophagy-related genes upon
HDAC inhibition and the repeated inhibition of autophagy generated led to enhanced cell
death [99]. Glioblastoma stem cell xenografts were very sensitive towards HDAC inhibi-
tion with a more than 35% reduction in tumor size. While vorinostat caused autophagy
induction, the knockdown of beclin-1, LC3 or ATG5 revealed again a dramatic increase in
vorinostat-mediated apoptosis [103]. In summary, activation of autophagy upon HDAC
inhibition is often seen as survival mechanism which needs to be abolished for continued
apoptotic or nonapoptotic cell death [107].

In contrast, the broad-spectrum inhibitor panobinostat induced autophagy and cell
death in hepatocellular carcinoma (HCC). Here, its efficacy was further increased by
tamoxifen, an autophagy inducer, rather than by the inhibitors 3-MA and bafilomycin,
which could even reverse cytotoxic effects of HDACis [104,108]. In difficult to treat entities
such as chondrosarcoma, vorinostat showed a growth inhibitory effect. For this, intact
autophagic flux was required since 3-MA application reversed the vorinostat-induced cell
death [109].

Resistance to chemotherapy is an often-experienced clinical problem and the contri-
bution of autophagic signaling might be involved in this observation. In nonsmall cell
lung cancer (NSCLC) cells, HDACis increased the cytotoxicity of pemetrexed. Interest-
ingly, simultaneous treatment led to antagonistic effects while sequential therapy with
pemetrexed followed by HDACis was the most effective. It also showed a morphologic
increase in acidic vesicular organelles, a typical marker of autophagy [110]. In lung cancer
patients, IGFB2 has been identified as predictive for chemoresistance. Trichostatin A (TSA)
decreased IGFB2 expression in lung cancer cells and resensitized cells towards cisplatin
treatment. TSA also led to increased LC3 expression and the degradation of p62, enhancing
autophagy flux [111]. Recently, entinostat in combination with cisplatin showed synergistic
effects in esophageal squamous cell carcinoma. In this case, the addition of the autophagy
inhibitor 3-MA increased cell death, again indicating the protective properties of increased
autophagy [102]. In line with previous context-dependent effects, vorinostat was able to
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degrade mutant p53 in some cancer cells, albeit others did not show this phenomenon.
In TNBC, autophagy correlated with mutant p53 degradation; however, this observation
could not explain vorinostat sensitivity when compared to other cells [101].

2.3. Senescence Induction

Cellular senescence is a stable cell cycle arrest. It can be described as a phenotype
provoked by different stressors—for example, oncogene-induced senescence, therapy-
induced senescence or telomere shortening. Senescent cells can be resistant to apoptosis,
remain metabolically active and secrete various factors for communication with the tumor
microenvironment [112]. A characteristic marker to identify these cells is an increased
activity of the senescence-associated β-galactosidase.

Different HDACis have been found to induce senescence; however, the clinical im-
plication is not yet fully understood. In rhabdomyosarcoma, vorinostat was shown to
mediate senescent features and increase the expression of the cell cycle inhibitors p21 and
p27 [113]. Urothelial cancer cells revealed senescence morphologies upon treatment with
unselective HDACis [114]. In HCC, senescence induction was dependent on the inhibitor
used, with vorinostat or valproic acid (VPA) [115] being able to increase SA-β-galactosidase
activity while TSA was not [116]. In adenoid cystic adenocarcinoma, the combination
of vorinostat and cisplatin was highly effective and revealed characteristic senescence
features [117]. A study in breast cancer described miR-31 as a target of HDACis and a
highly relevant regulator of cellular senescence [118]. In glioblastoma stem cells, low
concentrations of vorinostat led to cell cycle arrest without affecting apoptotic markers to a
larger extent. p38 activation and subsequent p53 phosphorylation seemed to be involved in
this observation [119]. In head and neck squamous cell carcinoma (HNSCC) and nonsmall
cell lung cancer (NSCLC), some cells became senescent in response to cisplatin or taxol
treatment and showed elevated BCL-xL expressions. In this case, panobinostat was used
as a senolytic drug and, interestingly, was found to be more efficient at killing cancer cells
than a second cycle of the previously administered chemotherapy [120]. In conclusion, it is
clear that senescence has to be taken into account when exploring HDACi-induced effects,
albeit it is still not well-understood.

2.4. Effects on DNA Damage

The impact of HDAC inhibitors on DNA integrity is another pivotal aspect with
regard to cytotoxic responses upon treatment with these agents [37,121]. In some cases,
the appearance of DNA lesions after exposure to HDAC inhibitors may be merely a
consequence of their proapoptotic or cytotoxic effects. However, DNA damage may often
represent an initial and critical molecular event that is directly responsible for the anticancer
effects of HDAC inhibitors.

A better understanding of the still not fully resolved mechanisms behind the occur-
rence of DNA damage after HDAC inhibitor treatment is a central issue with regard to the
therapeutic use of these substances and the development of novel inhibitors. In fact, HDAC
inhibitors have been described as genotoxic or mutagenic agents in a number of reports in
malignant [122–124] as well as in nonmalignant cells [125–128]. From these findings, the
question arises as to whether HDAC inhibitors have a carcinogenic potential, which would
be especially relevant when considering their therapeutic use in younger patients and/or
in nononcological diseases. Although the DNA damaging effects of HDAC inhibitors have
been found to be more pronounced in malignant than in nonmalignant cells according to
some reports [129,130], this issue clearly demands further clarification.

Regarding the mechanisms of DNA damage induced by HDAC inhibitors, two plau-
sible explanations have been proposed: (1) the induction of oxidative stress by HDAC
inhibitors and (2) the inhibition of the DNA repair machinery, with the subsequent accu-
mulation of DNA lesions evoked by endogenous or exogenous mutagens.

The issue of oxidative stress induction by HDAC inhibitors has already been discussed
above in the context of apoptosis induction (see 2.1). An involvement of reactive oxygen or
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nitrogen species in DNA damage related to HDAC inhibitors is suggested by the fact that
an increase in markers of oxidative DNA stress has been associated with HDAC inhibitor
treatment [131,132]. One important question to be addressed in this context is whether
oxidative stress elicited by HDAC inhibitors is a consequence of the enzyme inhibition by
these agents or a result of reactive decomposition products of the inhibitor molecule itself.
In the latter case, at least some genotoxic effects of HDAC inhibitors would be independent
of HDACs and show significant differences, depending on the chemical structure of the
inhibitor molecule. Of note, hydroxamic acid derivatives (also representing one important
class of HDAC inhibitors) may under certain conditions give rise to isocyanates [133–135],
which can directly or indirectly lead to DNA modifications. Moreover, hydroxamic acids
may release nitrogen monoxide [136], which could be also responsible for an increase in
oxidative stress. However, it is still unsettled as to whether these reactions also occur under
physiological conditions in a living cell.

The second pathway, which has been thought to result in an accumulation of DNA
damage, is the interference with the DNA repair mechanism by HDAC inhibitors [137–140].
This effect of HDAC inhibitors suggests a synergism upon combination with DNA damag-
ing chemotherapeutics, providing a rationale for the generation of hybrid molecules with
combined HDAC inhibiting and DNA alkylating properties, as discussed below (see 4.3).
From a mechanistic point of view, impairment of DNA repair by HDAC inhibitors may be
a consequence of (1) altered DNA architecture or (2) dysregulated expression or activity of
DNA repair enzymes and/or DNA damage signaling.

With respect to the structural organization of DNA, histone modifications are a
key element affecting the DNA access of mutagenic substances, but also of repair pro-
teins. Thus, chromatin organization is of paramount importance for the integrity of the
genome [141–143]. The next level, i.e., the HDAC-dependent regulation of the expression
and function of the DNA repair machinery, is a highly complex issue, since virtually all
types of DNA repair mechanisms are impacted by HDACs [140,144]. Thus, the in-depth
discussion of DNA repair proteins that have been shown to be affected by HDAC inhibitors
would go far beyond the scope of this review. However, two important aspects should be
mentioned in brief.

Firstly, HDAC1 has been shown to directly stimulate oxoguanine glycosylase 1 (OGG1),
a repair protein critically involved in base excision of oxidized guanine residues, whereas
HDAC1 deficiency causes impairment of OGG1 activity [145]. Thus, an increase in 8-
oxoguanine in DNA after HDAC inhibition could be the consequence of increased oxidative
stress (see above) or impaired repair of this lesion. Therefore, the detection of 8-oxoguanine
lesions after HDAC inhibitor treatment may be insufficient for proving that this agent
augments oxidative stress per se.

Secondly, the repair of one of the most lethal DNA damages, the induction of DNA
double strand breaks, is critically regulated by HDAC subtypes 1 and 2, which are directly
recruited to DNA damage sites, whereas other HDAC isotypes such as HDAC3 are not
involved in this process [146]. From this finding, HDAC1/2 subtype-specific inhibitors
should be exceptionally well-suited for combination therapies with DNA damaging agents
inducing double strand breaks.

2.5. Effects on Hormone Signalling

In hormone-dependent cancers such as breast or prostate cancer, early evidence sug-
gested that HDAC inhibition affects the expression of hormone receptors such as the
estrogen receptor (ERα, ERβ) and the progesterone receptor (PR), as well as the androgen
receptor (AR). Broad-spectrum HDAC inhibitors are able to reduce ERα expression in
hormone receptor expressing cells [147–152]. Consequently, the expression of ERα-induced
genes via stimulation with estradiol could be antagonized by up to 88% upon treatment
with valproate or TSA [147]. Proliferation stimulating effects provoked by estradiol, e.g.,
upregulation of cyclin D or hyperphosphorylation of pRB, were efficiently abrogated upon
vorinostat treatment [148]. ER+ cells appear to be more sensitive towards proliferation
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inhibition than ER- cells. This might be attributed to stronger p21 expression upon HDAC
inhibition in ER+ cells [149]. Under hypoxic conditions, more pronounced ERα downregu-
lation under HDACi treatment has been observed. This response was highly dependent on
an intact proteasome pathway [152]. In the course of broad-spectrum HDAC inhibition,
HDAC6 function is blocked as well. This results in Hsp90 hyperacetylation with further
ERα destabilization, leading to higher levels of polyubiquitinylated hormone receptors
and subsequent proteasomal degradation. ERα degradation via HDACis can be reversed
by proteasome inhibitors such as bortezomib [153]. This mechanism still needs further
investigation since ERα downregulation was also detected upon specific HDAC6 inhibition,
regardless of HDAC6 enzymatic activity [154].

Additionally, it has been shown that TSA and raloxifene can induce a strong ERβ
upregulation in Erα-positive cells while simultaneously reducing ERα expression. This
may also account for the better growth inhibitory effects of HDAC inhibitors since ex-
ogenous ERβ transfection increased cell susceptibility towards TSA-mediated growth
inhibition [155]. While ER+ cells typically respond to hormone treatment, TNBC does not
and so behaves more aggressively. Numerous studies have shown that ER expression can
be restored via HDACis [156–160]. These effects can differ depending on the inhibitor used.
The broad-spectrum inhibitor TSA increased estrogen response element activity in TNBC
cells, with PR upregulation induced by increased ERβ expression. This may contribute to
their higher susceptibility towards tamoxifen [157]. The class I-selective inhibitor entinostat
increased ERα and aromatase protein expression in TNBC cells. Upon further stimulation
with estradiol, the expressions of estrogen receptor target genes (e.g., pS2) were significantly
enhanced and could be blocked by letrozole, resulting in highly reduced tumor growth
in vivo [156]. Furthermore, it may not be required to use a broad-spectrum HDACis for
inducing ER expression in ER- cells. Indeed, the knockdowns of HDAC1, HDAC2 and
HDAC3, alone or in combination, mediated efficient ER upregulation in some TNBC cells,
and HDAC2 expression was found to be negatively correlated with ER expression [161].

On the other hand, studies in TNBC patient-derived xenografts treated with different
HDAC inhibitors failed to demonstrate a marked increase in ERα nor ERβ expressions,
thus not supporting a role for combined HDAC inhibition and hormone therapy [162]. In
endometrial cancer cells, albeit lacking ERα, the predominant PR inducer panobinostat
was able to reintroduce PR expression, which also repressed the oncogene myc. Panobi-
nostat could thus also lead to restored sensitivity towards hormone therapy [163]. On the
mechanistic side, an increased cell cycle arrest in the G1 phase has also been observed upon
HDAC inhibition in endometrial cancer cells when combined with progesterone [164].

Hormone receptors play a pivotal role in prostate cancer as well. HDAC inhibitors
have been shown to suppress the expression of AR target genes. Although HDACis
can reduce AR expression by themselves [165], the main mechanism for the decrease
in AR-induced gene expression was described as blockage of RNA polymerase II re-
cruitment to HDAC-dependent promotors [166]. AR activity can also be repressed via
post-transcriptional regulation, since miR-320a was found to reduce AR levels and to
inhibit growth. The HDACi OBP-801 was identified as being directly involved in miR-
320a upregulation in prostate cancer cells [167]. Belinostat appeared to be more effective
in androgen-sensitive tumors than in androgen-independent ones. The introduction of
wild-type AR into AR- cells enhanced the cytotoxic effects of belinostat [168]. In up to 50%
of all prostate cancers, a gene fusion between the androgen responsive TMPRSS2 gene and
the oncogenic transcription factor ERG can be observed. The suppression of this fusion
gene by androgen deprivation was further enhanced by HDAC inhibition and resulted in
synergistic growth inhibition in prostate cancer cells [169].

2.6. Immune Effects

Nowadays, immunotherapy plays an eminent and ever-growing role in the treatment
of cancer patients. HDAC inhibitors can influence the immune system in many ways, often
depending on the cellular context and the tumor microenvironment. It has been shown that
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HDACis can affect dendritic cell activation and the antigen presenting machinery, as well
as T-cell activation or the presence of regulatory T-cells and myeloid-derived suppressor
cells in the tumor microenvironment. Thus, they may have an impact on the efficacy of
immune checkpoint inhibitor treatment [170]. A screening in lung adenocarcinoma for
substances inducing T-cell chemokine expression identified HDACis as capable of doing so.
Romidepsin or vorinostat induced mRNA levels of chemokines Ccl5, Cxcl9 and Cxcl10 in
KRAS-mutant cells. These findings were confirmed in xenografts which showed increased
T-cell infiltration upon romidepsin treatment. The antitumor effect was also dependent
on T-cells, since anti-CD4 and anti-CD8 antibodies reversed the antiproliferative effects.
Romidepsin and anti-PD1 treatments proved to be synergistic and to be dependent on
IFN-γ [171].

The necessity of T-cell infiltration or activation for mediating antitumor response was
shown in different studies. In an orthotopic bladder cancer model, intravesical HDACi
instillation and systemic PD-1 blockage led to curative responses. CD8 depletion fully ab-
rogated the growth inhibitory effects [172]. Regulatory T-cells (Tregs) and myeloid-derived
suppressor cells (MDSCs) are known to suppress immune responses. In models of breast
or pancreas cancer, the combination of entinostat and anti-PD1 treatment significantly
prolonged survival. The treatment reduced the number of granolytic MDSCs and their
ability to negatively affect T-cell proliferation by producing less Arg-1. Entinostat and
immune-checkpoint inhibition (ICI) therapy modulated various pathways in G-MDSCs,
including mTOR, ERBB and VEGF signaling, eventually resulting in increased infiltration
of granzyme-B-producing cytotoxic T-cells [173]. The class I-selective HDACi domatinostat
increased the levels of antigen-processing machinery (APM) genes and upregulated MHC-I
and -II and IFN-γ response genes in melanoma cells. PD-1 blockade was enhanced upon
HDAC inhibition. In melanoma patients, biopsies taken after 14 days of domatinostat
treatment showed an enhanced pembrolizumab response signature in 4 out of 6 patients
compared to biopsies before treatment. Upregulation, for example, of IFN-γ was similar to
the murine in vivo findings, thus strengthening further clinical trial application [174].

Additionally, Treg depletion is considered as responsible for improved ICI results
upon HDACi treatment [175]. TNBCs were cocultured with peripheral blood mononuclear
cells. In the coculture, the amount of Foxp3-positive Tregs was higher than in peripheral
blood mononuclear cells (PBMCs) cultured alone. Vorinostat treatment mitigated this effect.
Interestingly, a TNBC model highly resistant to ICI showed antitumor response when ICI
(using anti-PD1 and anti-CTLA4) was augmented by HDACi treatment [176]. Decreased
Tregs and MDSCs were also observed in PBMCs of melanoma patients [177] or in renal
and prostate cancer models. The latter showed Treg suppression with low-dose entinostat,
while not affecting T effector cell proliferation [178]. Although it is obvious that T-cell
activation exerts an important role in HDACi-induced immune response, other studies also
highlight the activation of natural killer (NK) cells. Entinostat rendered prostate cancer
cells more susceptible to avelumab-mediated antibody-dependent cellular cytotoxicity
when the cells were treated with NK cells from heathy donors. In addition, NK activating
ligands were upregulated and NK cells from cancer patients shifted towards more active
states [179].

Various studies have been published on PD-L1 or PD-L2 expression upon HDACi
therapy, with different results. While in ovarian PDX models HDAC knockdown of mainly
class I members reduced PD-L1 and PD-L2 expressions [180], HDAC6 inhibition or knock-
down of HDAC6 in colorectal cancer cells decreased IFN-γ-induced PD-L1 expression [181].
In another study, the HDAC6 inhibitor nexturastat A reduced PD-L1 expression provoked
by anti-PD1 treatment and subsequently depleted protumorigenic M2 macrophages. In
combination with PD1 blockade, it increased the total number of tumor infiltrating CD8+
lymphocytes [182]. In contrast, in primary melanoma cells, class I-selective HDACis dose-
dependently increased PD-L1 expression. Melanoma cell lines showed elevated histone
acetylation at the PD-L1 promoter upon panobinostat treatment [183]. Taken together,
several different mechanisms regarding the impact of HDACis on the immune system have
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been proposed. While appearing to be context-dependent, they clearly indicate a role for
HDACis in improving ICI results.

3. Combination Strategies
3.1. Combination with mTOR Inhibitors

With regard to HDAC- and mTOR inhibitor combination therapies, preclinical data
often suggest synergistic effects. However, only a small number of clinical trials have
been published so far. In the rare tumor entity synovial sarcoma, the mTOR inhibitor
ridaforolimus led to increased p-AKT levels. This was abrogated by cotreatment with
vorinostat and resulted in synergistic cytotoxicity [184]. In renal cell carcinoma, vorinostat
enhanced the activity of temsirolimus. This was mainly attributed to a decrease in survivin,
leading to a more pronounced induction of apoptosis, and the reduction in VEGF in two
xenograft models [185]. Histological studies in prostate cancer and NSCLC also showed
reductions in the proliferation marker Ki67 upon combination treatment, next to reduced
migration, adhesion and invasion capacity [186–188].

Moreover, combination effects of mTOR inhibitors and HDAC inhibition were seen
independent of the AR status, thus potentially offering an opportunity for hard-to-treat,
castration-resistant prostate cancer [189]. In temsirolimus-resistant cells, valproate reduced
the migration potential. An underlying alteration of integrin α5 expression could be
responsible for this observation [190]. Valproate also counteracted the resistance of bladder
cancer cells to temsirolimus. In this case, a reduction in cell cycle regulators such as cyclin
A and CDK2 was deemed responsible [191]. Furthermore, the combination of trichostatin
A and an mTORC1/2 inhibitor (MLN0128) inhibited the growth of malignant breast
cancer cells more efficiently compared to nontumorous mammary epithelial cells [192].
In a patient-derived xenograft model and in patient tumor slices of TNBC, the triple
combination comprising valproate, tamoxifen and rapamycin was capable of inhibiting
growth as well [193].

Interestingly, the combination of vorinostat and the mTOR inhibitor sapanisertib was
efficacious in NF-1 mutant nervous system malignancies. This was repeatedly confirmed
by using different HDAC and mTOR inhibitors. On the mechanistic side, a “catastrophic”
oxidative stress response was observed. The mRNA of thioredoxin interacting protein
(TXINP), which inhibits the important antioxidant thioredoxin, was drastically upregulated.
This combination also led to tumor regression in KRAS mutant NSCLC xenografts [194].
In a Phase I trial, vorinostat and sirolimus were combined for the treatment of advanced
malignancies. One patient with perivascular epitheloid tumor presented with a 54%
reduction in target lesions after six cycles. Two other patients with fibromyxoid sarcoma
and HCC experienced stable disease for over 12 months [195]. In another Phase I trial,
combined panobinostat and everolimus treatment was evaluated in clear cell renal cell
carcinoma. In total, 21 patients were enrolled. There was no objective response but
stable disease in 13 patients. Four patients with stable disease had to discontinue treatment
because of toxicity. The study also found a higher baseline expression of miR-605 in patients
with progressive disease compared to patients with stable disease [196]. However, a
rationale for combined therapy may still exist since some patients experienced surprisingly
good responses. The combination of vorinostat and ridaforolimus yielded in stable disease
in 4 out of 15 patients, lasting up to 80 months. Noteworthily, three of these patients had
progressed on prior mTOR inhibitor therapy [197]. The main problem is to identify these
patients responding in this niche setting. Dual targeting inhibitors have been synthesized
to facilitate the combination of these drugs [198].

3.2. Combination with Kinase Inhibitors (EGFR, PI3K)

Targeted therapies provide reasonable therapeutic opportunities for patients with
alterations or aberrant expressions of growth factor receptors or downstream signaling
pathways. Several studies implicate a benefit from adding HDACis to EGFR inhibition,
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even in resistant cells. Convincing preclinical data provided the rationale for clinical trials
combining these drugs.

In NSCLC, gefinitib plus vorinostat induced cell death synergistically in EGFR exon
19- or T790M-mutated cells. Notably, this was also true for gefitinib-resistant cells. A
downregulation of HSP90 was observed, followed by a decrease in EGFR and even in MET
protein expression. This was dependent on an increase in ROS-driven caspase activity [199].
Sometimes, BIM deletion polymorphism can be responsible for EGFR TKI resistance in
NSCLC. Tanimoto et al. showed that vorinostat affects the alternative splicing of BIM
mRNA in the deletion allele. The combined use of osmertinib and vorinostat reintroduced
BIM expression and led to apoptosis. This was also observed upon HDAC3 knockdown and
further confirmed by a marked tumor growth inhibition in BIM-deleted xenografts [200].

KRAS mutant lung cancer shows an aggressive phenotype. The drugs tucidinostat and
icotinib, approved in China, reduced cellular growth of both, wild-type and KRAS mutant
NSCLC cells, while slightly reducing p-Akt and p-MAPK levels [201]. Panobinostat showed
the same potency in overcoming gefitinib resistance in KRAS-mutated cells. These effects
were attributed to reduced levels of TAZ, an important protein in the hippo pathway, upon
HDACi application [202]. The combination of panobinostat and another first generation
TKI, erlotinib, showed similar results, sensitizing cells towards the TKI treatment. In
some cells, a shift towards an epithelial phenotype was observed as well, with elevated
E-cadherin levels upon HDAC inhibition [89].

In 2010, the multitarget inhibitor CUDC-101 was designed, inhibiting not only HDAC
but also EGFR and HER2 [203]. Activity was proven in 54 cell lines, and additionally
suppressed compensatory activation of HER3 or MET by reducing protein levels [204].
In anaplastic thyroid cancer, a screen of >3000 drugs identified CUDC-101 as potent. It
induced cell death, attenuated the MAPK-signaling pathway, upregulated p21 and further
reduced levels of antiapoptotic proteins—e.g., survivin or XIAP [205]. The latter finding
was also observed in pancreatic cancer where CUDC-101 proved to be an even a better
radiosensitizer than vorinostat [206]. Moreover, the combined inhibition of HDAC, EGFR
and HER2 intensified cytotoxicity of gemcitabine, an obligatory drug in pancreatic cancer.
EMT was reversed as E-cadherin levels were increased, while mesenchymal markers such
as Vimentin and MMP-9 and the suppressive transcription factors Snail and Slug were
decreased [207]. The reversal of EMT was also noted in another study where vorinostat
sensitivity was in line with the induced decline of p63 transcription factor and EGFR protein
level [208]. In hard-to-treat glioblastoma, erlotinib sensitivity was restored by HDACis and
CUDC-101 was found to lead to lower EGFR mRNA and protein levels. Interestingly, no
acquired resistance was observed [209].

Beyond growth factor receptors, drugs for the inhibition of distant signaling molecules or
kinases in combination with HDACis have been described as well. The compound CUDC-907
(fimepinostat) merges phosphoinositide 3-kinase (PI3K) inhibition with HDACis [210]. For
example, proliferation of chronic lymphatic leukemia cells was inhibited via downregula-
tion of antiapoptotic Bcl-2 family members [211]. CUDC-907 evades drug resistance and
also showed effects in myc-driven lymphoma cells [212]. Next to the increase in apoptosis
in prostate cancer cells, CUDC-907 also mediated antiproliferative effects through induc-
ing DNA damage [213]. Multiple entities have shown sensitivity towards fimepinostat,
thus it is further evaluated in Phase I/II clinical trials [214]. In pancreatic cancer cells,
CUDC-907 reduced tumor growth in vitro and in vivo. This study demonstrated HDAC6
inhibition with subsequent degradation of the oncogenic transcription factor c-myc. The
cytotoxic potential was impaired by proteasome inhibition via MG132 [215]. CUDC-907
revealed synergistic trends also in other entities, by reducing tumor growth of prostate
cancer patient-derived xenografts up to 60%, again decreasing c-myc levels and evoking
significant DNA damage. It also repressed thyroid cancer cell growth [216] and synergized
with olaparib in SCLC where DNA double strand breaks were found to accumulate [217].
Additionally, it reversed cisplatin resistance by downregulating multidrug resistance pro-
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tein ABCC2 [218]. A broad spectrum of studies, as above, have paved the way for clinical
trial evaluation.

In a first-in-human study, the above-described drug, CUDC-101, was well-tolerated.
Of 25 enrolled patients with different tumors, 15 were available for efficacy. One patient
with metastatic gastric cancer had a partial response with a 56% decrease in the target
lesion, and two other patients with head and neck cancer showed a >20% decrease in
tumor volume in the target lesions. Six patients in total experienced stable disease as
the best response [219]. A Phase I trial with 12 patients with locally advanced HNSCC
combined CUDC-101 with chemoradiation. In total, 90% of the patients did not show
disease progression until a median of 1.47 years [220].

In heavily pretreated metastatic HER2-positive breast cancer, entinostat could be
safely administered in combination with lapatinib and (optionally) trastuzumab. Out
of 35 patients, complete response was achieved in three patients, partial response in
three patients and one patient had stable disease [221]. In another study, vorinostat and
trastuzumab showed safety but inefficient drug activity [222]. Out of 42 patients with
aerodigestive tract tumors, 33 were evaluable for efficacy in a Phase I trial of panobinostat
and erlotinib administration. The most common adverse events were fatigue, nausea and
rash. The disease control rate of 54% consisted of three patients with partial responses
and 14 with stable disease. EGFR mutant patients showed the best overall survival.
Seven patients with prior TKI therapy had been reviewed; five were evaluable for efficacy,
including three patients with slow progression over at least six cycles and two with rapid
progression [223]. Fifty-two pretreated patients with advanced NSCLC were recruited for
a Phase I/II trial on gefitinib and vorinostat; 16 partial responses and 6 patients with stable
disease were noted. This provided the rationale for the ongoing investigation of this drug
combination in lung cancer [224].

Another big Phase II trial tried to elucidate the role of entinostat in combination with
erlotinib in patients who progressed on prior chemotherapy. The 4-month progression-free
survival rate showed no significant difference in the entinostat vs. placebo group (18% vs.
20%). Patients with E-Cadherin IHC3+ staining, however, experienced an overall survival
of 9.4 months with entinostat compared to 5.4 months with placebo [225]. In summary,
the combination of HDACis with EGFR or PI3K inhibition shows promising preclinical
activity and some evidence for a clinical benefit. Yet, a reliable biomarker to better stratify
patients likely to respond is still missing.

3.3. Combination with Selective Estrogen Receptor Modulators (SERMs) and Antiestrogens

A decent number of studies have investigated the effects of HDAC inhibitors on
breast cancer cells, showing a definite influence on the hormone receptor expression and
consequently paving the way for a combined inhibition with superior antiproliferative
effect. Furthermore, HDACis were able to aid in turning aggressive TNBC into hormone
responsive tumors. In ER- breast cancer xenografts, combined treatment with entinostat
and letrozole exerted the most pronounced effect compared to single compound treat-
ment. Mice treated with entinostat showed increased ER and aromatase expressions,
probably sensitizing cells towards letrozole [156,226,227]. A study in ER+ cells showed
enhanced antiproliferative potential when trichostatin A or vorinostat were combined with
tamoxifen [228].

HDACis may also be efficacious when the common problem of acquired resistance
inevitably arises throughout the course of treatment. Panobinostat was able to block
proliferation of aromatase inhibitor-resistant breast cancer cells. The effects were mainly
attributed to the downregulation of NF-κB, which was shown to be permanently active in
the above-mentioned resistant cells [229]. There have also been efforts to develop single
molecules which show combined estrogen- and HDAC inhibition. These compounds are
often associated with higher activity and specificity than the single drugs. In fact, the
hybrids characteristically showed greater cell type selectivity, leaving noncancerous cells
unaffected [230–232].



Cancers 2021, 13, 634 14 of 43

In a Phase I trial, metastatic breast cancer patients were treated with letrozole and
panobinostat. Out of 12 patients, five showed stable disease and two a partial response.
Interestingly, these patients had progressed on prior endocrine or chemotherapy. Even
one patient with triple negative breast cancer showed disease stabilization [233]. One
hundred and thirty patients with locally recurrent or metastatic estrogen receptor-positive
breast cancer participated in a Phase II trial, either receiving exemestane plus placebo or
exemestane plus entinostat. The median overall survival was 28.1 months in the entinostat
group vs. 19.8 months in the placebo group (hazard ratio (HR) 0.59; 95% CI 0.36 to 0.97;
p = 0.036). The most common adverse events included fatigue, nausea and neutropenia.
Serious adverse event incidence was similar in both groups. Protein hyperacetylation was
associated with longer progression-free survival (PFS) and might serve as a biomarker for
future trials [234].

Another study investigated the combination of vorinostat and tamoxifen in breast
cancer patients with resistance to hormone therapy. Forty-three patients who had received
prior chemotherapy, tamoxifen or aromatase inhibitors were enrolled. The combination
proved safe and the overall response rate (ORR) was 19%, while another 21% showed stable
disease. Two patients with disease stabilization experienced complete metabolic responses,
as detected by FDG-PET. Histone H4 acetylation was associated with higher response rates
next to higher HDAC2 expression in responding vs. nonresponding patients [235]. To date,
one Phase III trial has been published which investigated the role of tucidinostat, an oral
subtype-specific inhibitor preferentially targeting HDACs 1, 2 and 3. The trial included
hormone receptor-positive and HER2-negative patients with advanced breast cancer who
progressed after at least one endocrine therapy. In total, 365 patients were enrolled, re-
ceiving either exemestane plus placebo or exemestane plus tucidinostat. Independent
review imaging assessment revealed a median progression-free survival of 9.2 months in
the tucidinostat group vs. 3.8 months in the placebo group (HR 0.71; 95% CI 0.53–0.96,
p = 0.024). Most common adverse events in the tucidinostat group were hematological ef-
fects such as neutropenia or thrombocytopenia. Overall, this study established tudicinostat
as a new treatment option for hormone therapy refractory patients with the limitation of
only including one ethnical group [236]. Notably, the recent NMPA-approval in China of
tucidinostat in combination with exemestane to treat HR+ breast cancer underscores the
potential HDACi and aromatase inhibitor combination therapies.

3.4. Combination with Immune Checkpoint Inhibitors

As described above, multiple preclinical studies provide a rationale for clinical trials
based on the combination of HDAC inhibitors with immunotherapy. Yet, not many clinical
trials have been conducted to date.

Forty-seven treatment-naïve patients with clear cell renal cell carcinoma were enrolled
in a Phase I/II trial to receive entinostat in combination with high-dose IL2, the latter
already being approved for treatment. The most common grade 3 or 4 adverse events
were hypophosphatemia, lymphopenia and hypocalcemia. The efficacy analysis included
41 patients and identified 12 patients with PR and 3 with complete response (CR) equal to
an ORR of 37%. Stable disease for over 6 months was achieved in 18 patients. Interestingly,
one patient initially experienced progressive disease after receiving two cycles, but after
discontinuation showed disease stabilization for over 3 years with ongoing slow reduction
in lung nodules without any further therapy. Biopsies after the first cycles revealed
increased CD8+ tumor infiltrating lymphocytes and decreased Tregs in patients with
partial response or prolonged stable disease [237].

Another study enrolled 33 NSCLC patients, including 24 patients who had progressed
on prior ICI therapy, for combined treatment with pembrolizumab and vorinostat. No
dose limiting toxicities were observed. Out of six ICI-naïve patients, one showed PR and
four stable disease (SD). Intriguingly, one patient with ICI refractory disease showed PR
lasting for 12 months. In total, PR was observed in three patients and SD in 11 patients.
No significant correlation was found between peripheral blood MDSCs and response rates



Cancers 2021, 13, 634 15 of 43

upon treatment, probably because of the small sample number. Patients with NSCLC
showed higher levels of MDSCs than heathy donors [238].

Pembrolizumab and vorinostat were also combined in a Phase II trial for HNSCC
and salivary gland cancer, with 25 patients of each entity. In HNSCC, eight patients
showed partial responses and five presented with stable disease. In salivary gland tumors,
the response rates were lower with four partial responses and 14 patients with stable
disease, among those four patients showed ongoing responses. By meeting the primary
endpoints, the study showed encouraging results for further investigation of this drug
combination [239]. The ENCORE 601 trial addressed the combination of entinostat and
pembrolizumab in anti-PD-(L)1-resistant/refractory NSCLC patients. Out of 76 patients,
71 were evaluable for efficacy analysis. ORR was only 9.2% and therefore did not show
a sufficient benefit to these patients. Out of the seven responders, five were negative for
PD-L1 expression. In comparison with nonresponders, patients with longer PFSs presented
with higher levels of classical monocytes [240].

More trials are underway for examining this treatment combination and identifying
a suitable biomarker. For example, the INFORM2 NivEnt trial investigates the effects of
nivolumab + entinostat in children and adolescents with high-risk malignancies. This
Phase II basket trial includes four categories: high mutational load, high PD-L1 expression,
high-level MYC amplified tumors and tumors with none of these characteristics [241].
Biomarker-driven studies may identify patients most likely to benefit from these drugs.

4. Bifunctional HDAC Inhibitors for Cancer Therapy
4.1. Multitarget Drugs: Advantages and Disadvantages

The use of drug combinations can provide increased efficacy by targeting additional
disease-related pathways, can mitigate side effects and/or reverse drug resistance by
blocking specific mechanisms of resistance [242]. Due to the multifactorial nature of
tumorigenesis, the concept of polypharmacy is well-established in cancer therapy as it
allows for the simultaneous interruption of different processes in order to arrest cell
proliferation or induce apoptosis. To some extent, the effects of engaging multiple drug
targets can be anticipated, but drug–drug interactions, whether beneficial or harmful, that
depend on the respective pharmacokinetic behavior or yet undiscovered mechanisms, are
rather unpredictable [243]. Desirable additive or synergistic effects of drug combinations
may thus come at the risk of inducing adverse effects through unwanted drug–drug
interactions and off-target activities that may ultimately impair patient compliance [242].
To tackle such complications, reducing the number of medications to a minimum has
become a priority.

Polypharmacology is an emerging discipline in the field of drug discovery and aims
at minimizing the downsides of polypharmacy by designing single drugs that are capable
of interacting with multiple targets. It has long been observed that the efficacies of some
established market drugs emanate from additional and often serendipitous modes of action
that had not been considered during the initial development process [244,245]. In fact,
Anighoro et al. point out that this is by no means a rare phenomenon but, on the contrary,
a common characteristic among late clinical candidates which may even be considered
as a contributing factor to the drugs’ success in the preclinical and clinical evaluation
processes [242]. Elaborate efforts to detect unexpected or harmful off-target activities have
indeed become a part of the drug development process but fail to provide a complete
picture so that, for some drugs, the entirety of biological involvements remains enigmatic
to date [242]. In some cases, however, careful profiling provided valuable information
on synergistic or additional drug targets which could then be considered in the rational
design process [245]. Thus, the interest in polypharmacology has grown over recent years.
Ramsay et al. calculated that nearly every fifth drug approved by the FDA between 2015
and 2017 could be classified as a multitarget drug [246].

This clear trend toward multitarget ligands instead of combination drugs is further
justified by the considerable reduction in cost and effort throughout the preclinical develop-
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ment process and the following clinical trials. Being subjected to only one pharmacokinetic
process, multitarget ligands further guarantee the simultaneous presence in the designated
tissues whereas the target-delivery of combination drugs might be deferred unless com-
plicated dosing schedules adhere to [242]. One clear drawback of addressing multiple
targets by administering a single drug might be the balancing of the doses required in each
site; however, it has been suggested that untypically low doses of dual ligand drugs in
synergistic targets suffice to elicit the desired efficacy [245,247]. Due to fewer interactions
with healthy tissue, such low drug doses are moreover presumed to bear a reduced risk of
side effects [245,247].

Considering the highly distinguished shapes of biological targets, it is clear that
designing selective drugs for multiple targets is a challenge. In 2019, Merk and colleagues
classified the different types of multitarget ligands as linked (Figure 2A), fused (Figure 2B)
or merged (Figure 2C) pharmacophores [245].
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This model is in accordance with an earlier overview provided by Morphy et al.
who further divided the linked pharmacophores into cleavable and noncleavable conju-
gates [244]. In contrast, the simple method of functional group interchange suggested by
de Lera and Ganesan rarely comes along with increased affinity to an additional target but
may be successful if the respective groups are highly similar, such as carboxylic acids and
hydroxamates [248].

Choosing between the different types of multitarget ligands to achieve specific tar-
get combinations generally requires excellent knowledge of structural characteristics of
each binding site as well as careful design in order to meet the criteria for drug-likeness.
Owing to their low molecular weight, however, merged dual ligands that match several
binding sites with only one pharmacophore are considered to be particularly advanta-
geous and several FDA-approved drugs and clinical candidates are already based on this
concept [245,248].

4.2. Kinase Inhibiting HDACis

With regard to merged multitarget ligands bearing HDACi moieties, there is an
overwhelming prevalence of dual HDAC/kinase inhibitors on both clinical and preclinical
stages [211,249,250]. The structure of fimepinostat matches the HDAC pharmacophore
model with a hydroxamate ZBG, a pyrimidine-linker, and a cap group inspired by the
phosphoinositide 3-kinase (PI3K) inhibitor pictilisib [210,248]. Functioning as an inhibitor
of PI3Kα and HDACs 1–3 and 10, the compound is currently undergoing Phase II trials
against lymphomas and solid tumors. In another attempt from Curis, Inc. (Lexington,
MA, USA), merging of the characteristic alkine moiety of the tyrosine kinase inhibitor
erlotinib and an aliphatic HDAC linker bound to a hydroxamate ZBG provided the dual
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EGFR/HDAC inhibitor CUDC-101 (Figure 3) which has become a Phase I candidate for
the treatment of solid cancers [204,211,248].
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At the preclinical level, research on dual kinase/HDAC inhibitors is quickly evolving
and compounds addressing receptor tyrosine kinases (RTKs), phosphoinositide 3-kinases
(PI3Ks), the proto-oncogene tyrosine-protein kinase Src (c-Srcs), cyclin-dependent kinases
(CDKs), and janus kinases (JAKs) have been presented. A detailed discussion of the
progress in this field is beyond the scope of this article but has been extensively reviewed
elsewhere [211,248–253].

4.3. DNA Damaging HDACis

Outside the field of kinase inhibition, one promising dual agent is tinostamustine
(Figure 4). Designed as a hybrid of the pan-HDACi vorinostat and the alkylating agent
bendamustine, tinostamustine acts as a potent HDACi with DNA-alkylating properties
and has entered Phase I/II trials against lung cancer, brain tumors and hematological
malignancies. Other analogues based on nitrogen mustard drugs were designed by Yuan
and coworkers and have been investigated at the preclinical level [253–255]. The chloram-
bucil/vorinostat hybrid vorambucil outmatched its parent compounds in terms of both
HDAC inhibition and antiproliferative potential in four cancer cell lines [254].
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Chlordinaline, on the other hand, features the aminoanilide-based HDAC binding site
of tacedinaline (CI-994) attached to the chlorambucil scaffold and displays moderate, but
HDAC3-preferential inhibition and promising DNA damaging properties in vitro [255].
In another recent study, Sinatra et al. described a series of temozolomide/HDACi and
chlorambucil/HDACi hybrids [256]. The most promising hybrid, compound 3n, a chimeric
compound based on the pharmacophores of chlorambucil and panobinostat, displayed
improved anticancer properties compared to the sum of the activities of the respective
control compounds alone, indicating a superadditive effect [256].

4.4. HDAC-LSD1 Inhibitor

While all the aforementioned dual inhibitors were designed as such, there are also
compounds whose actual dual activities emerged as a surprise. One example of such
serendipity is the resminostat analogue domatinostat [248,257]. Originally believed to
impair the function of the epigenetic eraser lysine-specific demethylase 1 (LSD1) which
participates in the CoREST complex formation alongside HDACs 1 and 2, the class I
HDACi unexpectedly turned out to inhibit tubulin polymerisation as well. Ongoing
clinical trials in Phases I and II investigate its efficacy in hematological and gastrointestinal
cancers [258,259].
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Further research on dual LSD1/HDAC inhibitors yielded vorinostat derivative 7,
featuring a tranylcypromine cap group that effectively inhibited both targets [260]—see
Figure 5. By merging the original tranylcypromine group with entinostat, Kalin et al.
developed the class I-selective HDAC/LSD1 inhibitor corin which inhibited the CoREST
complex and reduced tumor growth in a melanoma mouse xenograft model [261].
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4.5. Other Emerging Targets

In addition to the HDAC-involving synergisms explored in the clinic, dual HDAC
inhibitors are thought to be useful for a multitude of additional targets and several proto-
types have yet been reported in the literature (Figure 6). Through inhibiting HDACs, it is
possible to maintain a relaxed chromatin structure which can be exploited to facilitate the
access of DNA for topoisomerases [253]. Responsible for uncoiling the DNA superhelix by
breaking and ligating single strands (topoisomerases I) or double strands (topoisomerases
II), topoisomerases are crucial for replication and transcription so that inhibition results in
arrested cell proliferation [253].

One class of compounds entertaining this mode of action are anthracyclines such
as daunorubicin and its analogue doxorubicin. Intending to combine the activities of
daunorubicin and the pan-HDACi vorinostat, Oyelere and coworkers introduced a small
set of merged dual ligands of which compound 7 was singled out as a hit compound with
promising cytotoxicity against different solid tumor cell lines [262]. In inhibition assays,
compound 7 was observed to impair the activity of both HDACs and topoisomerase II
at similar levels as vorinostat and daunorubicin, respectively [262]. Following this work,
alternative structures based on the camptothecin, acridine and podophyllotoxin scaffolds
have been reported [253,262–265].
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While most attempts seek to benefit from the histone deacetylase activity of class I
HDACs, it is noteworthy that recent in vitro combination studies also suggested promising
synergistic effects of anthracyclines and selective HDAC6is [266,267].

Being part of the epigenetic network, HDACs function as erasers and happen to
operate on molecular pathways and targets that are also served by the four bromo- and
extra-terminal domain (BET) proteins (BRD2, BRD3, BRD4, BRDT) which recognize acety-
lated histones and are thus are classified as epigenetic readers [253]. Because of their
presumed association with superenhancers that are suspected to boost cancer progression
by assembling transcription factors near oncogenes, it was hypothesized that the most
promising synergism concerns HDAC1, HDAC2 and particularly BRD4, which could be
inhibited to disturb the transcriptional machinery of superenhancers [253,268,269].

Since the first report of DUAL946 by Atkinson et al. in 2014, several examples of dual
BRD4/HDAC inhibitors have been disclosed [248,253,268,270,271]. Most recently, He et al.
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merged the first BET inhibitor (+)-JQ1 and the phenyl linker and hydroxamate ZBG of
HDACi into their hit compound, 13a, which demonstrated superior antitumor activity than
its parent compounds in a Capan-1 human pancreatic cancer xenograft model [272].

Through its function as a chaperone that assists in protein folding, Hsp90 is of partic-
ular importance for proliferating cells that rely on high protein expression. Interestingly,
it has been observed that Hsp90 is activated by deacetylation and thus controlled by
HDAC6 [30]. The concurrent application of HDACis is therefore presumed to increase the
effect of Hsp90 inhibitors and can be further utilized to overcome acquired resistance [273].

Considering that the pharmacophores for HDAC6i and Hsp90 inhibitors show little
similarity, the design of dual ligands appears to be particularly challenging, but neverthe-
less, some examples have been introduced over recent years [273]. Replacing the phenyl
cap group of vorinostat by the resorcinol moiety present in the Phase II Hsp90 inhibitors
luminespib and onalespib, recently yielded compound 12, which inhibited both targets
and induced apoptosis in lung cancer cells [274]. Another group studying the resorcinol
scaffold chose to discard the indoline motif of onalespib in favor of a phenyl group and
achieved similar effects [275]. As expected, both compounds induced the upregulation of
Hsp70 and the degradation of Hsp90 client proteins [274,275].

4.6. PROTACs

The so-called PROteolysis-TArgeting Chimeras (PROTACs) are emerging therapeutic
modalities in modern drug discovery. PROTACs are bifunctional small molecules consist-
ing of an E3 ubiquitin ligase recognition motif and a ligand for the protein of interest (POI)
connected by a suitable linker. Due to their bifunctional nature, they can act as proximity
inducers and catalyze the formation of an E3 ligase:PROTAC:POI ternary complex. As
a consequence, they are capable of hijacking the cellular protein degradation system by
inducing polyubiquitinylation and subsequent proteasomal degradation of the POI. This
approach might offer significant advantages over classical inhibition strategies using small
molecules including (1) a catalytic mode of action, (2) the avoidance of resistance due to
upregulation of the POI, (3) the possibility of drugging currently undruggable targets by
targeted protein degradation and (4) the removal of all possible functions (i.e., enzymatic,
scaffolding, regulatory, etc.) of the POI [276]. Very recently, ARV-110 (an androgen receptor
degrader) and ARV-471 (an estrogen receptor degrader) have entered clinical Phase I trials
as the first PROTACs and have shown promising early data in terms of tolerability, safety
and efficacy, thus highlighting the potential of targeted protein degradation to combat
cancer [276].

The field of histone deacetylase degraders (HDAC PROTACs) is a very young research
area. In 2018, Schiedel et al. disclosed the first degrader of the NAD+-dependent histone
deacetylase sirtuin 2 [277]. The first degrader of classical Zn2+-dependent HDACs was
reported by Yang et al. in 2018 [278]. The most promising PROTAC from this series
(dHDAC6, Figure 7) turned out to be an efficient and selective degrader of HDAC6. The
selective degradation of HDAC6 over HDACs 1, 2 and 4 is somewhat surprising, since
the degrader design was based on the unselective HDACi crebinostat (Figure 7) and
pomalidomide as a ligand for the E3 ubiquitin ligase cereblon (CRBN). Whether the cellular
localization of HDAC6 or a more efficient ternary complex formation is responsible for
the selective degradation of HDAC6 is unknown. While dHDAC6 demonstrated efficient
degradation of HDAC6 in MCF-7 breast cancer cells, the multiple myeloma cell line MM.1S
was more sensitive to dHDAC6 in regard to degradation of HDAC6 [278,279].
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Since the initial report by Yang et al., several other HDAC degraders have been
disclosed, including selective HDAC6 PROTACs [256,279–283], class I-selective PRO-
TACs [284–286] and HDAC3-selective degraders [287]. Although most work has focused
on hematological cancers so far, there are some encouraging results indicating that HDAC
PROTACs could be an innovative new option for the treatment of solid cancers. For in-
stance, the Rao lab recently published a series of HDAC6-selective PROTACs based on
the selective HDAC6 inhibitor nexturastat. The CRBN-recruiting PROTAC NH2 (Figure 7)
emerged as the best degrader from this study, demonstrating potent and selective degrada-
tion of HDAC6 in multiple cancer cell lines including HeLa and MDA-MB-231 cells [281].

In another recent study, Smalley et al. designed and synthesized a series of class
I-selective HDAC degraders [284]. To this end, the class I-selective 2-aminoanilide CI-994
was linked via alkyl linkers to either pomalidomide as a CRBN ligand or VH032 as a Von
Hippel-Lindau (VHL) E3 ligase ligand. The VH032-based PROTAC 4 (Figure 7), the most
efficient degrader from this series, demonstrated at least 50% degradation of HDACs 1,
2 and 3 in HCT116 colon cancer cells at a concentration of 1 µM. After a 48 h treatment,
PROTAC 4 exhibited comparable effects on HCT116 cell viability as its parent compound
CI-994 [284].

By utilizing a benzoylhydrazide-based ZBG, Xiao et al. reported a new type of HDAC
PROTAC capable of degrading HDAC3 in a potent and selective manner [287]. The most
promising PROTAC XZ9002 (Figure 7) dose-dependently induced HDAC3 degradation in
the triple negative breast cancer cell line MDA-MB-468, with a DC50 value (half-degrading



Cancers 2021, 13, 634 23 of 43

concentration) of 42 nM. Furthermore, XZ9002 (Figure 7) efficiently suppressed clonogenic
growth of T47D, HCC1143, MDA-MB-468 and BT549 breast cancer cells [287].

5. Outlook

With the first HDAC degrader being reported in 2018, this research area is too young to
judge whether HDAC degradation by HDAC PROTACs will be able to provide improved
anticancer effects compared to classical HDAC inhibition by HDACis. However, it is
reasonable to assume that the cellular effects of degraders and inhibitors will be different.
PROTACs are expected to achieve high cellular potency due to their catalytic modes of
action and might have a longer duration of action, since the latter depends on the turnover
rate of the protein target rather than on residence time of the inhibitor [288]. Furthermore,
PROTACs will have different effects on their targets than inhibitors. For instance, the
targeted degradation of HDAC6 eliminates both catalytic domains as well as the ubiquitin-
binding domain, whereas the inhibition of HDAC6 by a selective HDAC6i only blocks the
second catalytic domain of HDAC6. HDACs are often localized in multienzyme complexes.
Thus, the formation of the E3 ligase:PROTAC:HDAC ternary complex might also lead to
polyubiquitinylation of other proteins involved in the multienzyme complex by a so-called
“bystander ubiquitination” [289]. This could result in improved anticancer effects, but
also in additional side effects. Targeted degradation of HDACs is still in its infancy and
more research on the preclinical and clinical levels is needed to clarify whether HDAC
PROTACs can demonstrate efficacy and safety. Furthermore, gene-editing approaches
could offer new avenues to control the acetylation statuses of proteins. For instance, Kwon
et al. described the dCas9-HDAC3 system as a unique addition to the CRISPR-dCas9
epigenome-editing toolbox [290]. The method could provide a new way to modulate the
histone deacetylation of genomic loci associated with various developmental and disease
states. However, further work is needed to fully explore the potential of this approach.

From the present synopsis on the status of HDACis in cancer therapy for solid tumors,
one can draw the conclusion that these compounds will most likely fulfill their full potential
only in combination therapies, which will help to overcome some shortcomings of HDACis.
These combinations should be based on the still better understanding of the mechanisms
of HDACi-promoted anticancer effects. Of particular relevance will be the definition of
therapeutic biomarkers, for predicting the susceptibility of cancer cells to distinct, HDAC
subtype-specific HDACis or dual inhibitors, targeting HDAC function plus additional
oncogenic signaling pathways. Thus, it remains a critical endeavor to unravel the diverse
mechanisms induced by HDAC inhibition.

Owing to the heterogeneity of cancer, there will likely be no ideal one-fits-all combina-
tion of an HDACi plus another drug for a given tumor entity or even for all cancer types.
Rather, individualized therapeutic combinations will have to be delineated, incorporating
the molecular signatures of a patient’s tumor and thus leading to personalized medicine.

6. Conclusions

HDACis show enormous potential for attenuating tumor growth and provoking
cell death in a multitude of solid cancer entities. Our review points out the influence of
epigenetic changes upon HDACi treatment on various essential signaling pathways. The
overall importance of HDACis is also highlighted by the large number of current clinical
studies on combination therapies. In this regard, the recent development of bifunctional
inhibitors or new molecules such as PROTACs may be particularly promising. In summary,
HDAC inhibition may have a substantial role in future targeted therapy of solid tumors.
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Appendix

Table A1. Comprehensive overview of clinical studies involving HDAC inhibitors.

Inhibitor Combination
Partner Entity Clin. Trial

Phase Best Response Most Common
Grade 3 or 4 Tox. Ref.

Abexinostat Pazopanib
Renal cell

carcinoma, solid
tumors

I

51 pts, ORR 21%, median duration
9.1 months, 70% with

pazopanib-refractory disease had
tumor regression

fatigue,
thrombocyto-penia,

neutropenia
[291]

Doxorubicin Sarcoma I 21 pts, PR + SD 47,7% neutropenia [292]

Radiotherapy Solid tumors I 51 pts, CR+PR 8%, SD 53% thrombocytopenia [293]

Solid tumors I — thrombocytopenia [294]

Entinostat

Exemestane +
Entinostat (EE) vs.

Entinostat +
Placebo (EP)

Breast cancer II
130 pts, PFS 4.3 vs. 2.3 month (EE vs.
EP) p = 0.11, OS 28.1 vs. 19.8 months

(EE vs. EP) p = 0.036
fatigue, neutropenia [234]

Erlotinib +
Entinostat (EE) vs.

Erlotinib +
Placebo (EP)

NSCLC II
130 pts, 4-month PFS comparable,
OS 8.9 vs. 6,7 months (EE vs. EP)

p = 0.39
rash, fatigue, nausea [225]

Solid tumors
(+lymphoma) I 29 pts, no CR or PR, 15 pts with SD

(62 to 309 days) nausea, vomiting [295]

Interleukin 2 Renal cell
carcinoma I/II 47 pts, ORR 37%, median PFS

13.8 months, median OS 65.3 months
hypophosphatemia,

lymphopenia [237]

13-cis retinoic
acid Solid tumors I 19 pts, no ORR, 7 pts with SD (14 to

63 weeks)
hyponatremia,

neutropenia, anemia [296]

Sorafenib Solid tumors I 31 pts, 1pt PR, 2pts SD muscle weakness,
skin rash, fatigue [297]

Lapatinib Breast cancer Ib 35pts, 3 pts CR, 3pts PR, 1pt SD
diarrhea,

thrombocytopenia,
neutropenia

[221]

Solid tumors I Well tolerated, no PR or CR hypophosphatemia,
hyponatremia [298]

Solid tumors I 27 pts, 2 pts w/PR, 6 pts w/SD hypophosphatemia,
hyponatremia [299]

5-Azacitidine Breast cancer II 40 pts, ORR 4% neutropenia,
leukopenia [300]

5-Azacitidine mCRC II 47 pts, no response lymphopenia,
leukopenia [301]

5-Azacitidine NSCLC I/II 42 pts, 1 pt CR, 1 pt PR, 10 pts SD fatigue, anemia [302]

Romidepsin CRC II 25 pts, no ORR, 4 pts w/SD fatigue [303]

SCLC II 16 pts, no ORR, 3pts w/SD lymphopenia, nausea [304]

CRPC II 35 pts, 2 PR fatigue, nausea [305]



Cancers 2021, 13, 634 25 of 43

Table A1. Cont.

Inhibitor Combination
Partner Entity Clin. Trial

Phase Best Response Most Common
Grade 3 or 4 Tox. Ref.

Solid tumors I No ORR, 11xSD (median 30 weeks) lymphopenia, nausea [306]

Gemcitabine Solid tumors I 27 pts, 2 PR, 14 SD thrombocytopenia [307]

Glioma I/II 35 pts, no ORR [308]

SCCHN II 13 pts, no ORR, 2 SD fatigue, anemia [309]

Erlotinib NSCLC I 13 pts, 6 SD fatigue, nausea [310]

Azacitidine Solid tumors I 14 pts, 5 SD fatigue, nausea [311]

Tucidinostat Solid tumors
(lymphoma) I

31 pts (22 w/solid tumors) 5 PR
(4× lymphoma) 11 SD

(1 lymphoma)

fatigue,
myelosuppression [312]

Paclitaxel,
carboplatin NSCLC I 10 pts, 1 PR. 4 SD, 2 intracranial CR thrombocytopenia,

neutropenia [313]

Exemestane +
Tucidinostat (ET)
vs Exemestane +

Placebo (EP)

Breast cancer III 365 pts, PFS 7.4 vs. 3.8 months (ET
vs. EP) p = 0.033

neutropenia,
thrombocytopenia [236]

Belinostat HCC I/II 42 pts (Phase II) 1 PR, 19 SD
elevated

transaminases,
bilirubinemia

[314]

Cisplatin,
doxorubicin, cy-
clophosphamid

Thymic tumors I/II 26 pts, 1 CR, 2 PR, 9 PR, 14 SD myelosuppression,
nausea [315]

Solid tumors I 72 pts, 13 SD lymphopenia, fatigue [316]

Solid tumors I 46 pts, 18 SD nausea [317]

Doxorubicin Sarcoma, solid
tumors I/II Phase I: 25 pts. 2 PR 16 SD, phase II

16 pts 1 CR 1 PR 9 SD neutropenia [318]

Mesothelioma II 13 pts, no ORR, 2 SD fatigue, hyponatremia [319]

Ovarian cancer II 32 pts, 1 PR, 10 SD thrombosis [320]

13-cis retinoic
acid Solid tumors I 51 pts, 2 PR, 10 SD allergic reaction [321]

Carboplatin or
paclitaxel Solid tumors I 23 pts, 2 PR, 8 SD myelosuppresion [322]

Thymic tumors II 41 pts, 2 PR, 25 SD lymphopenia, QTc
prolongation [323]

Carboplatin and
paclitaxel Ovarian cancer II 35 pts, 3 CR, 12 PR, ORR 44% leukopenia, fatigue [324]

Carboplatin Ovarian cancer II 27 pts, 1 CR, 1 PR, 12 SD
leukopenia,

thrombocytopenia,
vomiting

[325]

Cisplatin and
etoposide Mostly NET I 28 pts, PR 11, SD 13 myelosuppresion [326]

Panobinostat Everolimus Renal cell
carcinoma I 21 pts, no ORR, 13 SD thrombocytopenia [196]

Solid tumors I 9 pts, no ORR, 1 SD thrombocytopenia [327]

Bortezomib Pancreas II 7 pts, no ORR thrombocytopenia [328]

Epirubicin Sarcoma, solid
tumors I 40 pts, 4 PR, 11 SD neutropenia,

thrombocytopenia [329]

Carboplatin and
etoposide Lung cancer I 6 pts, no tolerable dose thrombocytopenia [330]

Letrozole Breast cancer I 12 pts, 2 PR, 5 SD thrombocytopenia [233]

Bevacizumab +
everolimus Solid tumors I 12 pts, 1 PR, 3 SD thrombocytopenia,

hypertension [331]
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Table A1. Cont.

Inhibitor Combination
Partner Entity Clin. Trial

Phase Best Response Most Common
Grade 3 or 4 Tox. Ref.

Solid tumors I 25 pts, 4 SD Nausea,
thrombocytopenia [332]

Radiation Gliomas I 12 pts, increasing PFS and OS with
increasing dose neutropenia [333]

Solid tumors I 37 pts, 1 PR, 7 SD Fatigue,
thrombocytopenia [334]

CRPC II 35 pts, no ORR Fatigue,
thrombocytopenia [335]

CRPC I 16 pts, 5 of 8 with PSA decrease neutropenia [336]

SCLC II 21 pts, no ORR, 5 SD nausea [337]

Bevacizumab Glioma II 24 pts, no PFS difference vs.
bevacizumab historically

myelosuppression,
hypophopsphatemia [338]

Paclitaxel and
carboplatin Solid tumors I 21 pts, 3 PR, 11 SD myelosuppresion [339]

NET II 15 pts, 100% SD thrombocytopenia,
fatigue [340]

Melanoma I 15 pts, 4 SD myelosuppression [341]

Radiotherapy
+/− cisplatin and

etoposide
NSCLC I

12 pts, radiation group DCR
(SD + PR) 66%, chemoradiation

group 100% PR
myelosuppression [342]

Renal cell
carcinoma II 20 pts, 5 SD thrombocytopenia [343]

Erlotinib NSCLC +
HNSCC I 42 pts, 3 PR, 14 SD nausea,

thrombocytopenia [223]

Bevacizumab Glioma I 12 pts, 3 PR, 7 SD thrombocytopenia [344]

Sarcoma II 47 pts, no ORR, 17 SD thrombocytopenia [345]

Imatinib GIST I 12 pts, 1 PR, 7 SD thrombocytopenia [346]

Vorinostat Ridaforolimus Renal cell
carcinoma I 15 pts, no ORR, 4 SD thrombocytopenia,

anemia [197]

Capecitabine,
cisplatin Gastric cancer I 18 pts, 9 PR, 5 SD thrombocytopenia,

fatigue [347]

Capecitabine,
cisplatin Gastric cancer II 45 pts, 19 PR, 23 SD neutropenia, fatigue [348]

5-FU CRC I/II 10 pts, 2 SD thrombocytopenia,
fatigue [349]

Solid tumors II 16 pts, 8 SD myelosuppression,
nausea [350]

Paclitaxel,
doxorubicin, cy-
clophosphamide

Breast cancer I/II 55 pts, comparable pCR rates as
standard of care [351]

Radiation Brain metastasis I Safe administration thrombocytopenia,
fatigue [352]

Docetaxel Solid tumors I 12 pts, no ORR neutropenia [353]

Sarcoma II 40 pts, 9 SD myelosuppression,
fatigue [354]

Erlotinib NSCLC II 33 pts, no ORR anemia, fatigue [355]

Paclitaxel,
bevacizumab Breast cancer I/II 53 pts, 2 CR, 24 PR, 16 SD diarrhea, fatigue [356]

Carboplatin,
paclitaxel +/−

Placebo
NSCLC II 94 pts, ORR 34% w/ Vorinostat vs.

12.5 w/ Placebo thrombocytopenia [357]

Solid tumors I 57 pts, 1 PR, 12 SD thrombocytopenia [358]
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Table A1. Cont.

Inhibitor Combination
Partner Entity Clin. Trial

Phase Best Response Most Common
Grade 3 or 4 Tox. Ref.

Bevacizumab Renal cell
carcinoma I/II 36 pts, 1 CR, 5 PR, 19 SD thrombocytopenia [359]

Temozolomide Gliomas I/II 39 pts, 2 CR, 15 PR, 19 SD fatigue,
thrombocytopenia [360]

Tamoxifen Breast cancer II 43 pts, 8 PR, 9 SD myelosuppression [235]

13-cis retinoic
acid Renal cell car I 14 pts, 1 PR, 9 SD fatigue, nausea [361]

Ovarian cancer II 27 pts, 1 PR, 9 SD neutropenia [362]

Carboplatin,
gemcitabine Ovarian cancer I 15 pts, 6 PR, 1 SD myelosuppression [363]

Breast cancer II 14 pts, no ORR, 4 SD lymphopenia [364]

Mesothelioma III 661 pts, OS 30.7 vs. 27.1 weeks
(Vorinostat vs. Placebo) p = 0.86 fatigue [365]

Solid tumors I 73 pts, 1 CR, 3 PR, 18 SD fatigue [366]

Bortezomib NSCLC II 18 pts, no ORR, 5 SD thrombocytopenia [367]

Gefitinib NSCLC I/II 52 pts, 16 PR, 6 SD anorexia, diarrhea [224]

Melanoma II 32 pts, 2 PR, 16 SD fatigue [368]

Pembrolizumab NSCLC I 33, 4 PR, 16 SD fatigue [238]

Sorafenib HCC I 16 pts, no ORR, 10 SD tash, hypokalemia [369]

Adenocystic II 30 pts, 2 PR, 27 SD lymphopenia [370]

Trastuzumab Breast cancer I/II 16 pts, no ORR thrombocytopenia [222]

Temozolomide Glioma I/II Acceptable tolerability, OS endpoint
not met myelosuppression [371]

Glioma II 66 pts, 2 objective responses, efficacy
endpoint met thrombocytopenia [372]

5-FU Solid tumors I 43 pts, 1 PR, 24 SD fatigue,
hand-foot-syndrom [373]

5-FU, Oxaliplatin CRC I 21 pts, no ORR. 11 SD fatigue [374]

5-FU CRC II Not enough activity, accrual halted [375]

GI cancer I 16 pts, no ORR, 8 SD thrombocytopenia [376]

Chemoradiation
(5-FU) Pancreatic cancer I 21 pts, 19 SD lymphopenia [377]

HNSCC II 13 pts, 1 PR, 3 SD thrombocytopenia [363]
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