Supercritical CO₂ Activation Enables an Exceptional Methanol Synthesis Activity Over the Industrial Cu/ZnO/Al₂O₃ Catalyst

Yannan Zhou, Jingyun Jiang, * Yushun Wang, Ruijie Liu, Shouren Zhang, * and Jianfang Wang*

The ternary Cu/ZnO/Al₂O₃ catalyst is widely used in the industry for renewable methanol synthesis. The tenuous trade-off between the strong metal-support interaction (SMSI)-induced Cu-ZnO, interface and the accessible Cu surface strongly affects the activity of the final catalyst. Successes in the control of oxide migration on adsorbate-induced SMSI catalysts have motivated this to develop a supercritical CO2 activation strategy to synchronously perfect the Cu⁰–O–Zn^{δ+} interface and Cu⁰–Cu⁺ surface sites through the manipulation of the adsorbate diffusion kinetics, which involves *OC₂H₅ and "side-on" fixed CO₂ species. This findings illustrate that the adsorbate on ZnO, can facilitate its secondary uniform nucleation and induce a Zn_xAl₂O_v spinel phase and that CO₂ adsorption on metallic Cu⁰ produces an activated Cu_xO amorphous shell. Such a structural evolution unlocks a dual-response pathway in methanol synthesis, thus enabling Cu/ZnO/Al₂O₃ with a twofold increase in catalytic activity. This atomic-level design of active sites and understanding of supercritical CO₂-induced structural evolution will guide the future development of high-performance supported metal catalysts.

1. Introduction

Methanol synthesis from captured off-gas CO2 and non-fossil hydrogen through a one-step catalytic process is the heart of

the Carbon Neutral Methanol Economy.[1] The leading industrial methanol catalyst, ternary Cu/ZnO/Al₂O₃ with Cu,Zncontaining nanoparticles (5-10 nm in size, molar ratio Cu:Zn = 7:3) supported on the structural promoter Al₂O₃,^[2] has been producing ≈110000 tons of renewable CH₃OH and thus recycling ≈150000 tons of CO2 per year.[3] Although this catalytic process has been studied for centuries, the synergistic effect of Cu and ZnO and the dynamic nature of Zn species are still under high debate.[4] Studies have shown that the active Cu^0 –O– $Zn^{\delta+}$ interface created by the migration of reducible ZnO, over the metallic Cu nanoparticle under strongly reducing reaction conditions,^[5] the so-called strong metal support interaction (SMSI), and the accessible Cu surface, are essential to the catalytic performance. This, therefore, highlights the significance of a highly defective or porous oxide overlayer in the SMSI effect. This

configuration, where the oxide partially covers the metal nanoparticle, allows reactants to interact with most exposed metal sites.^[6]

Nevertheless, the uncontrollable kinetics of the SMSI are insufficient to create an optimal SMSI encapsulation state.^[7] The

Y. Zhou, R. Liu, S. Zhang Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou, Henan 450006, China

E-mail: shourenzhang@infm.hhstu.edu.cn

J. Wang

Department of Physics

The Chinese University of Hong Kong Shatin, Hong Kong SAR 999077, China E-mail: jfwang@phy.cuhk.edu.hk

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/advs.202500118

© 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202500118

College of Materials Science and Engineering Zhengzhou University

Zhengzhou, Henan 450052, China E-mail: jiangjingyun@zzu.edu.cn

Y. Wang

School of Chemistry and Chemical Engineering Henan University of Science and Technology

Luoyang, Henan 471023, China

www.advancedscience.com

ZnO_x overlayer might cover all metal sites or affect only a minor portion of the interfacial sites. In addition, the dynamic nature of the ZnO_x component at elevated pressures and temperatures could lead to the excessive growth and partial crystallization of ZnO_x.^[8] This will potentially reduce the density of the interfacial active sites or cause catalyst deactivation.^[9] Recent progress has demonstrated that hydrocarbon species derived from CO2 gas, and reductive alcohols, such as methanol, can lead to adsorbateinduced SMSI (A-SMSI) on the catalyst under mild conditions. The resultant encapsulating overlayer is usually permeable to reactant gases.[10] One important key to such an A-SMSI phenomenon is the control of the adhesive properties of alcohols, which have been observed to correlate with the migration of oxide species.[11] Highly adhesive EtOH tends to be physisorbed on the surface of the defective oxide, leading to the partial or complete poisoning of active sites and preventing the migration of oxide species. These investigations on the A-SMSI effect and how it affects the migration ability of oxide species have intrigued us and led us to develop an activation strategy to optimize the SMSIinduced catalyst structure through the control of the adsorbate kinetics.

Herein we demonstrate that the adsorbate diffusion kinetics on the Cu/ZnO/Al₂O₃ catalyst can be manipulated in a densityfluctuating supercritical (SC) CO₂-EtOH medium at a low temperature of 40 °C. Multiple in situ spectroscopy and microscopy show that controllable adsorbate diffusion results in the synchronous perfecting of SMSI-induced Cu⁰–O–Zn^{δ+} interface and exposed Cu⁰-Cu⁺ surface active sites. Specifically, adsorbed *OC₂H₅ and CO₂ species on the support guide the secondary nucleation of small-sized ZnO on the Cu surface and the formation of a new Zn_xAl₂O_y phase, while CO₂ adsorption on metallic Cu⁰ yields a large accessible activated Cu_xO surface area. We reveal that such an activation treatment renders the Cu/ZnO/Al₂O₃ catalyst resistant to the Cu sintering and ZnO_x recrystallization under working conditions. Moreover, it facilitates a dual-response pathway in the methanol synthesis from CO₂ hydrogenation, involving (i) formate and (ii) reverse water gas shift (RWGS) + CO hydrogenation mechanisms, thus improving the activity, selectivity, and stability. Under optimal conditions, the 12 MPa (4 h) catalyst exhibits the highest mass-specific methanol formation rate of 259.09 g kg_{cat}⁻¹ h⁻¹ at 210 °C, which is 2.1 times higher than that of the industrial catalyst (125.87 g kg_{cat}⁻¹ h⁻¹). Our results show that controlling the kinetics of adsorbate diffusion represents a powerful support effect that enables the rational manipulation of the catalyst structure.

2. Results and Discussion

2.1. Catalytic Performance

The reduced industrial $\text{CuO/ZnO/Al}_2\text{O}_3$ catalyst, hereafter referred to as CZA_r (see Experimental Section in the Supporting Information for the details), was subjected to different activation treatments in the SC $\text{CO}_2\text{-EtOH}$ system and subsequently evaluated for the CO_2 hydrogenation reaction in a Harrick reactor under pressurized (21 bar) and atmospheric pressure conditions (Figure S1, Supporting Information). The activated catalysts are denoted as X MPa (Y h), with X and Y being the activation pressure and time in the SC $\text{CO}_2\text{-EtOH}$ system, respectively.

Figure 1, Figures S2 and S3 (Supporting Information) display the steady-state reactivity data of our catalysts at different temperatures. The catalysts were pre-treated in situ with $\rm H_2$ before the methanol synthesis reaction. To differentiate the hydrogen reduction of the catalyst during the preparation process, the in situ $\rm H_2$ treatment is designated as $\rm H_2$ treatment. CO was the only detected gaseous byproduct for our catalysts.

Significant enhancement in MeOH production was observed over the activated samples at atmospheric pressure (Figure 1A). The MeOH space time yield (STY) maximized at 14.18 g kg_{cat} h^{-1} over the 12 MPa (4 h) sample and decreased to 8.96 g kg_{cat} h⁻¹ when the SC CO₂ pressure was raised to 16 MPa. In addition, the methanol selectivity slightly increased from 20% to 32% after activation. The activities of the catalysts were further tested at 21 bar and temperatures from 170 to 250 °C (Figure 1B and Figure S2, Supporting Information). The MeOH STY increased from 55.96 to 629.28 g $kg_{\text{cat}}^{-1}\ h^{-1}$ as the temperature was raised, delivering a superior MeOH yield (259.09 g kg_{cat}^{-1} h^{-1} at 210 °C) in comparison with CZA $_r$ (125.87 g kg_{cat}^{-1} h^{-1} at 210 °C) and other reported state-of-the-art catalysts (Figure 1C and Table S1, Supporting Information). Notably, the most active catalyst (12 MPa (4 h)) in our study exhibited a much higher selectivity (89%) toward MeOH at 210 °C, with a high CO₂ conversion of 14.75%. Moreover, changing the reducing gas conditions (250 °C, 2 h) had a negligible effect on the activity of the catalyst (Figure S2, Supporting Information), while the pre-activation time of SC CO₂ was directly related to the activity of the catalyst. The temporal evolution of the MeOH production of the 12 MPa (4 h) sample at higher temperatures (210 and 250 °C) for 30 h is displayed in Figure 1D and Figure S3 (Supporting Information), respectively, featuring a superior stability. In addition, the fresh 12 MPa (4 h) sample without H₂ treatment[©] also showed a higher MeOH production than the CZA, catalyst, even under atmospheric pressure (Figure S4, Supporting Information).

2.2. Catalyst Structural Evolution

To find out the underlying structural explanation for the observed trend, we performed X-ray diffraction (XRD) and quasi in situ X-ray photoelectron spectroscopy (XPS) measurements on the fresh and activated catalysts. All catalysts show comparable specific surface areas (55 m² g⁻¹), pore characteristics (pore volume, 0.25-0.28 cm³ g⁻¹; average pore diameter, 19.28-23.43 nm), Cu and Zn contents, indicating overall structural robustness (Table S2 and Figure S5, Supporting Information). A significant decrease in the diffraction peak intensity for the SC CO₂-activated samples reveals an increase in amorphization (Figure 2A).[12] Additionally, the average crystallite sizes of the metallic Cu⁰ nanoparticles, derived from the Cu (111) peak, were found to be 9.3 (CZA₂), 8.7 (12 MPa), and 9.8 (16 MPa) nm, respectively, indicating pressure-dependent grain sizes. The reduced grain size is related to the increased number of the Cu⁰–O– $Zn^{\delta+}$ interface active sites, as confirmed by N_2O reactive frontal chromatography (N2O-RFC) measurements.[13]

Notably, a new peak at 31.2° appears on the 12 MPa (4 h) sample. It is associated with the (220) plane of $ZnAl_2O_4$. The formation of Zn, Al-spinel in the CZA_r catalysts under reaction conditions usually involves the crystallization of amorphous Al-oxide

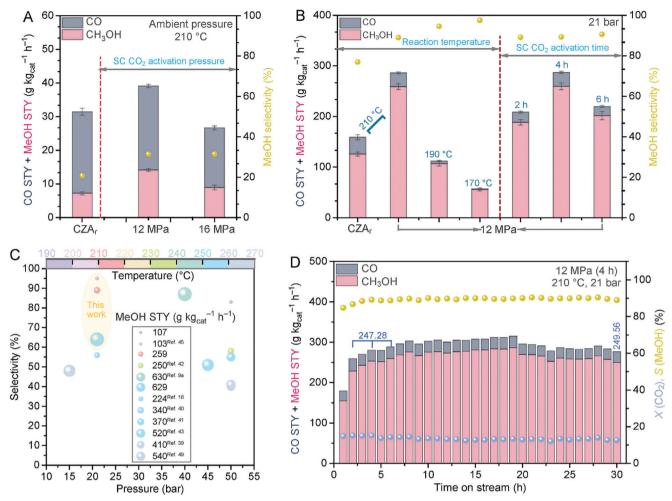


Figure 1. Performances of the different catalysts in CO $_2$ hydrogenation to methanol. A) MeOH selectivities and STYs of the differently activated catalysts for the reactions at 210 °C and atmospheric pressure. B) MeOH selectivities and STYs for the reactions at 170–210 °C and 21 bar. In all cases, results are expressed as mean \pm SEM (n=3), and significance was defined as p<0.05. C) Performance comparison between the 12 MPa (4 h) catalyst and other reported Cu-based catalysts for methanol production from CO $_2$ hydrogenation. D) Stability test of the 12 MPa (4 h) catalyst over 30 h. The catalyst was pre-treated in situ with H $_2$ at 350 °C for 1 h. Reaction conditions: molar ratio CO $_2$:H $_2=1:3$, 20 mg catalyst, flow rate 20 mL min $^{-1}$. The reaction activity tests were conducted in a Harrick reactor.

species and consumption of crystalline ZnO, which would lead to catalyst deactivation. [14] In contrast, no diffraction peaks of Aloxide species were observed on our samples, and the crystallinity of ZnO decreased after activation, suggesting a different formation mechanism of the spinel phase in the SC CO2–EtOH system. Note that the formation of Zn_xAl_2O_y can hinder the reduction of Zn^{\delta+} species and the sintering of Cu nanoparticles under long-term reaction, thereby enhancing the stability of the activated catalysts (Figure 2B and Figure S6, Supporting Information). [15] The decrease in the intensity of the diffraction peak for Zn_xAl_2O_y is probably caused by reaction-driven surface reconstruction. [16] The XPS results of Zn 2p_3/2 for the fresh and spent catalysts at 210 °C and 21 bar further reveal changes in the Zn coordination environment (Figure S7, Supporting Information). [17]

Quasi in situ XPS analysis provided deep insights into the near-surface structure of the tested catalysts. The atomic ratio of Cu to Zn follows the order of 12 MPa (4 h) (0.83) > 16 MPa (4 h) (0.77) > CZA_r (0.75), indicating that the coverage of ZnO_x

on the Cu surface induced by SMSI is reduced after activation. This observation indicates that the optimal catalyst activity is not dominated by the Cu-ZnO_x interfaces, which are recognized as the sole active sites for methanol synthesis.^[18] The Cu and Zn LMM Auger spectra (Figure 2C,E) show that the surface proportion of Cu⁺ species increases after further treatment in the SC CO₂-EtOH system, whereas with a lower proportion of $Zn^{\delta+}$ species.[13,19] Upon further exposure to H₂ at 350 °C, a complete reduction of Cu occurred in CZA,, as evidenced by the disappearance of the Cu⁺ signal. Nevertheless, the Auger parameter of Cu for the activated catalysts differs from that of CZA, evidencing a mixture of Cu⁰ and Cu⁺ (Figure S8, Supporting Information). More intriguingly, the amounts of $Zn^{\delta+}$ in the activated catalysts increase significantly. Under reaction conditions at 210 °C (21 bar or atmospheric pressure), a further decrease in the atomic percentages of Cu^+ and $Zn^{\delta+}$ was observed on the CZA, catalyst (Figure 2D,F and Figure S9, Supporting Information). However, the reaction mixture only slightly reduces the amount of $Zn^{\delta+}$ in

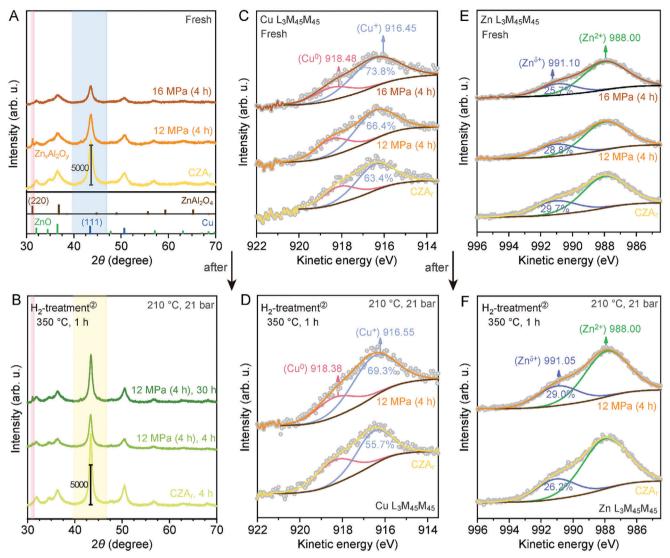


Figure 2. Structures of the fresh and spent catalysts at 210 °C and 21 bar. A,B) XRD patterns. C–F) Quasi in situ XPS Auger spectra of Cu LMM (C,D) and Zn LMM (E,F).

the activated samples, indicating a higher stability. The increased amount of Cu^+ might result from the reformation of a slight overlayer.

High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) imaging and energy-dispersive X-ray (EDX) mapping confirmed structural changes after the SC CO₂ treatment. The HRTEM images show the apparent amorphization of Cu nanoparticles for the activated samples (Figures S10 and S11, Supporting Information). SC CO₂-induced amorphization has been demonstrated before, where metallic Cu° can be oxidized to amorphous Cu_xO species with a high selectivity for C2+ products.^[20] Detailed analysis of the lattice spacing distribution suggested that ZnO overlayer on Cu nanoparticles with an uncontrollable SMSI phenomenon in the CZA_r catalyst, i.e., fully covered Cu nanoparticles, coexist with partially covered and partially uncovered ones (Figures 3A and S12, Supporting Information). The EDX line scans across a particle in CZA_r show a Cu:Zn atomic ratio of 3.5 in the near-surface region

(Figure 3B), which is consistent with previously reported results. The Cu:Zn atomic ratio at the surface of the catalyst decreased after reducing H₂ treatment.^[21] However, activating the catalyst with the SC CO₂–EtOH system initiated clear reconstruction at the Cu–ZnO_x interface. The ZnO overlayer vanished in 12 MPa (4 h) but became richer in the 16 MPa (4 h) sample (Figure 3C–F).

The retraction of overgrown ZnO on the surface of the 12 MPa (4 h) sample was also evidenced by an increased Cu:Zn atomic ratio of 4.61. In the high-performance catalyst studied in our work, ZnO with a small particle size (<5 nm) is uniformly distributed around the Cu particles, contributing to the exposure of a large Cu surface area of up to \approx 87.61 m² g⁻¹ (Table S2, Supporting Information), as well as to the optimization of the Cu–ZnO $_{x}$ interface. The N $_{2}$ O-RFC data reveal that the Cu dispersion in the CZA $_{r}$ catalyst, when activated with the SC CO $_{2}$ –EtOH mixture, is closely related to the treatment pressure. The dispersion follows the trend of 12 MPa (4 h) (12.95%) > 16 MPa (4 h) (10.40%) > CZA $_{r}$ (10.08%) (Figure S13, Supporting

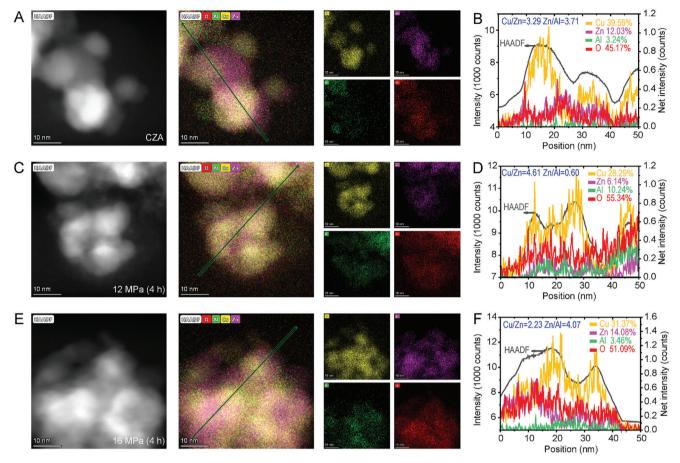


Figure 3. TEM characterization of the catalysts. A) HAADF STEM image and EDX elemental maps of CZA_r. Yellow: Cu; pink: Zn; green: Al; red: O. B) HAADF intensity and EDX line profiles along the green line in A). C,D) For the 12 MPa (4 h) sample. E,F) For the 16 MPa (4 h) sample.

Information). In addition, the enrichment of Al can be considered as being coupled to the formation of the new $Zn_xAl_2O_\gamma$ phase. The beneficial role of structural reconstruction at the $Cu-ZnO_x$ interface was further confirmed by the almost unchanged crystallite sizes and amorphous structure over the spent 12 MPa (4 h) catalyst, although the SMSI-induced partial coverage of the Cu surface with ZnO_x seems to have occurred again (Figure S14, Supporting Information). Recuperation and repeated processing in the SC CO_2 –EtOH system were shown to facilitate these structural regenerations (Figure S15, Supporting Information).

2.3. Origin of the Active Sites

When CO_2 fluid is subjected to temperatures above its critical point of 31.1 °C and pressures exceeding 7.38 MPa, it enters a SC state known as a SC CO_2 fluid, in which chemical reactions and materials synthesis that cannot be achieved with traditional solvents can occur. To gain insights into the reactions in SC CO_2 , one should first know that the critical characteristics of SC CO_2 are the inhomogeneity in space and the fluctuation in time. [122] When a solute is immersed in such an inhomogeneous medium, the average solvent density in the local region around a solute molecule will essentially differ from the bulk density, with typi-

cal increases/decreases of 50–300%. In addition, by adjusting the relevant parameters of the system, one can adjust the lifetime of the solvation structure and, consequently, the fluctuation of the polar environment (correlation time) around the solute molecule. In this context, SC CO $_2$ systems are being increasingly appreciated, especially very recently, for that the spatial inhomogeneity in the solvent density around reacting particles can dramatically affect the kinetics of diffusion-controlled reactions. [23]

We employed attenuated total reflectance infrared spectroscopy connected with a SC CO2 apparatus to study the reaction kinetics dominated by fluctuation and to determine the origin of active sites in the SC CO₂–EtOH system. Figure 4A shows the time-dependent spectra of the fresh CZA_r subjected at 40 °C and 12 MPa. After the introduction of CO2, a dynamic change in the adsorbates on the catalyst surface was observed. Ethoxy groups (*OC₂H₅) bound at "bridging oxygen" vacancies (Zn-O_{br}-OC₂H₅) with strong, highly characteristic bands at 1043, 1377, 1450, and 2875-2970 cm⁻¹ were identified as the main adsorbed species. [24] The peak intensity of Zn–OC₂H₅ (1119 cm⁻¹) on $\mathsf{CZA}_{\mathsf{r}}$, where the ethoxy groups are bound to the surface Zn atoms, is much weaker than that of Zn-O_{br}-OC₂H₅. The bands at 1273 and 1327 cm⁻¹ can be assigned to the $\delta_{\rm OH}$ and CH₂ wagging modes of a small number of ethanol molecules physisorbed on the surface. Note that surface-adsorbed *C₂H₅OH

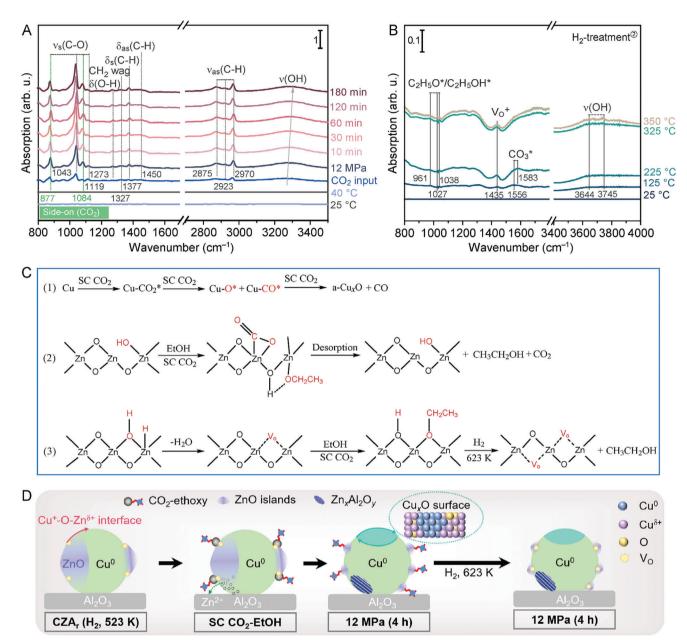


Figure 4. Structural evolution of the catalyst under the SC CO₂ environment. A) Time-dependent attenuated total reflectance infrared spectra of the fresh CZA_r in the SC CO₂–EtOH solvent system. B) In situ temperature-programmed DRIFTS of 12 MPa (4 h) with the spectra collected when the temperature was increased to 350 °C at a ramping rate of 5 °C min⁻¹ in H₂. C) Proposed reaction mechanism for SC CO₂-induced activation. The illustrations show how the SC CO₂ and EtOH mixture critically affect the Cu/ZnO/Al₂O₃ structure. D) Schematic illustration of the structural reconstructions.

is believed to poison active sites and prevent the migration of oxide species. $^{[10a,11]}$ Notably, the migration and secondary uniform nucleation of $\rm ZnO_x$ on the Cu surface is realized in the fluctuating SC $\rm CO_2-EtOH$ medium. On the other hand, the broad bands at 3200–3400 cm $^{-1}$ are derived from the intermolecular hydrogen bonds between $\rm CO_2$ and ethanol, which can significantly promote the polarity and solubility parameters of SC $\rm CO_2$. $^{[25]}$

Meanwhile, the notable features of the C–O symmetric stretching modes at 877 and 1084 cm⁻¹ suggest a η^2 (C, O) structural motif of metal–CO₂ interactions, i.e., CO₂ being fixed in a "side-on" coordination manner.^[26] The side-on bonded CO₂ is

known to be unstable as it is a weakly bound van der Waals-type complex. The removal of CO_2 may thus occur during decompression. These observations suggest that the surface-adsorbed *OC_2H_5 and CO_2 can act as the driving force for the migration of Zn species. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of the CZA_r and 12 MPa (4 h) catalysts after H_2 treatment reveals that the two samples have markedly different adsorption features (Figure 4B and Figure S16, Supporting Information). As the temperature was increased, adsorbed C_2H_5O/C_2H_5OH (961, 1027, and 1038 cm $^{-1}$), $^{[27]}$ water (3644 and 3745 cm $^{-1}$), and surface carbonate

www.advancedscience.com

species (1556 and 1583 cm $^{-1}$) gradually appeared on the surface of the 12 MPa (4 h) catalyst. The emergence of carbonate vibrational bands, correlating with residual CO $_2$ in the pipeline, underscores the high activity of ZnO $_x$ nanoparticles towards CO $_2$ conversion. In particular, the band at 1435 cm $^{-1}$ over the 12 MPa (4 h) catalyst that arises from V $_0^+$, where the oxygen vacancy (V $_0$) adsorbs a H $_2$ molecule and subsequently transfers electrons to it, length shows noticeable enhancement compared with the CZA $_x$ catalyst. Meanwhile, the core level fitting of the O 1s signal also shows an increased presence of V $_0$ on the surface of the 12 MPa (4 h) catalyst after H $_2$ treatment (Figure S17, Supporting Information). These results suggest that surface O $_{br}$ –OC $_2$ H $_5$ groups are removed as ethanol gas by protonation, thereby enabling the 12 MPa (4 h) catalyst with increased V $_0$.

It is worth summarizing the evidence for the participation of ethanol and CO₂ adsorbates on the catalyst in reconstructing the Cu surface, ZnO, overlayer, and largely improved CO, hydrogenation reactivity (Figure 4C). For the Cu surface, the dissociation of CO₂ molecules generates *CO and *O species on the Cu surface. The subsequent penetration of *O inside the Cu lattice transforms metallic Cu⁰ into an amorphous Cu_xO shell,^[20] which generates a large number of Cu⁰-Cu⁺ surface sites. Based on the TEM and IR results in Figures 3 and 4, ethoxy groups and CO₂ molecules are responsible for the migration of Zn species, as discussed in other works.^[24,30] We emphasize that ethanol species interact with Zn species in two different ways to reconstruct the ZnO_x overlayer. One is the Zn–OC₂H₅ species, which can readily be removed through combination with surface hydroxyl groups to desorb. The other is the O_{br}-OC₂H₅ species, which is bridge-bonded to two subsurface Zn cations and less active. Its removal occurs in the high-temperature range. On the other hand, the unreactive ethoxy groups can also be removed by protonation under reducing H₂ conditions, creating more V₀ in the activated catalyst. Such optimization of the Cu-ZnO_x interface structure in the SC CO₂-EtOH solvent system can significantly increase the number of the Cu⁰–O–Zn^{δ+} interface active sites. In addition, we hypothesize that the interaction of CO₂ with Zn species can induce the incorporation of Zn in the amorphous Al_2O_3 support and that the spinel-like structure of γ - Al_2O_3 can facilitate the formation of the new Zn_xAl₂O_y phase.^[31] An additional shoulder peak centered at 70 ppm (Ål_{IV} site) in the ²⁷Al magic-angle spinning nuclear magnetic resonance and a simultaneous redshift in the Al_{VI} peak frequency strongly support our hypothesis (Figure S18, Supporting Information).[15a] This new phase helps to stabilize $Zn^{\delta+}$ species under the reaction conditions, thereby enhancing the catalytic activity of the Cu^0 –O– $Zn^{\delta+}$ interface active sites. Based on the above results, we propose the mechanism for adsorbate (ethanol and SC CO₂ molecule)induced activation and characteristics (Figure 4D). The behavior of the Cu/ZnO/Al₂O₃ surface depends on the reaction mixture and conditions, and the critical keys to high performance are the large accessible activated Cu_xO surface area and optimized Cu-ZnO_x interface.

2.4. Analysis of the Reaction Pathways

Temperature-programmed desorption (TPD) of CO₂, CO, H₂, and NH₃ experiments were carried out to examine the effect of

the activated Cu_xO surface and optimized Cu–ZnO_x interface on the species adsorbed on the catalyst surface under the reaction conditions.

The CO₂-TPD results of all the catalysts confirm the presence of physically adsorbed CO₂ on hydroxyl groups (α < 150 °C), chemically adsorbed CO₂ on the metal oxide (200 < β < 500 °C), and Cu–ZnO_x interfacial sites ($\gamma > 500$ °C) (Figure 5A).^[32] Interestingly, the activated catalysts have distinct β and γ peaks compared with CZA, revealing a synchronous enhancement of surface and interface active sites. Particularly, an additional β peak at $255\,^{\circ}\text{C}$ on the 12 MPa (4 h) catalyst suggests a positive effect of the Cu_xO surface on the CO₂ adsorption. H₂-TPD data (Figure S19, Supporting Information) further demonstrate that the enhanced active sites endow the 12 MPa (4 h) catalyst with the strongest H₂ adsorption/activation capacity (0.558 mmol g⁻¹).^[33] Meanwhile, the CO-TPD profile of the 12 MPa (4 h) catalyst exhibits a lower overall CO desorption and higher desorption temperature, revealing that SC CO2 activation can efficiently adsorb and transform *CO intermediates (Figure 5B).[34] An increased acid site was also observed on the 12 MPa (4 h) catalyst (Figure 5C), which might be caused by the incorporation of Zn in γ -Al₂O₃.^[35] Note that the changes in acid sites for the 12 MPa (4 h) catalyst are beneficial for high selectivity to CH₃OH even at a higher conversion rate. These findings demonstrate that exposing the CZA, catalyst to the SC CO₂-EtOH mixture under reasonable pressure during activation can increase the number of the Cu^0 –O– $Zn^{\delta+}$ interface sites owing to the secondary nucleation and growth of ZnO, as well as generate a massive number of the Cu⁰–Cu⁺ surface sites through the formation of a significantly accessible activated Cu, O amorphous shell. In contrast, excessive treatment results in a thick ZnO_x overlayer, reducing the number of accessible Cu⁰–Cu⁺ surface sites on the surface of Cu_xO.

To date, the formate mechanism, where CO_2 binds through a C atom and a H atom coming from the dissociation of H_2 on metallic Cu^0 , forming a bidentate formate (bi-HCOO*) intermediate on active ZnO sites, is most commonly identified as the reaction mechanism of CO_2 hydrogenation to $CH_3OH.^{[4b]}$ Another pathway involves CO generated from the RWGS reaction through HOCO* species. It is generally accepted for the hydrogenation of CO_2 on a Cu catalyst with inert support. Analysis of the structural evolution under the SC CO_2 conditions and the catalytic performance over the activated catalysts have shown the favorable roles of the newly created Cu^0 – Cu^+ surface sites and optimal Cu^0 –C– $Cn^{\delta+}$ interface sites in CO_2 hydrogenation to CH_3OH . We thus hypothesize that both the formate (HCOO*) and CO-involved mechanisms act simultaneously over the activated catalyst during realistic conditions.

In situ temperature-programmed DRIFTS studies at atmospheric pressure were undertaken to gain further insight into the reaction pathway over the activated catalyst (170–250 °C). The catalysts were first reduced with a stream of H₂ at 350 °C for 1 h and then rinsed with Ar to remove weakly adsorbed molecules. Under the reaction conditions, the DRIFT spectra of the catalysts (3H₂:CO₂ treatment) show similar CO₃* species (Cu–CO₃* at 1269 and 1338 cm⁻¹, Zn–CO₃* at 1455–1513 cm⁻¹) and the adsorption of formate on Zn (bi-HCOO* at 1361 and 1589 cm⁻¹) with two O atoms bound to two adjacent Zn atoms (Figure 5D,E).^[18] The peaks at 1026–1050 cm⁻¹ can be assigned to the CH₃OH* and Zn–H₃CO* species. Overall, the generation

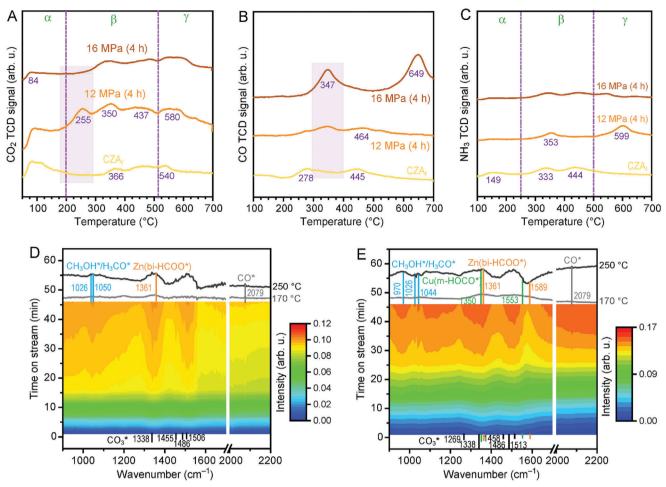
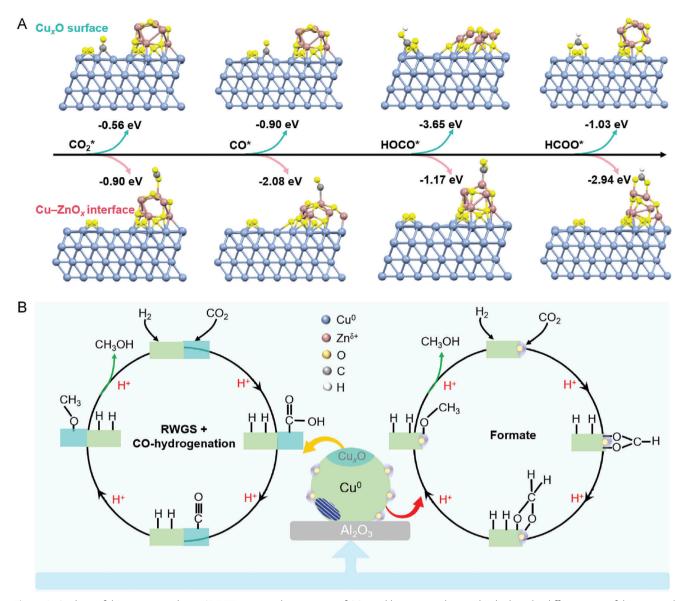



Figure 5. Identification of the active sites. A) CO_2 -TPD, B) CO-TPD, and C) NH_3 -TPD curves of the CZA_r, 12 MPa (4 h), and 16 MPa (4 h) catalysts. D, E) Time-dependent in situ DRIFTS spectra of the CZA_r (D) and 12 MPa (4 h) (E) catalysts under feed gas with an H_2/CO_2 molar ratio of 3:1 from 170 to 210 °C under atmospheric pressure.

and consumption of Zn-HCOO* on the 12 MPa (4 h) catalyst were extremely fast compared to those of CZA_r, even at the very early stage (170 °C), demonstrating a highly reactive reaction on the activated catalyst. Furthermore, the single vibrational peak of Zn(bi-HCOO*) on CZA, suggests that the Cu⁰-O-Zn^{δ +} interface site is the primary active site for CO2 activation and conversion. Noticeably, except for the common formate species, adsorbed Cu-H₃CO* (970 cm⁻¹) and the formation of monodentate HOCO* species (m-HOCO* at 1350 and 1553 cm⁻¹) on Cu with the C atom bonded to the active Cu site appear on the activated catalyst.[37] As the temperature was increased, the conversion of m-HOCO* to H3CO* species was much faster over bi-HCOO* on the 12 MPa (4 h) catalyst. More importantly, the DRIFT spectra of the activated catalyst show a twofold decrease in the integrated area of CO species (2079 cm⁻¹) compared to CZA_r, especially at a higher temperature (250 °C), indicating the efficient hydrogenation conversion of *CO intermediates on the 12 MPa (4 h) catalyst. The identification of Zn(bi-HCOO*) and Cu(m-HOCO*) intermediates and the decrease in the CO intensities, combined with the promotion of the reactivity of the activated catalyst, demonstrate that the exceptional reactivity induced by the SC CO₂–EtOH treatment is mediated by the dual-response pathway involving the formate and RWGS + CO hydrogenation mechanisms.

Accordingly, all components in the activated catalyst play important roles in the reaction. The involved components and roles can be summarized as follows. (i) The metallic Cu⁰ sites at the surface and interface dominate the adsorption and activation of H₂. (ii) The small ZnO species that are uniformly distributed around the Cu particles help the dispersion of the Cu phase and stabilize the active Cu+ sites at the surface of the Cu_O amorphous shell or the Cu-ZnO, interface. At the same time, the improved Cu–Zn synergy provides sufficient and stable Cu⁰–O– $Zn^{\delta+}$ interface sites, which, together with the Cu^0 – Cu^+ surface sites, activate CO2 and initiate the subsequent hydrogenation steps by different mechanisms. (iii) The formation of Zn_xAl₂O_y and the changes in acidic sites caused by the incorporation of Zn in the amorphous Al₂O₃ support promote the stability and selectivity of the activated catalyst. In addition, we conducted a comparative experiment using a Cu/ZnO/SiO2 catalyst without Lewis acidic sites to further highlight the universality of the proposed supercritical CO₂ activation strategy (Figure S20, Supporting Information).[33,38] Similar phenomena of the amorphization of the Cu component as well as the secondary nucleation and

Figure 6. Analysis of the reaction pathway. A) DFT-optimized geometries of CO_2 and key intermediates adsorbed on the different sites of the activated catalyst and their adsorption energies, where the upper ones belong to Cu_xO and the bottom ones belong to Cu_zO_xO on the 12 MPa (4 h) catalyst. Cu: blue; Zn: pink; O: yellow; C: grey; and H: white. B) Schematic diagram of the parallel reaction mechanisms on the Cu_xO surface and $Cu_zO_xO_x$ interface of the 12 MPa (4 h) catalyst for methanol synthesis from CO_2 hydrogenation.

growth of ZnO were observed in the activated Cu/ZnO/SiO $_2$ catalyst. As a result, the MeOH STY of the 12 MPa (4 h) Cu/ZnO/SiO $_2$ sample increased approximately by two folds, with a higher selectivity (42%), in comparison with its pristine counterpart at the reaction temperature of 250 °C.

Density functional theory (DFT) calculations provided additional fundamental insights into the MeOH reaction pathway over the activated catalyst. We note that even theoretically, it is challenging to elucidate such a promotion effect at the atomic level. [4b] We therefore proposed a simplified alternative solution, which is to calculate the adsorption energies of CO_2 and the key intermediates on the different sites. Cu nanoparticles were represented by a $\mathrm{Cu}(111)$ surface, which dominates on the X-ray diffraction patterns. The $\mathrm{Cu}_x\mathrm{O}$ and $\mathrm{Cu}\mathrm{-ZnO}_x$ sites un-

der the reaction conditions were modeled using the optimized ZnO/Cu(111) structure, where a number of O atoms bind to Cu atoms on the surface (Figure S21, Supporting Information).

Figures 6A and S22 (Supporting Information) show the DFT-optimized geometries of CO_2 and the key intermediates adsorbed on the Cu_xO surface and Cu– ZnO_x interface, respectively. The corresponding adsorption energies on the different sites were calculated (Table S3, Supporting Information). We can see that the Cu_xO surface that arises from metallic Cu^0 allows the binding of CO_2 and CO, which can efficiently activate CO_2 and suppress CO desorption. Furthermore, the HOCO* adsorption energy over the Cu_xO surface is higher than that on the Cu– ZnO_x interface, indicating that the RWGS + CO hydrogenation route can be enhanced over the Cu_xO surface. In

ADVANCED SCIENCE

contrast, the preferential adsorption of the HCOO* intermediate at the Cu-ZnO_x interface facilitates formate hydrogenation. These results further support the hypothesis that both the surface Cu⁰–Cu⁺ sites and the interfacial Cu⁰–O–Zn^{δ+} sites are active for MeOH synthesis from the CO2-H2 reaction, which involves different elementary reaction processes. Figure 6B illustrates the dual-response pathway of CO2 hydrogenation to MeOH, where the Cu⁰ site is responsible for H₂ activation, while the Cu^+ and $Zn^{\delta+}$ sites are proposed to promote not only CO_2 activation but also its further hydrogenation. The initial step of CO_2 hydrogenation on the Cu^0 –O– $Zn^{\delta+}$ interface sites occurs through a formate mechanism, where CO₂ reacts with a surface H* to generate an adsorbed bi-HCOO* species. This bi-HCOO* species is then further hydrogenated, forming a H₂COO* species, which undergoes sequential hydrogenation at the Cu-ZnO_x interface to yield H₃CO* as the reactive intermediate for MeOH synthesis. The Cu-CO₃* species are easily desorbed to produce byproduct CO in this pathway. The parallel RWGS + CO hydrogenation mechanism occurs on the Cu⁰-Cu⁺ surface sites, which is preferred at higher reaction temperatures. The adsorbed CO₂ is hydrogenated to form an m-HOCO* species through Cu⁺, followed by further hydrogenation that splits into CO* and H₂O. The further hydrogenation reaction of CO* gives a H₃CO* intermediate, with the final formation of CH₃OH. The synergistic effect of the Cu-ZnO_x interface and Cu_xO surface enables the Cu/ZnO/Al₂O₃ catalyst to be highly active, selective, and stable.

3. Conclusion

In summary, we have presented a supercritical CO2 activation strategy that synchronously perfects the SMSI-induced Cu⁰-O- $Zn^{\delta+}$ interface and exposed Cu^0 – Cu^+ surface sites by manipulating the adsorbate diffusion kinetics. Adsorbed *OC₂H₅ and CO₂ species on ZnOx have been demonstrated to effectively homogenize the secondary nucleation sites of ZnO_x on the Cu surface and cause the incorporation of Zn in the Al₂O₃ support. Further removal of *OC₂H₅ creates more V_O in the activated catalyst, and the formation of the Zn_xAl₂O_y spinel phase contributes to the improved stability of $Zn^{\delta+}$ species under the reaction conditions. Moreover, CO₂ adsorption on exposed metallic Cu⁰ results in the formation of an activated Cu_xO amorphous shell. Such a structural evolution, including an enlarged accessible Cu. O surface and optimized Cu-ZnO_x interface, unlocks the dual-response pathway in methanol synthesis. CO2 preferentially adsorbs on the Cu_xO surface in a monodentate bonding mode and undergoes hydrogenation through the reverse water-gas shift plus CO hydrogenation pathway. At the same time, the formate pathway occurs on the Cu–ZnO_x interface. The opportunities offered by our strategy to design active surface and interface sites at the atomic scale open new avenues for improving the reactivity of supported metal catalysts.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (22305091, 21903070), the Natural Science Foundation of Henan Province (232300420144), the Key Research Program of Higher Education Institutions in Henan Province (24A150020), and the Key Technology Research and Development Program of Henan (232102230014). The schematic of the SC $\rm CO_2$ -EtOH system in the Table of Contents image was modified from Servier Medical Art (http://smart.servier.com/), which is licensed under a Creative Common Attribution 3.0 Generic License (https://creativecommons.org/licenses/by/3.0/).

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Y.N.Z., S.R.Z., and J.F.W. conceived the project. Y.N.Z., J.Y.J., S.R.Z., and J.F.W. supervised the project. Y.N.Z., Y.S.W., and R.J.L. performed the experiments, collected, and analyzed the data. Y.N.Z. and J.F.W. drafted the manuscript and figures, and all authors revised them.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

dual-response pathway, methanol synthesis, strong metal-support interaction, supercritical CO₂ activation, ternary Cu/ZnO/Al₂O₃ catalyst

Received: January 9, 2025 Revised: February 8, 2025 Published online: March 7, 2025

- a) S. Kar, R. Sen, A. Goeppert, G. K. S. Prakash, J. Am. Chem. Soc.
 2018, 140, 1580; b) S. Navarro-Jaén, M. Virginie, J. Bonin, M. Robert,
 R. Wojcieszak, A. Y. Khodakov, Nat. Rev. Chem. 2021, 5, 564.
- [2] A. Beck, M. A. Newton, L. G. A. van de Water, J. A. van Bokhoven, Chem. Rev. 2024, 124, 4543.
- [3] C. R. International, https://www.carbonrecycling.is, 2024.
- [4] a) M. Zabilskiy, V. L. Sushkevich, D. Palagin, M. A. Newton, F. Krumeich, J. A. van Bokhoven, Nat. Commun. 2020, 11, 2409; b) G. Pacchioni, ACS Catal. 2024, 14, 2730.
- [5] a) M. Xu, M. Peng, H. Tang, W. Zhou, B. Qiao, D. Ma, J. Am. Chem. Soc. 2024, 146, 2290; b) T. Pu, W. Zhang, M. Zhu, Angew. Chem., Int. Ed. 2023, 62, e202212278.
- [6] a) J. Dong, Q. Fu, H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Cai, H. Zhang, Z. Liu, X. Bao, J. Am. Chem. Soc. 2020, 142, 17167; b) H. Xin, L. Lin, R. Li, D. Li, T. Song, R. Mu, Q. Fu, X. Bao, J. Am. Chem. Soc. 2022, 144, 4874; c) L. Cai, S. Han, W. Xu, S. Chen, X. Shi, J. Lu, Angew. Chem., Int. Ed. 2024, 63, e202404398.
- [7] a) T. Song, R. Li, J. Wang, C. Dong, X. Feng, Y. Ning, R. Mu, Q. Fu, Angew. Chem., Int. Ed. 2024, 63, e202316888; b) J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 2017, 9, 120.
- [8] a) T. Lunkenbein, F. Girgsdies, T. Kandemir, N. Thomas, M. Behrens,R. Schlögl, E. Frei, Angew. Chem., Int. Ed. 2016, 55, 12708; b) N.

- J. Divins, D. Kordus, J. Timoshenko, I. Sinev, I. Zegkinoglou, A. Bergmann, S. W. Chee, S. Widrinna, O. Karslioğlu, H. Mistry, M. L. Luna, J. Q. Zhong, A. S. Hoffman, A. Boubnov, J. A. Boscoboinik, M. Heggen, R. E. Dunin-Borkowski, S. R. Bare, B. R. Cuenya, *Nat. Commun.* **2021**, *12*, 1435.
- [9] a) N. Ortner, D. Zhao, H. Mena, J. Weiß, H. Lund, S. Bartling, S. Wohlrab, U. Armbruster, E. V. Kondratenko, ACS Catal. 2023, 13, 60;
 b) B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Ind. Eng. Chem. Res. 2019, 58, 9030.
- [10] a) F. Polo-Garzon, T. F. Blum, V. Fung, Z. Bao, H. Chen, Z. Huang, S. M. Mahurin, S. Dai, M. Chi, Z. Wu, ACS Catal. 2020, 10, 8515; b) F. Polo-Garzon, T. F. Blum, Z. Bao, K. Wang, V. Fung, Z. Huang, E. E. Bickel, D.-e. Jiang, M. Chi, Z. Wu, ACS Catal. 2021, 11, 1938; c) D. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu, I. E. Wachs, M. Zhu, Nat. Catal. 2022, 5, 99; d) Y. F. Shi, P. L. Kang, C. Shang, Z. P. Liu, J. Am. Chem. Soc. 2022, 144, 13401.
- [11] S. Jin, Z. Zhang, D. Li, Y. Wang, C. Lian, M. Zhu, Angew. Chem., Int. Ed. 2023, 135, e202301563.
- [12] a) Y. Zhou, P. Yan, S. Zhang, C. Ma, T. Ge, X. Zheng, L. Zhang, J. Jiang, Y. Shen, J. Chen, Q. Xu, Nano Today 2021, 40, 101272; b) Y. Zhou, Q. Xu, T. Ge, X. Zheng, L. Zhang, P. Yan, Angew. Chem., Int. Ed. 2020, 59, 3322; c) T. Ge, W. Cui, Q. Xu, Angew. Chem., Int. Ed. 2023, 135, e202300446.
- [13] S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff, J. Sehested, Angew. Chem., Int. Ed. 2014, 53, 5941.
- [14] M. B. Fichtl, D. Schlereth, N. Jacobsen, I. Kasatkin, J. Schumann, M. Behrens, R. Schlögl, O. Hinrichsen, Appl. Catal. A: Gen. 2015, 502, 262
- [15] a) M. Nadjafi, A. M. Kierzkowska, A. Armutlulu, R. Verel, A. Fedorov, P. M. Abdala, C. R. Müller, J. Phys. Chem. C 2021, 125, 14065; b) X. Huang, A. Beck, A. Fedorov, H. Frey, B. Zhang, B. Klötzer, J. A. van Bokhoven, C. Copéret, M. G. Willinger, ChemCatChem 2022, 14, 202201280
- [16] X. Zhang, G. Zhang, W. Liu, F. Yuan, J. Wang, J. Zhu, X. Jiang, A. Zhang, F. Ding, C. Song, X. Guo, Appl. Catal. B: Environ 2021, 284, 119700.
- [17] H. Nguyen-Phu, E. W. Shin, J. Catal. 2019, 373, 147.
- [18] B. Xie, R. J. Wong, T. H. Tan, M. Higham, E. K. Gibson, D. Decarolis, J. Callison, K. F. Aguey-Zinsou, M. Bowker, C. R. A. Catlow, J. Scott, R. Amal, Nat. Commun. 2020, 11, 1615.
- [19] C. J. Powell, J. Electron Spectrosc. Relat. Phenom. 2012, 185, 1.
- [20] C. Chen, X. Yan, Y. Wu, X. Zhang, S. Liu, F. Zhang, X. Sun, Q. Zhu, L. Zheng, J. Zhang, X. Xing, Z. Wu, B. Han, *Nat. Commun.* 2023, 14, 1092.

- [21] J. Zhu, D. Ciolca, L. Liu, A. Parastaev, N. Kosinov, E. J. M. Hensen, ACS Catal. 2021, 11, 4880.
- [22] O. Kajimoto, Chem. Rev. 1999, 99, 355.
- [23] a) D. Zhang, L. Zhang, S. Zhang, X. Guo, B. Yang, Y. Zhou, J. CO2 Util. 2024, 80, 102694; b) Y. Zhou, P. Yan, S. Zhang, Y. Zhang, H. Chang, X. Zheng, J. Jiang, Q. Xu, Fundam. Res. 2021, 2, 674; c) Y. Zhou, Q. Xu, Phys. Chem. Chem. Phys. 2023, 25, 3607.
- [24] a) G. A. M. Hussein, N. Sheppard, M. I. Zaki, R. B. Fahim, J. Chem. Soc. 1991, 87, 2661; b) J. Zhang, C. Shang, Z. An, Y. Zhu, H. Song, Z. Chai, X. Shu, L. Zheng, J. He, Angew. Chem., Int. Ed. 2023, 62, e202312068.
- [25] P. Lalanne, T. Tassaing, Y. Danten, F. Cansell, S. Tucker, M. Besnard, J. Phys. Chem. A 2004, 108, 2617.
- [26] a) J. Mascetti, M. Tranquille, J. Phys. Chem. 1988, 92, 2177; b) L. G. Dodson, M. C. Thompson, J. M. Weber, Annu. Rev. Phys. Chem. 2018, 69, 231.
- [27] L. Zhang, J. Feng, L. Wu, X. Ma, X. Song, S. Jia, X. Tan, X. Jin, Q. Zhu, X. Kang, J. Am. Chem. Soc. 2023, 145, 21945.
- [28] M. Li, Z. Wu, S. Overbury, J. Catal. 2013, 306, 164.
- [29] Z. Wang, K. Wang, H. Wang, X. Chen, W. Dai, X. Fu, Catal. Sci. Technol. 2018, 8, 3260.
- [30] a) L. Gamble, L. S. Jung, C. T. Campbell, Surf. Sci. 1996, 348, 1; b) G. Kwak, K. Yong, J. Phys. Chem. C 2008, 112, 3036.
- [31] H. Zhou, Y. Ji, Y. Wang, K. Feng, B. Luan, X. Zhang, L. Q. Chen, Acta Mater. 2024, 263, 119513.
- [32] S. Wang, L. Zhang, W. Zhang, P. Wang, Z. Qin, W. Yan, M. Dong, J. Li, J. Wang, L. He, *Chem* 2020, 6, 3344.
- [33] Y. Wang, X. Wang, Z. Yan, C. Xu, W. Zhang, H. Ban, C. Li, J. Catal. 2022, 412, 10.
- [34] K. Wang, H. Qin, J. Li, Q. Cheng, Y. Zhu, H. Hu, J. Peng, S. Chen, G. Wang, S. Chou, Appl. Catal. B: Environ. 2023, 332, 122763
- [35] a) J. Trawczyński, A. Kubacki, J. Wrzyszcz, M. Zawadzki, H. Grabowska, W. Miśta, React. Kinet. Catal. Lett. 2002, 76, 259; b) S. Wu, W. Sun, J. Chen, J. Zhao, Q. Cao, W. Fang, Q. Zhao, J. Catal. 2019, 377, 110
- [36] S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Science 2017, 355, 1296.
- [37] M. Yang, J. Yu, A. Zimina, B. B. Sarma, J. D. Grunwaldt, H. Zada, L. Wang, J. Sun, Angew. Chem., Int. Ed. 2024, 63, e202312292.
- [38] E. Lam, J. J. Corral-Pérez, K. Larmier, G. Noh, P. Wolf, A. Comas-Vives, A. Urakawa, C. Copéret, Angew. Chem., Int. Ed. 2019, 58, 13989.