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ABSTRACT
Measures of association play a central role in the social sciences to
quantify the strength of a linear relationship between the variables
of interest. In many applications researchers can translate scientific
expectations to hypotheses with equality and/or order constraints
on these measures of association. In this paper a Bayes factor test
is proposed for testing multiple hypotheses with constraints on the
measures of association between ordinal and/or continuous vari-
ables, possibly after correcting for certain covariates. This test can be
used to obtain a direct answer to the research question how much
evidence there is in the data for a social science theory relative to
competing theories. The stand-alone software package ‘BCT’ allows
users to apply the methodology in an easy manner. The methodol-
ogy will also be available in the R package ‘BFpack’. An empirical
application from leisure studies about the associations between life,
leisure and relationship satisfaction and an application about the dif-
ferences about egalitarian justice beliefs across countries are used to
illustrate the methodology.
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1. Introduction

In applied statistical research, measures of association are used to quantify the strength
of relationships between the key variables under study. These measures are a fundamen-
tal tool for making inferences when it is not possible to assess the direction of the causal
effects of interest or when one does not want to make any assumptions about the direc-
tions. The best-known measure of association is Pearson’s correlation coefficient, which
expresses the strength of the linear relationship between two continuous variables in the
data. If the variables are measured on an ordinal (Likert-type) scale, ordinal measures
of association such as Spearman’s rho are needed to quantify the strength of the linear
relationship between the variables. Moreover, in many analyses the researcher is not only
interested in zero-order associations between variables, but also whether any associations
found have a common cause, which would make the zero-order correlations spurious. A
classical tool for this purpose is the partial correlation coefficient, which can be used to
measure the linear association between two variables while controlling for other variables.

CONTACT Joris Mulder j.mulder3@tilburguniversity.edu; j.mulder3@uvt.nl

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2021.1992360&domain=pdf&date_stamp=2023-01-14
mailto:j.mulder3@tilburguniversity.edu
mailto:j.mulder3@uvt.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/


316 J. MULDER AND J. P. T. M. GELISSEN

In exploratory research the main interest is generally in estimating the strength of the
associations between the variables of interest while in confirmatory research the interest is
in testing the associations against predefined (null) values or against each other. This paper
focuses on the latter.When testingmeasures of association, researchers often focus on test-
ing whether there is evidence for a nonzero linear relationships between the variables of
interest, possibly while controlling for other variables. By carefully eliciting existing prior
knowledge however, e.g. based on existing scientific theories or expectations (see [65], for
example), it is possible to formulate more complex hypotheses involving combinations of
equality and order constraints. By directly testing these competing equality/order hypothe-
ses against each other, researchers get a direct answer which theories are most supported
by the data at hand [21]. In this paper we illustrate this when testing equality and order
constrained hypotheses on measures of association using examples from social research.
Another advantage of testing hypotheses having order (or one-sided) constraints on the
parameters of interest based on prior considerations is that these tests have more statistical
power (see [50], for example). Currently however statistical procedures for testingmultiple
hypotheses with equality and/or order constraints on measures of association in a direct
manner are unavailable.

In this paper a general framework is presented for this testing problem. The framework
builds upon earlier work from [44] who proposed a test for order constraints on bivariate
correlations between continuous variables. The current paper proposes several important
extensions. First, the proposed method can also be used for testing hypotheses with equal-
ity constraints, as well as hypotheses with combinations of equality and order constraints
on the correlations. The importance of this extension is evident given the importance of
the (equality constrained) null hypothesis in scientific research, e.g. an association equals
zero, or the association between all variables is exactly equal. Table 1 gives several exam-
ples of hypothesis tests that can be executed using the proposed methodology. Note that
a Bayesian test for a precise hypothesis was considered by Wetzels and Wagenmakers [68]
and a Bayesian test for order-constrained hypotheses was considered by Mulder [44]. The
table shows that a much broader class of hypothesis tests can be executed using the pro-
posedmethodology. It is shown that a different class of priors is needed than the priors that
were proposed in these previous papers. Second, the methodology can be used for test-
ing associations between continuous variables, dichotomous variables, ordinal variables,
and combinations of these types of variables. This is particularly relevant in many fields
of research including the social and the behavioral sciences and medical research. Table 2
shows an overview of the types of association measures that can be tested using the pro-
posed methodology. Third, the methodology can be used to test constraints on partial

Table 1. Examples of possible tests that can be executed using the proposed methodology.

Example hypothesis test

Precise testing H0 : ρ = 0 versus H1 : ρ �= 0
One-sided testing H0 : ρ ≤ 0 versus H1 : ρ > 0
Multiple hypothesis testing H0 : ρ = 0 versus H1 : ρ < 0 versus H2 : ρ > 0
Interval testing H0 : |ρ| ≤ .1 versus H1 : |ρ| > .1
Equality-constrained testing H1 : ρ12 = ρ13 = ρ14 versus H2 : ‘not H1’
Order-constrained testing H1 : ρ12 < ρ13 < ρ14 versus H2 : ρ12 > ρ13 > ρ14 versus

H3 : ‘neither H1, nor H2’
Hypotheses with equality and order constraints H1 : ρ12 < ρ13 = ρ14 versus H2 : ‘not H1’
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Table 2. Types of measures of association depending on the measure-
ment scale of the variables.

Scale of Y2

Dichotomous Polychotomous- Continuous-
Scale Y1 Ordinal categories Interval

Dichotomous Tetrachoric Polychoric Biserial
Polychotomous- Polychoric Polyserial
Ordinal categories
Continuous- Product-
Interval Moment

correlations by correcting for external covariates. Controlling for external (confound-
ing) covariates is very important to avoid spurious relationships between the variables of
interest.

The criterion thatwill be used is theBayes factor [24,27]. TheBayes factor is the Bayesian
quantification of the relative evidence in the data between two competing hypotheses.
Thus, the Bayes factor can also be used to quantify evidence for a null hypothesis, which
is not the case for the p value which can only falsify a null hypothesis. Another important
property of the Bayes factor is that it can straightforwardly be used for testing multiple
hypotheses simultaneously (e.g. [6]). This property is also not shared by Fisherian p val-
ues In addition Bayes factors can be transformed to so-called posterior probabilities of the
hypotheses. These posterior probabilities provide a direct answer to the research question
how plausible (in a Bayesian sense) each hypothesis is based on the observed data. Bayes
factors are also particularly suitable for testing hypotheses with order constraints. This has
been shown by Klugkist et al. [28] for group means in ANOVA designs, Mulder et al. [48]
for repeated measurements, Mulder et al. [47] for multivariate regression models, Klugk-
ist et al. [29] for contingency tables, Böing-Messing and Mulder [7] for group variances,
Mulder and Fox [46] for intraclass correlations, and [18] for general statistical models.
See also [21] for an overview of various methods for order-constrained inference using
the Bayes factor. Tutorial papers for readers who are new to Bayes factors are, among oth-
ers, [22,40,64], or [38]. Finally it is important to note that under very general conditions,
Bayes factors and posterior probabilities are consistent which implies that the evidence for
the true hypothesis goes to infinity as the sample size grows to infinity. Alternative testing
criteria such as the p value or the AIC are not consistent (e.g. [6,54]).

In order to compute the Bayes factor for testing a set of hypotheses with constraints on
the correlations, two challenges need to be overcome. The current paper presents novel
methodological contributions to tackle both challenges. The first challenge is the speci-
fication of a prior for the measures of association under the constrained hypotheses of
interest. The prior plays a central role in a Bayesian analysis and reflects which values
of the parameters are most likely a priori. The choice of the prior is particularly impor-
tant when testing hypotheses with equality constraints on the model parameters [5,24,33].
For this reason arbitrarily specified priors should not be used. In this paper we propose
a prior specification method for the measures of association under the hypotheses based
on uniform distributions. This prior assumes that every combination of the measures of
association under each hypothesis is equally likely, which seems a reasonable default choice
that reflects ‘prior ignorance’. Note that [24] originally proposed a default Bayes factor for
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testing a single bivariate correlation using a uniform prior [36,37]. From this point of view
the proposed methodology can be seen as a generalization of Jeffreys’ original approach.

The second challenge is the computation of the marginal likelihood, a key ingredient
of the Bayes factor. To compute the marginal likelihood of a hypothesis we need to com-
pute the integral of the product of the likelihood and prior over the parameter space of the
free parameters. In complex settings the computation of this integral can take a lot of time,
which limits general utilization of the methodology for applied users. To tackle this prob-
lem we first present a general expression of a Bayes factor for a hypothesis with equality
and order constraints on the parameters of interest versus an unconstrained model. This
general result is used for the current problem of testing inequality and order constraints
on measures of association. Subsequently an accurate approximation of the unconstrained
posterior for the measures of association is obtained using an efficient MCMC algorithm
that combines several novel techniques onBayesian computation for the generalizedmulti-
variate probit model we consider in this paper. The combination of ordinal and continuous
outcome variables is modeled using the model of [9]. Splitting the covariance matrix in
standard deviations and measures of association is achieved by applying the separation
strategy of [4]. Posterior correlation matrices are efficiently sampled in one step using the
method of [34]. To improve mixing of the threshold parameters in the posterior, which
can be a serious problem in Bayesian ordinal regression, the parameter expansion of [35]
is extended to the generalized multivariate probit model. Finally to simplify the compu-
tation of the Bayes factor, the unconstrained posterior is accurately approximated using a
multivariate normal distribution after Fisher transformation on the sampled measures of
association [44].

The algorithm for computing Bayes factors and the posterior probabilities for the
hypotheses based on the new methodology is implemented in a Fortran software pro-
gram called ‘BCT’ (Bayesian Correlation Testing). The program allows users to test a
general class of equality and order constrained hypotheses on measures of association
which are commonly observed in social research. A user manual is included. Furthermore
the methodology will be made available in the R package BFpack [51,52].

This paper is structured as follows. In Section 2 we illustrate several equality and order
constrained hypothesis tests that we develop for associations between life and domain sat-
isfaction as addressed in Quality of Life research. Next we describe the model formulation
and general hypothesis test in Section 3. Then we explain the methodology including the
prior specification, a special expression of the Bayes factor to ease the computation, and
the software package BCT in Section 4. In Section 5 we report the performance using a
small simulation study. Subsequently we return to our empirical example and discuss the
results of testing the equality and order constrained hypotheses we developed in Section 6.
We end the paper with a discussion in Section 7.

2. Empirical applications from social science research

2.1. Application 1: associations between life, leisure and relationship satisfaction

An important research question in Quality of Life research concerns how a person’s satis-
faction in certain life domains (e.g. about leisure, relationship, or work) relates to overall
life satisfaction [16,53]. A prevailing hypothesis is that women are much more relational
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Figure 1. Graphical model describing partial associations between life and domain satisfaction vari-
ables.

than men [23]. As these authors point out, women like being connected (i.e. experiencing
‘we-ness’), doing things together with others, and they place great emphasis on talking and
emotional sharing.Men, on the other hand, see togethernessmore as an activity than a state
of being, as it is for women. They favor interactions that involve ‘doing’ rather than ‘being.’
Unlike women,men ‘prefer to have an element of separation included in their relationships
with others and the ‘doing’ orientation seems to promote this’ [23, p. 465]. Research has
furthermore shown that men have on average more leisure time than women [39]. Based
on these general theoretical ideas and observations concerning gender differences in rela-
tional issues and leisure, we anticipate that such systematic differences will also be observed
in how satisfaction with one’s relationship and leisure is associated with overall life satis-
faction, with leisure satisfaction relating more strongly to overall life satisfaction among
men and relationship satisfaction relating more strongly to overall life satisfaction among
women. Consider the following graphical model about the partial associations between
three focal dependent variables that might be included in such an analysis: the degree of
life satisfaction, leisure satisfaction, and relationship satisfaction (Figure 1). In this example
we are interested in testing various informative hypotheses about conditional partial asso-
ciations between the variables concerned, with gender also potentially moderating such
partial associations. As can be seen, in thismodel the associations between the key variables
of interest are controlled for differences in self-reported health and mood at survey.

We use data from the Dutch LISS panel (Longitudinal Internet Studies for the Social
sciences) to test various informative hypotheses about this model. In particular, the LISS
panel contains the following variables used to operationalize the variables in the conceptual
model:

(1) Life Satisfaction (y1): respondents were asked to rate the following statement: ‘I am
satisfied with my life’; ordered categorical variable, with 1 = strongly disagree – 7
strongly agree

(2) Leisure Satisfaction (y2): respondents were asked to indicate how satisfied they arewith
the way in which they spend their leisure time; continuous variable, with 1 = entirely
dissatisfied – 11 entirely satisfied
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(3) Relationship Satisfaction (y3): respondents were asked to indicate how satisfied they
are with their current relationship; continuous variable, with 1 = entirely dissatisfied
– 11 entirely satisfied

(4) Self-reported Health (x1): respondents were asked: ‘How would you describe your
health, generally speaking?’; ordered categorical variable, with 1 = poor – 5 =
excellent

(5) Mood at Survey (x2): respondents were asked to indicate how they feel at the moment
of completing the survey; ordered categorical variable, with 1 = very bad and 7 =
very good

(6) Gender (grouping variable g): the respondent’s gender, with 1 = men and 2 = women

Several competing informative hypotheses can be formulated about the ordering of, and
equalities between the partial correlations between y1, y2 and y3 conditional on group g.
Here, we consider the following hypothesis tests:

Hypothesis test 1 on the partial associations for men

Hypothesis H1a : The partial association between leisure satisfaction and life satisfaction
is stronger than the partial association between relationship satisfaction and life satisfac-
tion, and in turn this association is stronger than the partial association between leisure
satisfaction and relationship satisfaction:

H1a : ρg1y2y1 > ρg1y3y1 > ρg1y3y2.

Hypothesis H1b : The partial association between relationship satisfaction and life sat-
isfaction is stronger than the partial association between leisure satisfaction and life
satisfaction, and in turn this association is stronger than the partial association between
leisure satisfaction and relationship satisfaction:

H1b : ρg1y3y1 > ρg1y2y1 > ρg1y3y2.

Hypothesis H1c : The partial associations between life satisfaction, leisure satisfaction, and
relationship satisfaction are equal:

H1c : ρg1y3y1 = ρg1y2y1 = ρg1y3y2.

Hypothesis H1d : The complement hypothesis, which implies that neither of the above three
constrained hypotheses are true:

H1d : ‘neither H1a, H1b, nor H1c’.

Hypothesis test 2 on the partial associations for women

For the women (group 2) an equivalent hypothesis test is considered with equality or order
constraints on the partial correlations

H2a : ρg2y2y1 > ρg2y3y1 > ρg2y3y2

H2b : ρg2y3y1 > ρg2y2y1 > ρg2y3y2

H2c : ρg2y3y1 = ρg2y2y1 = ρg2y3y2
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H2d : ‘neither H2a , H2b , nor H2c ’.

Hypothesis test 3 on the partial associations between leisure satisfaction and life satisfaction
with gender as moderator

Hypothesis H3a : The partial association between leisure satisfaction and life satisfaction
among men is stronger than the partial association among women:

H3a : ρg1y2y1>ρg2y2y1.

Hypothesis H3b : The partial association between leisure satisfaction and life satisfaction
among men is equally strong as the partial association among women:

H3b : ρg1y2y1=ρg2y2y1.

Hypothesis H3c : The partial association between leisure satisfaction and life satisfaction
among women is stronger than the partial association among men:

H3c : ρg1y2y1<ρg2y2y1.

Hypothesis test 4 on the partial associations between relationship satisfaction and life satis-
faction with gender as moderator

Hypothesis H4a : The partial association between relationship satisfaction and life satisfac-
tion among women is stronger than the partial association among men:

H4a : ρg2y3y1>ρg1y3y1.

Hypothesis H4b : The partial association between relationship satisfaction and life satisfac-
tion among men is equally strong as the partial association among women:

H4b : ρg2y3y1=ρg1y3y1.

Hypothesis H4c : The partial association between relationship satisfaction and life satisfac-
tion among men is stronger than the partial association among women:

H4c : ρg2y3y1<ρg1y3y1.

2.2. Application 2: association between egalitarian justice beliefs across countries

Two important egalitarian norms that people can use in evaluating how societal resources
(e.g. wealth, public goods) should be distributed are the principle of equality and the prin-
ciple of need [12]. When people apply the equality principle, they support the idea that
everyone should receive the same amount of such valuable societal resources. When peo-
ple use the principle of need, they believe that societal resources should be distributed
according to an individual’s needs, for example the minimum resources required to lead a
decent life.

As [62, p. 424] point out, the principles of need and equality are similar in their egalitar-
ian belief and make that both justice principles are positively correlated [2]. Presumably,
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because of the legacy of the social system of communist regimes and ideological socializa-
tion within this system, people from these post-communist countries of Eastern Europe
attach a more similar meaning to the equality and need principle than people fromWest-
ern European countries. Thus the degree to which these justice principles are positively
associated presumably varies between countries. In this respect, in Europe, a critical
socio-historical divide exists between the Western European countries and the post-
communist countries of Eastern Europe. In the context of communism, egalitarianism
was the dominant ideology, and we can expect that citizens of former communist coun-
tries are only slowly abandoning strong endorsement of egalitarian beliefs even in the
light of market reforms [62, p. 425]. Therefore, we expect that the correlation between
both egalitarian justice principles will be stronger in post-communist countries than in
Western European countries; this will hold even if in Western European countries pub-
lic endorsement of the egalitarian ideology also has played an important role but within
the context of a long-established capitalist market economy. Among the populations
of capitalist Western European countries, presumably, equity or meritocratic consider-
ations (i.e. assigning societal resources proportional to each’s contributions or merits
that deserve reward) also play a crucial role in deciding how societal resources should
be distributed. Consequently, endorsement of egalitarian justice principles will be more
fragmented in Western European countries which presumably results in weaker associ-
ations between the need and equality principle. Of course, even in Western European
countries there is considerable difference in the degree to which egalitarian principles
are institutionally embedded, with the Sweden being the model of the social-democratic
welfare state. Finally, we expect that such differences in the strength of (partial) associ-
ation between both egalitarian principles hold across countries, even if we control for
variables such as gender, age and educational attainment, which relate to such justice
principles [2].

We use data from the EuropeanValues Survey 2000 to test informative hypotheses about
the presumed cross-national differences in the association between support for the equality
and need principle. We limit our investigation to four countries that reflect the difference
between post-communist countries andWestern European capitalist countries with amore
or less egalitarian ideology: Bulgaria, Romania, The Netherlands, and Sweden. We use the
following variables:

(1) ‘In order to be considered “just”, what should a society provide? Please tell me for each
statement if it is important or unimportant to you.’
Endorsement of the equality principle (y1): ‘Eliminating big inequalities in income
between citizens’; ordered categorical variable, with 1 = not at all important – 5 very
important
Endorsement of the need principle (y2): ‘Guaranteeing that basic needs aremet for all, in
terms of food, housing, clothes, education, health’; ordered categorical variable, with
1 = not at all important – 5 very important

(2) Gender (x1): the respondent’s gender, with 1 = men and 2 = women,
(3) Age (x2): the respondent’s age in years
(4) Education (x3): age at which full-time education will or was completed (continuous

variable with 11 intervals, ranging from 0 = no formal education to 10 = 21 and
more years)
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(5) Country (grouping variable g): the respondent’s country, with 1= Bulgaria, 2 =
Romania, 3 = Sweden, and 4 = The Netherlands

Hypothesis test 5 on the partial associations with country as moderator

Hypothesis H5a : The partial association between support for the equality principle and
the need principle is ordered as follows: it is strongest in Bulgaria, weaker in Romania
(because of more violent resistance against communist rule and dictatorship in this coun-
try), even weaker in Sweden (Western European country with a strong egalitarian welfare
ideology) andweakest in TheNetherlands (aWestern European country with amoderately
egalitarian welfare ideology) :

H5a : ρg1y2y1 > ρg2y2y1 > ρg3y2y1 > ρg4y2y1

Hypothesis H5b : The partial association between support for the equality principle and the
need principle is equal between all countries:

H5b : ρg1y2y1 = ρg2y2y1 = ρg3y2y1 = ρg4y2y1

Hypothesis H5c : The partial association between support for the equality principle and
the need principle is equal among post-communist countries Bulgaria and Romania, and
the partial association between support for the equality principle and the need principle
is equal among the Western European countries Netherlands and Sweden; however, the
association between support for the equality principle and the need principle is stronger
among post-communist countries than among Western European countries:

H5c : ρg1y2y1 = ρg2y2y1 > ρg3y2y1 = ρg4y2y1

Hypothesis H5d : The complement hypothesis, i.e.

H5d : ‘neither H5a, H5b, nor H5c’.

The above hypothesis tests with equality and order constraints on measures of association
will be executed in Section 6 using the Bayesian testing framework presented next.

3. Model specification andmultiple constrained hypothesis test

3.1. The generalizedmultivariate probit model

The generalized multivariate probit model is very popular in the social and the behavioral
sciences. It is a common framework for modeling combinations of continuous and ordi-
nal outcome variables in professional software packages, such as Mplus [3] or Stata [63].
The Bayesian version of the model is also well-established in the Bayesian literature (e.g.
[1,3,4,9–11,15,17,30,31,35,56]).

We consider a generalized multivariate probit model forG independent populations. In
the first empirical application of the previous section for example there were G = 2 popu-
lations: a male population and a female population. The P-dimension vector of dependent
variables in population g consists of P1 normally distributed continuous variables and P2
ordinal variables, such that P = P1 + P2. The vector of standard deviations of the con-
tinuous variables in group g will be denoted by σ g . By considering a multivariate normal
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distributed latent variable for the ordinal variables with (unknown) threshold parameters
to define the ordinal categories, the dependent continuous and ordinal variables can be
jointly modeled. Under group g, the correlation matrix of these variables will be denoted
by Cg and the correlation between the pth and p′th dependent variable will be denoted by
ρgpp′ . It is possible to control for certain variables (e.g. Mood at Survey in Application 1) by
including them as covariates in themodel. In this case wewouldmodel partial correlations.
The matrix of regression coefficients of these covariates under group g will be denoted by
Bg . The mathematical details of the model can be found in Appendix 1.

3.2. Hypothesis testing onmeasures of association

In the context of testing constraints on correlations, which is the goal of the current paper,
the correlation matrices Cg are of central importance while the parameter matrix Bg and
the variances σ are treated as nuisance parameters. The correlations inCg are contained in
the vector ρ, e.g.

Cg =
⎡
⎣ 1

ρg21 1
ρg31 ρg32 1

⎤
⎦ ⇒ ρg = (ρg21, ρg31, ρg32)′. (1)

Furthermore, all correlations in the G different correlation matrices, Cg , will be com-
bined in the vector ρ′ = (ρ′

1, . . . , ρ
′
G) of length L = 1

2GP(P − 1). Similarly we combine
the parameter matrices Bg and variances σ g over allG population in the matrices B and σ ,
respectively, and subsequently, the vectorization of B is denoted by the vector β .

We consider a multiple hypothesis test of T hypotheses H1, . . . ,HT of the form

Ht : RE
t ρ = rEt , RI

tρ > rIt , (2)

for t = 1, . . . ,T, where [RE
t | rEt ] is a matrix of coefficients that capture the set of equality

constraints underHt and [RI
t | rIt ] is amatrix of coefficients that capture the set of inequality

(or order) constraints under Ht . We shall focus on the problem which hypothesis receives
most evidence from the data.

In most applications researchers either compare two correlations with each other, e.g.
ρ121 > ρ131, or a single correlation is compared to constant, e.g. ρ121 > .5. Therefore each
row of the matrices [RE

t ] and [RI
t] is either a permutation of (1,−1, 0 . . . , 0) with corre-

sponding constant in rEt and rIt equals 0, or a row is a permutation of (±1, 0, . . . , 0) with
corresponding constant r ∈ (−1, 1). As an example, hypothesis H1a : ρ121 > ρ131 > ρ132
from Section 2.1 (with the index labels omitted) would have the following matrix form

H1a :
[

1 −1 0 0 0 0
0 1 −1 0 0 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

ρ121
ρ131
ρ132
ρ221
ρ231
ρ232

⎤
⎥⎥⎥⎥⎥⎥⎦

>

[
0
0

]
.

Throughout the paper the allowed parameter space under the constrained Ht will be
denoted by Ct . In certain parts of the paper we refer to an unconstrained hypothesis,
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denoted byHu, which does not assume any constraints on the correlations besides the nec-
essary constraints on ρ that ensure that the corresponding correlationmatrices are positive
definite.

4. Statistical methodology for Bayes factor testing onmeasures of
association

Bayes factors are known to be sensitive to the choice of the prior, and therefore the prior
needs to be carefully specified. The specification of the prior becomes increasingly complex
in the current setting when testing multiple statistical hypotheses with different configura-
tions of the equality, one-sided, and order constraints on measures of association. In this
section we propose a class of constrained joint uniform priors on the measures of associ-
ation which assume that all combinations of values of the correlations in the correlation
matrices are equally likely a priori under a given constrained hypothesis. We explain how
this class of priors may be preferred over other choices which have been considered in
the literature. Because these constrained priors are in fact truncations of the same uncon-
strained prior, it is possible to formulate the Bayes factor of each constrained hypothesis
against the unconstrained hypothesis using an extended formulation of the Savage–Dickey
density ratio. The advantage of this expression is that marginal likelihood computation,
which can be computationally expensive, can be avoided. Before discussing these contri-
butions we start with some background and terminology on Bayes factors and posterior
probabilities for statistical hypotheses.

4.1. Background on Bayes factors and posterior probabilities

The Bayes factor is a Bayesian criterion that quantifies the relative evidence in the data
between two hypotheses. The Bayes factor of hypothesis H1 versus H2 is defined by the
ratio of the marginal likelihoods under the respective hypotheses, i.e.

B12 = m1(Y)

m2(Y)
, (3)

where the marginal likelihood is defined by

mt(Y) =
∫∫∫

Ct
pt(Y |X,β , σ , ρ)πt(β , σ , ρ) dρ dσ dβ , (4)

where pt denotes the likelihood of the data Y given the unknown parameters and the
covariates X under Ht , which follows directly from (A1) and (A2), and πt denotes the
prior for the unknownmodel parameters underHt . The prior reflects the plausibility of the
possible values of the free parameters before observing the data. The marginal likelihood
captures how likely the observed data is under a hypothesis and its respective prior.

One of the main strengths of the Bayes factor is its intuitive interpretation. For example,
the Bayes factor is symmetrical in the sense that if, say B12 = .1, which implies that H1
receives 10 times less evidence thanH2, it follows naturally from (3) that B21 = B−1

12 = 10,
which implies that H2 receives 10 times more evidence from the data than H1. Further-
more, Bayes factors are transitive in the sense that if H1 received 10 times more evidence
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Table 3. Rough guidelines for interpret-
ing Bayes factors [57].

B12 Evidence

< 1/150 Very strong evidence for H2
1/150 to 1/20 Strong evidence for H2
1/20 to 1/3 Positive evidence for H2
1/3 to 1 Weak evidence for H2
1 No preference
1 to 3 Weak evidence for H1
3 to 20 Positive evidence for H1
20 to 150 Strong evidence for H1
> 150 Very strong evidence for H1

than H2, i.e. B12 = 10, and H2 received 5 times more evidence than H3, i.e. B32 = 5, it
again follow naturally from the definition in (3) that hypothesisH1 received 50 times more
evidence than H3 because B13 = B12 × B23 = 10 × 5 = 50.

Various researchers have provided an indication how to interpret Bayes factors (e.g.
[24,57]). For completeness we provided the guidelines that were given by Raftery [57] in
Table 3. These guidelines are helpful for researchers who are new to Bayes factors. We do
not recommend to use these guidelines as strict rules because researchers should decide by
himself or herself when he or she feels that the Bayes factor indicates strong evidence.

The Bayes factor can be used to update the prior odds of any pair two hypotheses that
can be true before observing the data to obtain the posterior odds that the hypotheses are
true after observing the data according to

Pr(H1 |Y)

Pr(H2 |Y)
= B12 × Pr(H1)

Pr(H2)
, (5)

where Pr(Ht) and Pr(H2 |Y) denote the prior and posterior probability that Ht is true,
respectively, for t = 1 or 2. In the general case of T hypotheses, the posterior hypothesis
probabilities can be obtained as follows

Pr(Ht |Y) = Pr(Ht)Bt1∑T
t′=1 Pr(Ht′)Bt′1

. (6)

Posterior hypothesis probabilities are useful because they provide a direct answer to
the research question how plausible each hypothesis is in light of the observed data.
Researchers typically find these posterior probabilities easier to interpret than Bayes fac-
tors. It should be noted however that in the case of equal prior probabilities for the
hypotheses, i.e. Pr(H1) = Pr(H2), which is the default setting, the posterior odds between
two hypotheses corresponds exactly to the respective Bayes factor as can be seen in (5).

4.2. Priors formeasures of association under constrained hypotheses

4.2.1. Constrained joint uniform priors
Under each hypothesis, we set independent priors for the three different types of model
parameters, i.e.

πt(β , σ , ρ) = πN
t (β) × πN

t (σ ) × πU
t (ρ) × I(ρ ∈ Ct), (7)
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with noninformative improper priors for the nuisance parameters

πN
t (β) ∝ 1 (8)

πN
t (σ ) ∝

G∏
g=1

σ−1
g,1 × . . . × σ−1

g,P1 . (9)

The domains for β for σ are R
PQ and (R+)P, respectively. Note that the priors for the

nuisance parameters are equivalent to independent Jeffreys priors which are commonly
used for default Bayesian analyses. These noninformative improper priors are allowed for
these common nuisance parameters as the Bayes factor will be virtually independent to the
exact choice of these priors as long as the priors are vaguely enough. This will be explained
later in this paper.

It is well known that proper priors (i.e. prior distributions that integrate to one) need to
be formulated for the parameters that are tested, i.e. the correlations, in order for the Bayes
factor to be well-defined. In this paper we consider a uniform prior for the correlations
under a hypothesis in its allowed constrained subspace. This implies that every combi-
nation of values for the correlations that satisfies the constraints is equally likely a priori
under each hypothesis. The prior for ρ is zero outside the constrained subspace under each
hypothesis. Because the constrained parameter spaceCt is bounded, a proper uniformprior
can be formulated for the correlations under every hypothesis, i.e.

πU
t (ρ) = V−1

t × I(ρ ∈ Ct), (10)

where the normalizing constant Vt is given by

Vt =
∫
Ct
1 dρ. (11)

The normalizing constant Vt can be seen as a measure of the size or volume of the
constrained space.

To illustrate the priors under different constrained hypotheses on measures, let us con-
sider a model with 3 dependent variables and one population (the correlation matrix was
given in (1) where we omit the population index j). Furthermore, let us consider the
following hypotheses:

• Hu : ρ21, ρ31, ρ32 (the unconstrained hypothesis).
• H1 : ρ21 = ρ31 = ρ32 (all ρ’s are equal).
• H2 : ρ31 = 0, ρ21, ρ32 (only ρ31 is restricted to zero).
• H3 : ρ31 = 0, ρ21 > ρ32 (ρ31 is restricted to zero and ρ21 is larger than ρ32).

The unconstrained parameter space of ρ = (ρ21, ρ31, ρ32)′ that results in a positive def-
inite correlation matrix is displayed in Figure 2(a) (taken from [59] with permission). As
noted by Joe [25], the volume of this 3-dimensional subspace equals 4.934802. There-
fore, the volume under the unconstrained hypothesis Hu is given by Vu = 4.934802 in
(11). Therefore, the unconstrained uniform prior for the correlations equals πU

u (ρ) =
1

4.934802 × I(ρ ∈ Cu) in (10).
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Figure 2. (a) Graphical representation of the subspace of (ρ21, ρ31, ρ32) for which the 3-dimensional
correlation matrix is positive definite (taken from [59] with permission). The thick diagonal line from
(− 1

2 ,− 1
2 ,− 1

2 ) to (1, 1, 1) represents the correlations that satisfyρ21 = ρ31 = ρ32 and result in apositive
diagonal correlationmatrix. (b) Uniform priorπU

1 for the common correlation ρ under H1 : ρ21 = ρ31 =
ρ32 in the allowed region C1 = {ρ|ρ ∈ (− 1

2 , 1)}. (c) Uniform prior πU
2 for the free parameters under

H2 : ρ31 = 0 in the allowed region C2 = {(ρ21, ρ32)|ρ2
21 + ρ2

32 < 1}. (d) Uniform prior for the free cor-
relations under H3 : ρ31 = 0, ρ21 > ρ32 in the allowed region C3 = {(ρ21, ρ32)|ρ2

21 + ρ2
32 < 1, ρ21 >

ρ32}.

When all ρ’s are equal as under H1, the common correlation, say, ρ, must lie in the
interval (− 1

2 , 1) to ensure positive definiteness (e.g. [45]). Thus, the size of the parameter
space of ρ corresponds to the length of the interval which is V1 = 3

2 . Therefore, the uni-
form prior for ρ under H1 corresponds to πU

1 (ρ) = 2
3 × I(ρ ∈ (− 1

2 , 1)), which is plotted
in Figure 2(b). The diagonal ρ21 = ρ31 = ρ32 is also plotted in Figure 2(a) as a dashed line,
where the thick part lies within positive definite subspace Cu.

When ρ31 is restricted to zero as under H2, the allowed parameter space for (ρ21, ρ32)
that results in a positive definite correlation matrix must satisfy ρ2

21 + ρ2
32 < 1, i.e. a

circle with radius 1 [59]. Therefore, the uniform prior under H2 : ρ31 = 0 is given by
π2(ρ21, ρ32) = 1

π
× I(ρ2

21 + ρ2
32 < 1) (Figure 2(c)) because a circle or radius 1 has a

surface of V2 = π .
When ρ31 is restricted to zero and ρ21 is larger than ρ32 as under H3, the subspace

is half as small as under H2. Therefore the uniform prior density for the free parameters
underH3 is twice as large as the prior underH1 to ensure the prior integrates to one. Thus,
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the uniform prior under H3 is given by π3(ρ21, ρ32) = 2
π

× I(ρ2
21 + ρ2

32 < 1&ρ21 > ρ32)

(Figure 2(d)).

4.2.2. Comparisonwith other priors from the literature
Scale mixtures of g priors
Wetzels and Wagenmakers [68] proposed a test for a single bivariate or partial correla-
tion, H0 : ρ = 0 against H1 : ρ �= 0, via a scale mixture of g priors [32,58,69]. Their test
is formulated under a linear regression model yi = β0 + β1xi + εi, such that the hypothe-
sis test is equivalent to testing H0 : β1 = 0 against H1 : β1 �= 0 where ρ is the correlation
between Y and X. Under the alternative hypothesis, a g prior [70] is specified for β with an
inverse gamma mixing prior for g. It can be shown (Appendix 1) that this prior is equiva-
lent to a beta( 12 ,

1
2 ) prior in the interval (−1, 1) for ρ (left panel of Figure 3; dotted line).

As can be seen this prior puts most probability mass in the extreme regions near −1 and
1. For this reason this Bayes factor will result in an overestimation of the evidence in favor
of H0 because it assumes unrealistically large correlations to be most plausible under the
alternative hypothesis. The uniform prior for ρ (left panel of Figure 3; solid line) on the
other hand seems a better operationalization of ‘prior ignorance’ because it assumes that
all correlations under the alternative are equally likely a priori.
Marginally uniform priors
Barnard et al. [4] showed how to construct a prior for a correlation matrix having uni-
formmarginal priors for the separate bivariate correlations. For a P × P correlationmatrix,
this can simply be achieved by placing an inverse Wishart prior on the covariance matrix
with an identity scale matrix and P+ 1 degrees of freedom. Although the prior is very

Figure 3. Left panel. The implied beta( 12 ,
1
2 ) prior in the interval (−1, 1) (dotted line) in the test pro-

posed by Wetzels and Wagenmakers’ [68], and the uniform prior in (−1, 1) as proposed here. Right
panel. Implied prior for the common correlation ρ under H0 : ρ12 = ρ13 = ρ23 when testing against
H1 : ρ12 �= ρ13 �= ρ23 using a marginally uniform encompassing prior (dotted line), and a uniform prior
for ρ on (− 1

2 , 1) (solid line) as proposed here.
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reasonable for Bayesian estimation (as shown by Barnard et al.), this marginally uni-
form prior distribution may not be reasonable as an encompassing prior when testing
hypotheses with equality constraints on the correlations. To construct a prior that has
uniformly distributed marginal priors for the separate correlations, most probability mass
needs to be placed near the extremes (see Figure 2 of [4]). This will result in unrealistic
priors for correlations under equality constrained hypotheses. As an example consider a
hypothesis test ofH0 : ρ12 = ρ13 = ρ23 againstH1 : ρ12 �= ρ13 �= ρ23, and let us construct
a prior for the common correlation ρ = ρ12 = ρ13 = ρ23 under H0 that is proportional
to a marginally uniform encompassing prior. This yields a prior that is proportional to
π0(ρ) ∝ (2ρ + 1)(1 − ρ)−5/2(ρ + 1)−9/2 in the interval (− 1

2 , 1) (Appendix 1), which is
plotted in the right panel of Figure 3 (dotted line). This implied prior is concentrated near
1 which does not correspond to reasonable prior beliefs underH0. Therefore a marginally
uniform prior is not recommendable as default encompassing prior for testing hypotheses
with equality constraints on the correlations. A uniform prior on (− 1

2 , 1)would be a better
default choice (solid line).

Note that [44] suggested a similar prior based on P degrees of freedom when testing
order-constrained hypotheses and one-sided hypotheses on correlations. This results cor-
responds in beta( 12 ,

1
2 )-distributed marginal priors in the interval (−1, 1) for the separate

correlations [4]. Even though this may seem to be an unrealistic prior (as noted earlier),
the Bayes factor is quite insensitive to the prior when testing order hypotheses because the
Jeffreys-Lindley-Bartlett paradox does not play a role [42]. The use of a vague prior based
on the minimal of P degrees of freedom would actually be preferably as it would result in
least prior shrinkage.

4.3. The extended Savage–Dickey density ratio

In order to compute the marginal likelihood under each constrained hypothesis via (4)
using the constrained uniform prior in (13) a complexmultivariate integralmust be solved.
This endeavor can be somewhat simplified by using the fact that the uniform prior for
the correlations under each hypothesis Ht can be written as a truncation of a uniform
unconstrained prior under the unconstrained hypothesis Hu, i.e.

πU
t (β , σ , ρ) = Vu

Vt
× πU

u (β , σ , ρ) × I(ρ ∈ Ct) (12)

where the unconstrained prior is given by

πU
u (β , σ , ρ) = V−1

u × σ−1
1,1 × . . . × σ−1

1,P1 × I(ρ ∈ Cu), (13)

where Vu = ∫
Cu 1 dρ, which can be interpreted as the volume of the subspace of ρ that

results in positive definite correlation matrices under all populations. Note that the nor-
malizing constant in (12) is equal to the reciprocal of the unconstrained prior integrated
over the constrained space Ct ,∫

Ct
πU
u (ρ) dρ = V−1

u

∫
Ct
1 dρ = Vt

Vu
. (14)

This relationship between each constrained prior and the unconstrained prior allows us
to use the following general result for computing the Bayes factor of a hypothesis with
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certain constraints on the parameters of interest against a larger unconstrained hypothesis
in which the constrained hypothesis is nested.

Lemma4.1: Consider amodel where a hypothesis is formulated with equality and inequality
constraints on the parameter vector ρ of length Q of the form Ht : RE

t ρ = rEt , RI
tρ > rIt ,

where the qE × Q matrix RE
t has rank qE ≤ Q, and a larger ‘unconstrained’ hypothesis Hu

in which Hq is nested. Let the vector of nuisance parameters in the model are denoted by φ.
If the prior of ρ under Ht is defined as the truncation of a proper prior for ρ under Hu in its
constrained subspace, i.e. πt(ρ) ∝ πu(ρ)I(ρ ∈ Ct), then the Bayes factor of Ht against Hu
can be written as

Btu = Pr(R̃I
tρ

I
t > rIt |ρE

t = rEt ,Hu,Y,X)

Pr(R̃I
tρ

I
t > rIt |ρE

t = rEt ,Hu)
× πu(ρ

E
t = rEt |Y,X)

πu(ρ
E
t = rEt )

, (15)

where ρE
t = RE

t ρ, ρI
t are the elements of ρ that are not restricted with equality constraints

under Ht, and R̃I
t consists of the columns of RI

t such that R̃I
tρ

I
t = RI

tρ.

Proof: The derivation is a combined result of [13,19,28,55,67]. A proof is given in
Appendix 2. �

Note that the second factor in (15) is equal to the well-known Savage–Dickey density
ratio [13,66,67]. The ratio of posterior and prior probabilities in the first factor was also
observed in [28] when there are no equality constraints under Ht . The conditional poste-
rior probability, i.e. the numerator of the first term of (15), can be interpreted as a measure
of fit of the order constraints of Ht relative to Hu; the marginal posterior density, i.e. the
numerator of the second term of (15), can be seen as a measure of fit of the equality con-
straints of Ht relative to Hu; the conditional prior probability, i.e. the denominator of the
first term of (15), can be interpreted as a measure of complexity of the order constraints
of Ht relative to Hu; the marginal prior density, i.e. the denominator of the second term
of (15), can be seen as a measure of complexity based on the equality constraints ofHt rel-
ative toHu; see also [19,42]. Evaluating equality constraints and the inequality constraints
conditional on the equality constraints separately was shown by [55]. The contribution
here is that the Bayes factor is derived for the general case of a set of linear equality con-
straints and a set of linear inequality constraints where the prior underHt is a truncation of
a proper unconstrained prior. A similar result was derived for (adjusted) fractional Bayes
factors by [19,49].

In the current paper, the nuisance parametersφ correspond to the vector of the elements
B and σ . Expression (15) shows that the Bayes factor for a constrained hypothesis against
the unconstrained hypothesis only depends on the prior for the nuisance parameters
through the unconstrained marginal posterior of the correlations ρ, i.e.

πu(ρ |Y,X) =
∫∫

πu(ρ |B, σ ,Y,X) × πu(B, σ |Y,X) dB dσ ,

where

πu(B, σ |Y,X) ∝
∫

p(Y |X,B, σ , ρ) × πN
u (B) × πN

u (σ ) × πu(ρ) dρ.
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As is well-known fromBayesian estimation, if different vague priors would have been spec-
ified for B and σ , e.g. a vague matrix-normal prior or inverse gamma prior, respectively,
the unconstrained posterior for B and σ would have been virtually the same, and thus, the
marginal posterior for ρ would have been virtually the same. Therefore, the Bayes factor
in (15) will be insensitive to the exact choice of the priors for the common nuisance param-
eters, as long as they are vague. This justifies the chosen noninformative independence
Jeffreys priors.

Under mild circumstances, Bayes factors are known to be consistent (e.g. [54]). Loosely
formulated this implies that the evidence towards the true constrained hypothesis goes
to infinity as the sample size goes to infinity (this is illustrated for a specific situation in
Section 6). The consistency of the proposed Bayes factor can also be observed from expres-
sion (15). In the case of a hypothesis with only equality constraints, the unconstrained
posterior density (the numerator of right term) would go to infinity if the true parame-
ter values satisfy the equality constraints as the sample size goes to infinity. If the equality
constraints would not be satisfied, the posterior density would go to zero in the limit. This
follows directly from large sample theory. In the case of a hypothesis with only inequality
constraints the posterior probability (the numerator of the left term) would go to one if the
constraints hold, and to zero if the constraints would not hold1. note that the Bayes Finally,
in the case of a hypothesis with both equality and inequality constraints the product of the
numerators would go to infinity if the constraints hold, and to zero elsewhere. As a result,
the evidence for the true hypothesis, as quantified by the Bayes factor, would go to infinity.
Consequently, the posterior probability for the true hypothesis will always go to one as the
sample size grows.

The computation of the posterior and prior probability and density in (15) is described
in Appendix 5. As described the posterior quantities are computed using Gaussian approx-
imations of the posterior of Fisher transformed correlations, similar as [44]. The prior
quantities are obtained by first the sampling the correlation from the joint uniform dis-
tribution using the algorithm of [25], and subsequently, compute the prior probability
as the proportion of draws satisfying the order constraints and the prior density using a
small interval around the precise equality restriction. Finally Bayes factors between con-
strained hypotheses are obtained using the transitive property of the Bayes factor, e.g.
B12 = B1u/B2u.

4.4. Software

The methodology is implemented in a Fortran software package to ensure fast compu-
tation and general utilization of the new methodology. The software package is referred
to as ‘BCT’ (Bayesian Correlation Testing). The user only needs to specify the model
characteristics (such as the number of dependent variables, the measurement level of the
dependent variables, and the number of covariates) and the hypotheses with competing
equality and order constraints on the measures of association. After running the pro-
gram an output file is generated that contains the posterior probabilities of all constrained
hypotheses, as well as the complement hypothesis, based on equal prior probabilities for
the hypotheses. Furthermore, unconstrained Bayesian estimates of the model parame-
ters, and 95%-credibility intervals are provided. A user manual for BCT can be found in
Appendix 6.
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5. Performance of the Bayes factor test

To illustrate the behavior of the methodology we consider a multiple hypothesis test of

H1 : ρ21 = ρ31 = ρ32

H2 : ρ21 > ρ31 > ρ32

H3 : not H1,H2,

for a generalized multivariate probit model with P = 3 dependent variables of which the
first is normally distributed (with variance 1), the second is ordinal with two categories,
and the third is ordinal with three categories for one population (the population index j
is therefore omitted) and an intercept matrix B = (1, 1, 1)′. Data sets were generated for
populations where the matrix with the measures of association were equal to

C =
⎡
⎣ 1

ρ21 1
ρ31 ρ32 1

⎤
⎦ =

⎡
⎣ 1

ρ 1
1
2ρ 0 1

⎤
⎦ ,

for ρ = −.7,−.6, . . . , .6, .7. Note that for ρ = 0, ρ > 0, and ρ < 0, hypothesis H1, H2,
and H3 are true, respectively. Sample sizes of n = 30, 100, 500, and 5000 were considered.
Equal prior probabilities were set for the hypotheses, i.e. P(H1) = P(H2) = P(H3). For
each data set, the Bayes factor of the constrained hypotheses against the unconstrained
hypothesis were first computed using the methodology of Section 4.3. Note that the Bayes
factor of the complement hypothesis H3 against the unconstrained hypothesis can be
obtained as the ratio of posterior and prior probabilities that the order constraints of H2
do not hold. The equality constraints of hypothesis H1 are not evaluated because they
have zero probability under H3. The Bayes factors between the constrained hypotheses
can then be computed using its transitive relationship. Finally posterior probabilities for
H1,H2, andH3 can then be computed using (6). These posterior probabilities are plotted in
Figure 4.

The plots show consistent behavior of the posterior probabilities for the hypotheses: as
the sample size becomes very large the posterior probability of the true hypothesis goes
to 1 and the posterior probabilities of the incorrect hypotheses goes to zero. Furthermore
it can be seen that for small data sets with n = 30, relatively large effects (approximately
ρ = .5) need to be observed before either H2 or H3 (depending on the sign of the effect)
receives more evidence than the null hypothesis. This implies that a null hypothesis with a
uniform prior is better able predict the data than the alternative hypotheses in the case of
moderate effects and small samples. As the sample size grows very small and zero effects
can best be explained by the null hypothesis, and larger effects can best be explained by the
alternative hypotheses, depending on the direction.

For other types of hypothesis tests the rate of evidence increases in a similar fashion as
the sample size grows.We refer the interested reader to the increasing literature that further
explores the accumulation of the evidence in the data for a true hypothesis with equality,
order, or interval constraints as the sample size grows (e.g. [8,14,43,46]).
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Figure 4. Posterior probabilities of H1 : ρ21 = ρ31 = ρ32 (solid line), H1 : ρ21 > ρ31 > ρ32 (dotted
line), and H2 : not H1,H2 (dashed line) for different effects ρ and different sample sizes n.

6. Empirical applications from social science research (revisted)

6.1. Associations between life, leisure and relationship satisfaction

We now return to our empirical example and evaluate the informative hypotheses that we
developed at the beginning of this contribution. Table 4 reports for each set of hypothe-
ses the posterior probabilities that each hypothesis is true after observing the data when
assuming equal prior probabilities for the hypotheses.

Based on these results we can conclude that for men there is overwhelming evidence
of equal partial associations between life satisfaction, leisure satisfaction, and relationship
satisfaction, controlling for differences in mood at survey and self-reported health (99%).
For women on the other hand the evidence is inconclusive as the complement hypothesis,
which receives most support, still only receives a posterior probability of approximately
49% after observing the data, and the ordered partial correlations hypothesis H2b and the
equal partial correlations hypothesis H2c receive a posterior probability of 30% and 21%,
respectively. More data need to be collected in order to draw more decisive conclusions
about which hypothesis is true for the female population.

Next, we consider the hypotheses that expect either ordered or equal conditional (i.e.
with gender as a moderator) partial associations between the satisfaction variables. Here,
we see that there is strong evidence for the hypotheses that life satisfaction and each type of
domain-specific satisfaction relate equally strong to each other for men and women (83%,
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Table 4. Posterior probabilities for the competing hypothe-
ses from Examples 1 and 2.

Application 1: Life, leisure,and relationship satisfaction
Hypothesis test 1 Posterior probabilities

H1a : ρg1y2y1 > ρg1y3y1 > ρg1y3y2 0.0020
H1b : ρg1y3y1 > ρg1y2y1 > ρg1y3y2 0.0085
H1c : ρg1y3y1 = ρg1y2y1 = ρg1y3y2 0.9879
H1d : neither H1a , H1b , nor H1c 0.0016

Hypothesis test 2

H2a : ρg2y2y1 > ρg2y3y1 > ρg2y3y2 0.0001
H2b : ρg2y3y1 > ρg2y2y1 > ρg2y3y2 0.2955
H2c : ρg2y3y1 = ρg2y2y1 = ρg2y3y2 0.2104
H2d : neither H2a,H2b , nor H2c 0.4940

Hypothesis test 3

H3a : ρg1y2y1 > ρg2y2y1 0.1588
H3b : ρg1y2y1 = ρg2y2y1 0.8278
H3c : ρg1y2y1 < ρg2y2y1 0.0135

Hypothesis test 4

H4a : ρg1y3y1 > ρg2y3y1 0.0809
H4b : ρg1y3y1 = ρg2y3y1 0.9017
H4c : ρg1y3y1 < ρg2y3y1 0.0174

Application 2: Support for justice principles
Hypothesis test 5

H5a : ρg1y2y1 > ρg2y2y1 > ρg3y2y1 > ρg4y2y1 0.0044
H5b : ρg1y2y1 = ρg2y2y1 = ρg3y2y1 = ρg4y2y1 0.0000
H5c : ρg1y2y1 = ρg2y2y1 > ρg3y2y1 = ρg4y2y1 0.9899
H5d : neither H5a , H5b , nor H5c 0.0057

and 90% respectively). In summary, the analysis portrays a picture of a large degree of
equality of association between satisfaction indicators while holding constant for other
variables, and little evidence for the expected ordering of partial associations among the
variables considered.

6.2. Association between egalitarian justice beliefs across countries

Table 4 also reports the findings for the test of the informative hypotheses on the partial
correlations between justice principles. Here, the findings indicate very strong evidence
for HypothesisH5c. This equality and order-restricted hypothesis assumed that within the
post-communist country cluster andwithin theWestern European country cluster the par-
tial correlation between support for both justice principles would be equal, but between
country clusters the size of the partial correlation would be different, with an expected
larger partial association in the post-communist group of countries.

7. Discussion

This paper presented a flexible framework for testing statistical hypotheses on most com-
monly observedmeasure of association in social research. By developing powerful, flexible
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and user-friendly Bayesian methods for testing informative hypotheses about partial cor-
relations, we underscore the importance and appropriateness of the partial correlation
coefficient as a tool for testing hypotheses about associations between variables of various
measurement levels when applying regression analysis would actually not be appropri-
ate from a research design or substantive perspective. The methodology has the following
useful properties.

• A broad class of hypotheses can be tested with competing equality and/or order
constraints on the measures of association (Table 1).

• Multiple (more than two) hypothese can be tested simultaneously in a straightforward
manner.

• Constrained hypotheses can be formulated on tetrachoric correlations, polychoric cor-
relations, biserial correlations, polyserial correlations, and product-moment correla-
tions (Table 2). These measures of association can be corrected for certain covariates
to avoid spurious relations.

• A simple answer is provided to the research question which hypothesis receives most
evidence from the data and how much, using Bayes factors and posterior probabilities.

• The proposed test is consistent which implies that the posterior probability of the true
hypothesis goes to one as the sample size goes to infinity.

• The software package BCT allows social science researchers to easily apply the method-
ology in real-life examples. The methodology for normally distributed dependent
variables is also implemented in the R package BFpack [51,52], which also contains
applications of equality/order constraints testing on correlations between continuous
outcome variables. The extension to nonnormal data is planned for the near future.

The proposedmethodology relies on the generalizedmultivariate probit model for con-
tinuous and ordinal outcome variables. This model is very well researched in the Bayesian
literature (e.g. Albert and Chib [1], Chib and Greenberg [11], Chen and Dey [10], Barnard
et al. [4]; Fox [17], Boscardin et al. [9]), and implemented in professional software pack-
ages such as Mplus [3] or Stata [63]. In the case of severe violations of the distributional
assumptions (i.e. normality for continuous outcome variables and a normal latent variable
for ordinal outcome variables), however, the estimated unconstrained posterior of themea-
sures of associationmay not be accurate. To get a better understanding of the robustness of
the method, a thorough numerical simulation study on this model would be useful. Poten-
tially the method can also become more robust to violations of normality or the assumed
probit model by adopting the rank likelihood approach of [20]. This will be an interesting
future extension yielding a more accurate Bayes factor for testing measures of association
in the case of severe model violations. Finally to further enhance the computation of Bayes
factors for order hypotheses the use of bridge sampling techniquesmay prove fruitful when
the number of order constraints is very large [60].

The proposed methodology was designed as a confirmatory criterion for testing mul-
tiple hypotheses with competing equality and/or order constraints on the measures of
association of interest. The confirmatory aspect justifies the default use of equal prior prob-
abilities of the hypotheses that are formulated. Themethod can also be used for exploratory
testing of all possible hypotheses with combinations of equality and order constraints. In
this case a correction for multiple testing is necessary because the number of hypotheses
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can become quite extensive. In a Bayesian framework such a correction can be incorpo-
rated through the prior probabilities of the hypotheses. Scott and Berger [61] showed how
this can be done when exploratory testing many precise hypotheses. How this can be done
when exploratory testing all possible equality and order hypotheses is still an open problem
worthy of further research.

Finally the proposed Bayes factor test is based on uniform priors on the measures of
association under the hypotheses of interest. This choice does not allow users to man-
ually specify priors based on external prior beliefs about the measures of association.
Although this may be viewed as a limitation, from a default ‘noninformative’ Bayesian
perspective, the class of uniform priors seems the only justifiable choice because uniform
priors imply that all possible values of the association in a correlation matrix measures
are equally likely before observing the data. Furthermore, the proposed methodology is
quite flexible as it allows researchers to formulate very specific hypotheses with equality
and order constraints on the measures of association (Table 1). In fact by formulating
hypotheses with very specific sets of constraints, very informative priors are implicitly
specified. For example, when considering a hypothesis with equal correlations,H1 : ρ12 =
ρ13 = ρ23, the underlying prior is only positive (and constant) where all correlations are
exactly equal. Similarly, the precise hypothesis H0 : ρ = 0 corresponds to an extremely
informative prior which places all its mass where ρ equals 0. Thus instead of allow-
ing users to incorporate external information by directly specifying informative priors
under the hypotheses, the methodology allows users to formulate very specific hypothe-
ses which indirectly correspond to very informative priors. In our experience translating
prior beliefs to constrained hypotheses is generally easier (and less controversial) than
translating prior beliefs to informative priors on the parameters themselves. In certain
applications however it may be preferred to use informative priors. This may be an inter-
esting direction for future work. The current methodology was specifically developed for
testing competing scientific expectations on measures of association in a default Bayesian
manner.

Notes

1. Consequently, the Bayes factor of an inequality constrained hypothesis against the uncon-
strained hypothesis can maximally be equal to the reciprocal of the prior probability that the
constraints hold [47], and thus the nested test would not be consistent.

2. The uniform candidate prior, π(�g) ∝ 1, is equivalent to a joint uniform prior on Cg because
the Jacobian of the transformation, �g → (σ g ,Cg), does not depend on Cg .

3. The integrated likelihood is given by Johnson and Kotz [26]: f (r | ρ) = (1−ρ2)(n−1)/2(1−r2)(n−4)/2

π(n−3)!
dn−2

d(ρr)n−2 { cos
−1(−ρr)√
1−(ρr)2

}.
4. The Fortran code for the sampler can be found on github.com/jomulder/BCT.
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Appendices

Appendix 1. The generalizedmultivariate probit model

This model is well-established in the Bayesian literature (e.g. [1,3,4,9–11,15,17,30,31,35,56]). We
consider G independent populations. The P-dimension vector of dependent variables of subject i in
population g will be denoted by y′

ig = (v′
ig ,u

′
ig), of which the first P1 elements, v′

ig = (vig1, . . . , vigP1),
are continuous normally distributed variables and the remaining P2 = P − P1 elements, u′

ig =
(uig1, . . . , uigP2), aremeasured on an ordinal scale, for i = 1, . . . , ng , and g = 1, . . . ,G. Furthermore,
we assume that the pth ordinal variable can assume the categories 1, . . . ,Kp, for p = 1, . . . ,P2.

As is common in a Bayesian multivariate probit modeling, a multivariate normal latent variable,
denoted by zig , is used for each ordinal vector uig . This implies that the p ordinal variable of subject
i in population g falls in category k, i.e.

uigp = k, if zigp ∈ (γgp(k−1), γgpk],

for k = 1, . . . ,Kp, where γgpk is the upper cut-point of the kth category of the pth ordinal variable in
the gth population. To ensure identification of the model it is necessary to set γgp0 = −∞, γgp1 =
0, and γgpKp = ∞, for g = 1, . . . ,G and p = 1, . . . ,P2, and to fix the error variances of the latent
variables to 1 as is common in multivariate probit modeling [11].

The mean structure of each dependent variable is assumed to be a linear combination of Q
external covariates xig . Subsequently, the generalized multivariate probit model can be defined by[

vig
zig

]
∼ N(Bgxig ,�g), where (A1)

�g = diag(σ ′
g , 1

′
P2)Cgdiag(σ ′

g , 1
′
P2), (A2)

where 1′
P2 is a vector of length P2 of ones. Notice here that the correlation matrices Cg and standard

deviations σ g are separately modeled as in [4]. In this model Bg is a P × Q matrix with regression
coefficients of the gth population where element (p, q) reflects the effect of the qth covariate on the
pth dependent variable, for q = 1, . . . ,Q and p = 1, . . . ,P, the P1 error standard deviations of vig
in population g are contained in σ g , and Cg denotes the P × P correlation matrix of population g.
Note that the (p1, p2)th element of Cg denotes the linear association of the p1th and p2th dependent
variable in population g while controlling for the covariates in xig . Thus, if a model is specified with
two dependent variables and several covariates, and we would be interested in testing ρ12 = 0, we
are essentially testing the partial correlation between the two dependent variables while controlling
for the covariates that are included in xig . This way no distributional assumptions aremade about the
covariates because they are included as independent variables in the regression model. For example
one can include covariates that are only 0 or 1 to correct for a categorical variable. If Q = 1 and
xig = 1, no covariates are incorporated in the model, which implies that the elements in Cg are
bivariate correlations.

Appendix 2. Derivation of the priors

Implied prior by Wetzels and Wagenmakers [68]

Assume we are interested in the correlation ρ between Y and X having a bivariate normal distribu-
tion, [

Y
X

]
∼ N

([
μY
μX

]
,

[
σ 2
Y ρσYσX

ρσYσX σ 2
X

])
,
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where ρ is the correlation betweenY andX.We assume that the variableX is normalized, i.e.μX = 0
and σ 2

X = 1. The bivariate normal model correspond with the following conditional formulation,

Y |X ∼ N(μY + ρσYX, σ 2
Y(1 − ρ2)). (A3)

Now we consider an alternative parameterization using a linear regression model

Y |X ∼ N(β0 + β1X, σ 2
ε ) (A4)

where σ 2
ε is the error variance in the regression model. When linking these two parameterizations,

this implies

β1 = ρσY = ρ(1 − ρ2)−1σε ⇔ ρ = β1√
β2
1 + σ 2

ε

.

Hence, testing H0 : ρ = 0 against H1 : ρ �= 0 in (A3) is equivalent to testing H0 : β1 = 0 against
H1 : β1 �= 0 in (A4).

Wetzels and Wagenmakers [68] considered a g prior for β1 with an inverse gamma with a shape
parameter of 12 and a scale parameter of n2 , which is equivalent to a Student t prior with zero location,
a scale of σ 2

ε , and 1 degree of freedom (i.e. a Cauchy prior):

π1(β1 | σ 2
ε ) =

∫
N(β1; 0, gσ 2

ε (x′x)−1)IG
(
g;
1
2
,
n
2

)
dg

= t(β1; 0, σ 2
ε , 1)

∝ (1 + β2
1/σ

2
ε )−1,

where we set x′x = n. When noting that the Jacobian equals dβ1
dρ = σε(ρ

2(1 − ρ2)−3/2 + (1 −
ρ2)−1/2), the prior for ρ can be obtained by applying standard calculus, i.e.

π1(ρ | σ 2
ε ) = π1(β1 = ρ(1 − ρ2)−1σε | σ 2

ε )
dβ1

dρ

∝ (
1 + ρ2(1 − ρ2)−1)−1

(ρ2(1 − ρ2)−3/2 + (1 − ρ2)−1/2)

= (1 − ρ2)−1/2

∝ beta( 12 ,
1
2 ) in the interval (−1, 1).

Similarly, it can be shown that a uniform prior for ρ in the interval (−1, 1) would correspond to
conditional prior for β1 given σ 2

ε with a Student t distribution with location, scale, and degrees of
freedom equal to 0, σ 2

ε /2, and 2, respectively.

Marginally uniform prior approach

As shown by Barnard et al. [4] an inverseWishart prior with identity scale matrix P and P degrees of
freedom for a covariance matrix implies a marginal prior for a correlation matrixC having a density

π(C) ∝ |C| (P−1)2
2 −1

P∏
p=1

|Cpp|−P/2,

where Cpp is the pth principle submatrix of C. Now consider a hypothesis where all correlations
are assumed to be equal (which implies a compound symmetry correlation structure), H0 : ρ21 =
. . . = ρP,P−1. The determinants are then a function of the common correlation ρ and given by |C| =
((P − 1)ρ + 1)(1 − ρ)P−1 and |Cpp| = ((P − 2)ρ + 1)(1 − ρ)P−2. Consequently, the implied prior
for ρ under H0 is given by

π0(ρ) ∝ (ρ(P − 1) + 1)
(P−1)2

2 −1(1 − ρ)−
P2−P−1

2 (ρ(P − 2) + 1)−
P2
2 ,
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which, for P = 3, equals

π0(ρ) ∝ (2ρ + 1)(1 − ρ)−5/2(ρ + 1)−9/2.

Appendix 3. Proof of Lemma 1

The proof is based on the results of [28,43,47,49,55,67]. The constrained hypothesis Ht is given
by Ht : REρ = rE, RIρ > rI , where [RE | rE] is a qE × (Q + 1) augmented matrix representing the
equality constraints on θ , with qE ≤ Q, and [RI | rI] is a qI × (Q + 1) augmentedmatrix representing
the inequality constraints on ρ.

UnderHt there are qE equality constraints active onρ, whichwill be denoted byρI
t = RI

tρ. There-
fore there areQ − qE free parameters underHt (excluding the nuisance parameters), which we shall
denote by ρI

t . Without loss of generality we can permute the elements of ρ, such that we can write
[

ρE
t

ρI
t

]
=

[
RE
t

0 IQ−qE

]
ρ.

Consequently, the constrained hypothesis can equivalently be written as Ht : ρE
t = rEt , R̃I

tρ
I
t > rIt ,

where R̃I
t consists of the last Q − qE columns of RI

t .
The prior underHt is a truncation of the unconstrained prior underHu in the constrained space

of Ht , i.e.

πt(ρ
I
t) = c−1

t πu(ρ
E
t = rEt , ρI

t)I(R̃
I
tρ

I
t > rIt), where

ct = Pr(R̃I
tρ

I
t > rIt |ρE

t = rEt ,Hu) πu(ρ
E
t = rEt ).

Furthermore, the nuisance parameters have equal priors under both the constrained and uncon-
strained hypothesis, i.e. πt(φ) = πu(φ), and the likelihood of the data under Ht is a truncation of
the unconstrained likelihood, i.e.

pt(Y |X, ρI
t ,φ) = pu(Y |X, ρE

t = rEt , ρI
t ,φ)I(R̃I

tρ
I
t > rIt),

where Y contains all outcome variables and X contains all covariates. The Bayes factor can then be
written as

Btu =
∫∫

R̃I
tρ

I
t>rIt

πt(ρ
I
t)πt(φ)pt(Y |X, ρI

t ,φ) dρI
t dφ∫∫∫

πu(ρ
E
t , ρI

t)πu(φ)pu(Y |X, ρE
t , ρI

t ,φ) dρE
t dρI

t dρI
t dφ
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∫∫
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t>rIt

πu(ρ
E
t = rEt , ρ

I
t ,φ |Y,X) dρI

t dφ

= Pr(R̃I
tρ
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t > rIt | ρE

t = rEt ,Y,X,Hu)πu(ρ
E
t = rEt |Y,X)

Pr(R̃I
tρ

I
t > rIt | ρE

t = rEt ,Hu)πu(ρ
E
t = rEt )

,

which completes the proof.

Appendix 4. Conditional distributions for theMCMC sampler

For g = 1, . . . ,G, the group specific parameters are sampled in the posterior as follows.
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(1) Sample Bg |Vg ,Ug ,Zg ,Xg , σ g ,Cg ∼ NQ×P(B̂g , (X′
gXg)

−1,�g), where B̂g = (X′
gXg)

−1X′
gY∗

g ,
Y∗
g = [Vg Zg], i.e. a stackedmatrix of (v′

ig , z
′
ig), for i = 1, . . . , ng , and�g = diag(σ ′

g , 1′
P2)Cgdiag

(σ ′
g , 1′

P2);
(2) Sample Cg given Bg , Vg , Ug , Zg , Xg , σ g using a parameter expansion of [34]. Let Eg = Y∗

g −
XgBg , and the normalization of the columns Ẽg = EgDg , where

∑ng
i=1 ẽ

2
gi = 1. The positive def-

inite scale is then given by Sg = diag(1/σ ′
g , 1′

P2)Ẽ
′
g Ẽgdiag(1/σ ′

g , 1′
P2). Furthermore a uniform

candidate prior is considered for the covariance matrix, i.e. π(�g) ∝ 1, such that the candi-
date covariancematrix can be drawn from an inverseWishart distribution, IW(ng − P − 1, Sg),
from which the candidate draw for Cg can be obtained which is always accepted because the
target prior for the correlation matrix is the same2.

(3) The threshold parameter γgpk, for p = P1, . . . ,P, and k = 2, . . . ,Kp − 1, is sampled from a uni-
form distribution with lowerbound being the largest zgip that falls in the category k−1, and
upperbound being the smallest zgip that falls in the category k.

(4) The population standard deviation σp, for p = 1, . . . ,P1, is sampled using a random walk
centered around the previous draw (see also [34]).

(5) The additional parameters due to the parameter extension of [35] are sampled using a random
walk centered around the previous draw. The following scale group is chosen,

�gp = {hgp > 0 : hgp(zgp,B·p, γgp2, . . . , γgp(Kp−1))

= (hgpzgp, hgpB·p, hgpγgp2, . . . , hgpγgp(Kp−1))},
for group g and dimension p, for p = P1, . . . , P. The unimodular Haar measure for �gp is
L(dhgp) = h−1

gp dhgp. To sample hgp using the random walk, the kernel for hgp is of the form

hng+Q+Kp−3
gp exp(−agph2gp − bgphgp).

The Fortran code for the MCMC algorithm can be found on github.com/jomulder/BCT.

Appendix 5. Numerical computation of the Bayes factor

We discuss a general numerical method to compute the elements in (15) for a hypothesis Ht with
equality and/or inequality constraints on the measures of association in the generalized multivariate
probit model in Section 3.1 using the uniform prior discussed in Section 4.2. The computation of
the posterior parts in the numerators in (15) is discussed first, followed by the prior parts in the
denominators.

A.1. Computation of the posterior probability and posterior density
To compute the posterior probability and the posterior density in the numerators in (15) under
the unconstrained hypothesis, the unconstrained marginal posterior for ρ needs to approximated.
This is done using posterior draws of the parameters from the unconstrained generalized multi-
variate probit model (Section 3.1) using a MCMC sampler. To sample the group specific correlation
matrices Cg , the Metropolis–Hastings step of [34] is extended to the generalized multivariate probit
model with both continuous and ordinal outcome variables. Furthermore, to ensure fast mixing of
the threshold parameters, the parameter expansion method of [35] is extended to the generalized
multivariate probit model with a scale group that is unique for each group and each dimension p, for
p = P1, . . . , P. The parameter expansion of Liu and Sabatti’s [35] has been shown to be superior to
other sampling procedures [56]. Details about the conditional distributions are given in Appendix 3.
The Fortran code of the MCMC algorithm can be found on Github/jomulder/BCT.

Next, a Fisher z-transformation is applied to the unconstrained posterior sample for ρ. Let ρp1p2
be the association between the p1th and p2th dependent variable. Then,

ηp1p2 = 1
2 log

(
1+ρp1p2
1−ρp1p2

)
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Figure A1. Left panel: Trace plot of latent z31 observed in category 1 of the 3th (ordinal) outcome vari-
able (blue line), z32 observed in category 2 (orange line), z33 observed in category 3 (green line), and z34
observed in category 4 (purple line), as well as the corresponding threshold parameters γ31, γ32, and γ34
for the 3th outcome variable. Right panel: Scatter plot of posterior draws of (η21, η31) (red dots) with
additional contour plot and univariate density plots (solid lines) and normal approximations (dashed
lines).

is the corresponding Fisher transformedmeasure of association. The unconstrained posterior of the
Fisher transformed parameter follows an approximate normal distribution. This can be seen as fol-
lows. First note that the posterior is proportional to the likelihood times the prior. In this paper, a flat
(uniform) prior is used for the correlations, and thus, the posterior is essentially proportional to the
likelihood. In the integrated likelihood (where the nuisance parameters are integrated out) the sam-
ple correlation r is known to have a similar role as the population correlation ρ3. Now because the
Fisher transformed sample correlation given the population correlation is also known to be approx-
imately normal, the Fisher transformed population correlation given the sample correlation (i.e. the
integrated posterior) will also be approximately normal.

To illustrate the accuracy of the normal approximation, a sample of size n = 40 was generated
from a generalizedmultivariate probit model with P = 3 dimensions where the first dependent vari-
able was normally distributed, the second dependent variable was ordinal with two categories, and
the third dependent variable was ordinal with four categories. The population variables were set
to ρ′ = (ρ21, ρ31, ρ32) = (.25, .25, 0). A posterior sample of 10,000 draws was obtained for ρ and
transformed to the respective Fisher transformed parameters η = (η21, η31, η32). The traceplots for
the first 1,000 draws for four different latent z-scores belonging to observations in the four differ-
ent categories of the third outcome variable together with the corresponding threshold parameters
are plotted in Figure A1 (left panel), and the posterior draws of (η21, η31) are plotted in Figure A1
(right panel) together with a contour plot of the bivariate density and the density estimates of the
univariate posteriors. Normal approximations are also displayed (dashed lines). As can be seen the
normal approximation is very accurate. For other settings (e.g. different dimensions or measure-
ment levels of the outcome variables), the plots looked very similar. For larger samples, the normal
approximations are even better. Consequently note that the posterior of the transformed measures
of association under an inequality constrained hypothesis would follow an approximately normal
distribution truncated in the inequality constrained subspace.

Thus, we can write π(η|Y) ≈ N(μη ,�η), where the posterior mean μη and covariance matrix
�η can be estimated from the posterior sample. Subsequently, the linear transformation ξ = Tη is
used, with T = [RE′

t R′
t] as in Lemma 1. Approximately normality also holds for ξ , with π(ξ |Y) ≈

N(Tμη ,T�ηT′). Therefore, the posterior density can be estimated by plugging in ξE = rEt in the
multivariate normal density π(ξE |Y) ≈ N(RE

t μη ,RE
t �ηRE′

t ). The conditional posterior probability
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can also be efficiently computed using the normal approximation. First the inequality constraints
are rewritten via a linear transformation, e.g.

Pr(η21 < η31 < η32) = Pr(ζ1 > 0, ζ2 > 0) = Pr(ζ1 > 0|ζ2 > 0) × Pr(ζ2 > 0)

where (ζ1, ζ2) = (η31 − η21, η32 − η31) [44]. The conditional probabilities can then be estimated
efficiently from MCMC output [19,41].

A.2. Computation of the prior probability and prior density
Similar as the posterior components, the conditional prior probability and prior density in (15),
are computed by first approximating the unconstrained uniform prior using a prior sample. This
can be done using the algorithm of [25].4 To avoid the Borel-Kolmogorov paradox in the case of
equality constraints [67], the Fisher transformation is also applied to the prior draws of the ρ’s,
resulting in prior draws for the corresponding η’s. Substantially similarly as for the posterior, a linear
transformation is applied to the prior draws for ξ , i.e. ξ = Tη. Unlike the posterior, the prior of ξ is
not approximately normal.

To estimate the prior density of ξ at r̃Et , (i.e. the Fisher transformed values of rEt ), we use the fact
that

Pr(|ξ1 − r̃E1 | < δ
2 , . . . , |ξqE − r̃EqE | < δ

2 |Hu) ≈ δq
E × πu(ξ

E = r̃E)
for sufficiently small δ. Because a large prior sample can efficiently be obtained without needing
MCMC, estimating the above probability as the proportion of draws satisfying the constraints is
quite efficient. Thus, the prior density will be estimated as

π̂u(ξ
E = r̃E) = δ−qES−1

S∑
s=1

I(|ξ (s)
1 − r̃E1 | < δ

2 , . . . , |ξ (s)
qE − r̃EqE | < δ

2 ),

for sufficiently large S and a some small value for δ > 0.
To compute the conditional prior probability, we approximate the prior conditional of ξ I given

ξE = r̃E with a normal distributionwhere themean and covariancematrix are estimated as the arith-
meticmean and the least squares estimate based on the prior draws that satisfy ξE ≈ r̃E, respectively.
The same approximation is used as for the equality constraints, i.e. |ξ (s)

q − r̃Eq | < δ
2 , for q = 1, . . . , qE,

where ξ
(s)
q is the sth draw of ξq. A normal approximation is justified for the computation of the con-

ditional prior probability because this probability is not very sensitive to the exact distributional
form. For example, the probability that a parameter is larger than 0 is identical for a uniform dis-
tribution in (−1, 1) as for a standard normal distribution or for any other symmetrical distribution
around zero. Note that this is not the case for the prior density at 0 which is why a normal approx-
imation was not used for estimating the prior density. Based on the normal approximation, which
can be summarized as πu(ξ

E ≈ rE) ≈ N(μξ0,�ξ0), the same procedure can be used for estimating
the conditional prior probability of RI

tT−1[rE
′
, ξ I

′
]′ > rIt , as was used for the conditional posterior

probability.

Appendix 6. User manual for BCT

The software program BCT (Bayesian Correlation Testing) can be downloaded from www.jori
smulder.com. The folder consist of six text files, i.e. BCT_input.txt, BCT_output.txt,
BCT_output_relComp.txt, BCT_output_relFit.txt, BCT_estimates.txt, and
data.txt, and an executable file BCT.exe. BCT can be run by double clicking ‘BCT.exe’. This
manual describes how to specify the input and data files and how to read the output file.

Parameterization
The hypotheses are tested under the generalizedmultivariate probitmodel which assumesmultivari-
ate normal distribution for the continuous dependent variables and multivariate probit distribution
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(with amultivariate normal distribution for the latent variables) for the ordinal dependent variables.
Multiple populations can be considered having population specific intercepts, regression coefficients,
variances and measures of associations.

Input file
This input file ‘BCT_input.txt’ has the following layout.

Input 1: model & data
#DV, #covs, intercept, #populations, Ntotal, header
3 2 1 1 50 0

Which DVs are ordinal (0=continuous, 1=ordinal)
0 1 1

Input 2: hypotheses
#hypotheses
2

#equalities, #inequalities per hypothesis
1 1
1 2

Input 3: constraints in hypotheses
Equalities H1; Inequalities H1; Equalities H2; Inequalities H2;
etc.
1 2 1 1 3 1
1 3 1 1 3 2

1 3 2 0 1 0
1 3 1 1 3 2
1 2 1 1 3 1

Input 4: implementation details
seed, #draws prior, #draws posterior, #draws per constraint
123 20000 10000 5000

Under ‘Input 1’ the properties of the model have to specified that is used for analyzing the data.
In the above example the model has 3 dependent variables (#DV=3), 2 covariates (#covs=2), an
intercept should be included in the model (#intercept=1), is used for modeling one population
(#population=1), and the total sample size is 50 (#Ntotal=3). Next it is specified that the first
dependent variable is continuous and the second and third dependent variables are ordinal. Finally
it is specified whether the data file has a header. In this case there is no header (header=0). If there
would be a header the first row of the data file would not be read.

Under ‘Input 2’ the number of hypotheses under investigation are specified, which is 2 in this case
(#hypotheses=2). Below it is specified how many equality and inequality (or order) constraints
each hypothesis consists of. In the above situation the first hypothesis has 1 equality constraints and
1 inequality constraint on the correlations and the second hypothesis has 1 equality constraint and
2 inequality constraints on the correlations.

Under ‘Input 3’ the equality and inequality constraints are specified using specific coding. Every
line corresponds to an equality or inequality constraint. An equality constraint of the form ρj1p1p2 =
ρj2p3p4 , i.e. the association between dependent variables p1 and p2 in population j1 is equal to the
association between dependent variables p3 and p4 in population j2, is coded as ‘j1 p1 p2 j2 p3 p4’. The
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inequality constraint ρj1p1p2 > ρj2p3p4 is also coded as ‘j1 p1 p2 j2 p3 p4’. It follows automatically from
the specification in Input 2 whether an equality or inequality constraint is considered. Furthermore,
an equality constraint of the form ρj1p1p2 = d, i.e. the association between dependent variables p1
and p2 in population j1 is equal to d, is coded as ‘j1 p1 p2 0 1 d’. The inequality constraints ρj1p1p2 > d
and ρj1p1p2 < d are coded as ‘j1 p1 p2 0 1 d’ and ‘j1 p1 p2 0 − 1 d’, respectively. Note that in the
current case with 2 covariates, the constraints are formulated on the partial measures of association
conditional on the covariates.

Because hypothesis one consists of one equality constraint and one inequality constraint, the
first line specifies the equality constraint and the second line specifies the inequality constraint.
The first line ‘1 2 1 1 3 1’ specifies the equality constraint that the correlation in population
1 between dependent variable 2 and dependent variable 1 is equal than the correlation in popula-
tion 1 between variable 3 and 1. Note that the code ‘1 1 3 1 2 1’ would have resulted in exactly
the same equality constraint. The second line ‘1 3 1 1 3 2’ specifies the inequality constraint
that the correlation in population 1 between dependent variable 3 and 1 is larger than the correlation
in population 1 between dependent variable 3 and 2. Next, the constraints of the second hypothesis
are specified. The first line ‘1 3 2 0 1 0’ specifies the equality constraint of the second hypoth-
esis which states that the association between variable 3 and 2 in population 1 is equal to 0. The
second line ‘1 3 1 1 3 2’ states that the association between variable 3 and 1 is larger than the
association between variable 3 and 2 both in population 1. The third line ‘1 2 1 1 3 1’ states
that the association between variable 2 and 1 is larger than the association between variable 3 and 1
again both in population 1.

Under ‘Input 4’ some computational details need to specified. First, the seed number must be
specified, which equals 123 in the above setting. Second, the number prior is specified which is equal
to 20,000 in this case. Third, the number of posterior draws is specified which is equal to 10,000 in
this case. Fourth, the number of draws to evaluate each inequality constraint to compute the relative
complexity is set which is equal to 5,000 in this case.

Data file
For the above input file the data file should look like this (only the first 6 rows are displayed).

-0.9686 1 5 2 -0.54 1
0.1112 2 6 3 -0.56 1
-0.0018 1 2 5 1.12 1
-0.4265 1 2 1 -2.52 1
-1.3845 1 3 3 3.32 1
-0.8355 2 2 0 1.67 1
...

The first row specifies that the first observation has −.9686 as outcome for the first continu-
ous dependent variable (first column), falls in category 1 of the second dependent ordinal variable
(second column), falls in category 5 of the third dependent ordinal variable (third column), has an
outcome of 2 on the first covariate (fourth column), has an outcome of−.54 on the second covariate
(fifth column), and belongs to population 1 (sixth column). In the case of ordinal variables, the low-
est category should be 1, followed by 2, etc. If there is only one population, and thus, all observations
come from the same population, the last column can be omitted as well.

Output files
In the output files of BCT are BCT_output.txt, BCT_output_relComp.txt, BCT_out
put_relFit.txt, BCT_estimates.txt. First the file BCT_output.txt contains the
posterior probabilities for the hypotheses when assuming equal prior probabilities. The following
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output was obtained from the analysis with the above input file with two specified constrained
hypotheses.

Posterior probabilities for the hypotheses

Hypothesis 1
0.0001

Hypothesis 2
0.9973

Complement hypothesis*
0.0026

Thus, the posterior probability that the first, second, and the complement hypotheses are true
after observing the data equal .0001, .9973, and .0026. Thus, there is most evidence that the sec-
ond hypothesis is true. Note that Bayes factors between pairs of hypotheses can be computed using
these posterior probabilities because equal prior probabilities are used for the hypotheses. Fur-
ther note that the complement hypothesis should only be used for inference when there are not
multiple hypotheses under consideration with only inequality constraints that are nested in one
another. Thus, when testing nested inequality constrained hypotheses, e.g.H1 : ρ121 > ρ131 > ρ132
and H1 : ρ121 > (ρ131, ρ132), where H1 is nested in H2, the outcome of the complement hypothesis
should be ignored. Note that in the current setting the outcome for the complement hypothesis can
be included when making inferences.

Second, the file BCT_output_relComp.txt contains the outcomes of the relative complex-
ity of the hypotheses. In this example the file was equal to

rc rcE rcI

Hypothesis 1
0.17010 0.42100 0.40404

Hypothesis 2
0.00405 0.64325 0.00630

Complement hypothesis*
1.00000 1.00000 1.00000

In each row the value on the right is the relative complexity of a hypothesis based on its inequality
constraints, relative to the unconstrained hypothesis. The middle value in each row is the relative
complexity based on the equality constraints. And the left most value is the relative complexity of
a hypothesis which is a product of the other two values. Note that for the complement hypothesis
all values equal 1 because the analysis for the complement hypothesis is identical to the analysis of
the unconstrained hypothesis in this setting. Therefore the relative complexities of the complement
hypothesis relative to the unconstrained hypothesis equal 1.

The results in the output file BCT_output_relFit.txt can be interpreted in a similar man-
ner but then for the relative complexity of the hypotheses. For completeness, for this analysis the file
looks as follows.

rf rfE rfI

Hypothesis 1
0.00853 0.00880 0.96903
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Hypothesis 2
1.56453 1.89166 0.82707

Complement hypothesis*
1.00000 1.00000 1.00000

Finally the file BCT_estimates.txt contains the posteriormedians, and the lower the upper
bound of the 95% credible intervals of the measures of association, the intercepts and regression
coefficients, and the standard deviations under the unconstrained model. For this analysis the file
looks as follows.

Estimates were obtained under the unconstrained model

Correlation matrix

Population 1

lower bound of 95%-CI
1.000
0.459 1.000
-0.187 -0.392 1.000

median
1.000
0.712 1.000
0.094 -0.060 1.000

upper bound of 95%-CI
1.000
0.865 1.000
0.358 0.274 1.000

B-matrix with intercepts and regression coefficients

Population 1

lower bound of 95%-CI
-0.250 -0.361 0.763

median
0.017 -0.016 1.192

upper bound of 95%-CI
0.280 0.330 1.655

standard deviations

Population 1

lower bound of 95%-CI
0.791 1.000 1.000

median
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0.938 1.000 1.000

upper bound of 95%-CI
1.140 1.000 1.000

For example the 95% credibility interval of the association between the second and first depen-
dent variable conditional on the covariates equals (.459, .865).
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