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SUMMARY

Preoperative diagnosis of infection stones presents a significant clinical challenge. We developed amachine
learning model to predict urinary infection stones using computed tomography (CT) values, enabling in vivo
preoperative identification. In this study, we included 1209 patients who underwent urinary lithotripsy at our
hospital. Sevenmachine learning algorithms along with eleven preoperative variables were used to construct
the prediction model. Subsequently, model performance was evaluated by calculating AUC and AUPR for
subjects in the validation set. On the validation set, all seven machine learning models demonstrated strong
discrimination (AUC: 0.687–0.947). Additionally, the XGBoost model was identified as the optimal model
significantly outperforming the traditional LR model. Taken together, the XGBoost model is the first machine
learning model for preoperative prediction of infection stones based on CT values. It can rapidly and accu-
rately identify infection stones in vitro, providing valuable guidance for urologists in managing these stones.

INTRODUCTION

Urological stones are increasingly prevalent in the field of urol-

ogy. Epidemiological analyses indicate a rise in their prevalence

in China, from 4% to 6.4% in recent years, with notable regional

differences. The southern region shows a higher prevalence

(11.6%) compared to the northern (7.2%).1 Infection stones, a

specific type of urinary tract stone, are composed of minerals

such as struvite, carbonate apatite, and ammonium urate. Their

etiology and formation mechanisms are complex, with a strong

association with urinary tract infections caused by urease-pro-

ducing bacteria, including Proteus mirabilis, Klebsiella pneu-

moniae, Pseudomonas aeruginosa, Staphylococcus, and Mor-

ganella.2 Clinically, infection stones exhibit distinctive features,

such as rapid growth, high recurrence rates, and a propensity

for serious complications.3 Consequently, managing patients

with infection stones presents significant challenges in urolith-

iasis, representing a particularly demanding subset. The close

association between infection stones and urease-producing

bacteria increases the risk of postoperative complications,

such as uroseptic shock and systemic inflammatory response

syndrome.4

Effective management of infection stones involves a compre-

hensive array of therapeutic strategies, including pre- and post-

operative antibiotics, meticulous surgical removal of stone

fragments, litholytic therapy, urine acidification, and urease in-

hibitors.5 Regardless of the treatment approach, early and accu-

rate identification of infection stones is essential. Currently, pre-

cise determination of stone composition is limited to in vitro

analysis using infrared spectroscopy, presenting a significant

diagnostic constraint in clinical practice. Preoperative diagnosis

of infection stones heavily relies on recognized risk factors for

infection, including advanced age, female gender, cerebrovas-

cular disease, abnormal urinary tract anatomy, and diabetes

mellitus.6–9

The diagnosis of urinary stones relies on CT examination due

to its superior sensitivity, specificity, and safety compared to

other imaging modalities. CT scans are more efficient, do not

necessitate contrast media, and are unaffected by renal function

and intestinal gas interference. Spiral CT is commonly utilized in

clinical settings for urolithiasis diagnosis, with urinary stones

typically manifesting as dense calcified shadows on CT images,

although stone density may vary among different types. The

measurement of CT values can aid in the preliminary assessment
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of stone composition.10 However, Marchini et al.11 caution

against solely relying on CT values for precise predictions of

infection stone composition. Consequently, this clinical study

aims to develop a comprehensive predictive model based on

CT values to facilitate the preoperative identification of infection

stones in vivo.

Machine learning models utilize data and statistical tech-

niques to enable computer systems to predict outcomes and

make decisions, which is particularly prevalent in the medical

field. The Multilayer Perceptron (MLP) is a neural network algo-

rithm with hidden layers comprising nodes that undergo multi-

layer nonlinear transformations to abstract and classify input

data.12 The Support Vector Machine (SVM) is a binary classifi-

cation method that considers each feature as a dataset dimen-

sion to segment the dataset effectively based on the classifica-

tion of interest.13 The Decision Tree (DT) algorithm facilitates

classification and regression tasks by recursively partitioning

datasets into a tree structure, enabling sample classification

or prediction.14 Adaptive Boosting (AdaBoost) is an iterative

Figure 1. Machine learning model building

flowchart

training methodology that enhances

the performance of weak classifiers by

amalgamating them into a robust classi-

fier.15 Gaussian Naive Bayes (GNB) is

rooted in probabilistic principles and

Gaussian distributions, providing a

classification methodology based on

its probabilistic foundation.16 Extreme

Gradient Boosting (XGBoost), similar to

AdaBoost, iteratively trains decision

treemodels to refinemodel performance

by progressively correcting errors. This

study constructed and selected an

optimal machine learning model using

these seven algorithms and preopera-

tive variables such as CT values. Urolo-

gists can tailor treatment strategies by

identifying patients at high risk of devel-

oping infection stones. These results

highlight the essential role of machine

learning in enhancing clinical decision-

making processes in urology.

RESULTS

Study population
This study enrolled 1209 eligible pa-

tients, and the study flow chart is

shown in Figure 1. The stone composi-

tion and CT values are detailed in Ta-

ble 1. Most of the patients’ urinary

stones were composed of calcium oxa-

late, totaling 808 (66.83%) cases. There

were 241 (19.9%) cases of infection

stones, with only 48 (3.97%) identified as pure infection

stones. Most infection stones consisted of struvite or carbon-

ate apatite mixed with calcium oxalate. There were 6 cases

(0.4%) of calcium hydrogen phosphate stones. Cystine

stones were excluded due to their scarcity. Among the infec-

tion stones, the CT values were (666.43 ± 128.46) HU for pure

ammonium magnesium hexaphosphate struvite and (731.72 ±

161.56) HU for pure carbapatite. The CT value for mixed infec-

tion stones primarily composed of struvite was (902.03 ±

165.34) HU, while for those dominated by carbonate apatite,

it was (889.51 ± 171.64) HU. The CT value for stones contain-

ing both carbapatite and struvite was (708.41 ± 83.62) HU.

Among the non-infection stones, the CT value of pure calcium

oxalate stones was (1346.05 ± 175.02) HU, and the CT

value of mixed non-infection stones with calcium oxalate

predominance was (1241.36 ± 219.86) HU. The CT value of

pure uric acid stones was (426.58 ± 103.97) HU, while the

CT value of uric acid + calcium oxalate stones was

(526.49 ± 202.45) HU.
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The frequency of pathogens detected in positive urine cultures

is illustrated in Figure S3. Among patients with infection stones,

P. mirabilis was the predominant pathogen (n = 43), followed by

Escherichia coli (n = 31) and K. pneumoniae (n = 15). For non-

infection stones, E. coli was the most frequently identified path-

ogen (n = 113), followed by Enterococcus faecalis (n = 25) and

Streptococcus agalactiae (n = 18). The main urease-producing

organisms included P. mirabilis, K. pneumoniae, P. aeruginosa,

Staphylococcus spp., and Morganella spp.

One-way analysis of variance and lasso regression
A total of 1209 case samples were randomly divided into a

training set (70%) and a validation set (30%). The prevalence

of infection stones in the overall sample (19.93%) did not signif-

icantly differ from that in the training set (19.6%) and the valida-

tion set (20.7%). Except for urinary RBC, no significant differ-

ences were found in any variables between the training and

validation sets(P＞0.05), as shown in Table S1.

Univariate analysis of the training set is presented in Table 2. A

higher proportion of female patients than male patients pre-

sented with infection stones (M/F = 0.73 p < 0.05). Additionally,

other variables associated with infection stones included body

mass index (p = 0.023), history of recurrent stones (p = 0.01),

recurrent renal stones (p < 0.01), number of stones (p < 0.01),

stone location (p < 0.01), stone load (p < 0. 01), CT value

(p < 0.01), urine PH (p < 0.01), urine nitrite positivity (p < 0.01),

urine protein positivity (p < 0.01), urine occult blood positivity

(p = 0.01), urine leukocyte esterase positivity (p < 0. 01), urine

WBC positivity (p < 0.01), urine culture positivity (p < 0.01), ure-

ase producing bacteria positivity (p < 0.01), urine turbidity

(p = 0.01), serum uric acid (p < 0.01) and serum neutrophil per-

centage (p = 0.012). Variables with p < 0.05 in the one-way anal-

ysis of the training set were included in the Lasso regression

analysis, resulting in the selection of 11 variables for constructing

the predictive model: gender, stone burden, history of recurrent

kidney stones, HU, urine pH, urinary nitrite, urinary protein, urine

leukocyte esterase, urine WBC, urease-producing bacteria, and

serum uric acid (Figures 2A and 2B).

Model performance
We selected parameter values for training each model and con-

ducted a 10-fold cross-validation to assess their performance

using various criteria. Tables S2 and 3 present the area under

the curve (AUC) values, accuracy, specificity, sensitivity, positive

predictive value (PPV), negative predictive value (NPV), and F1

scores of each model within the training and validation sets,

respectively. The receiver operating characteristic (ROC) curves

depicting the performance of different models are illustrated in

Figures 3A and 3B. The AUC values of the different models in

the validation set were as follows: XGBoost 0.947 (95% CI

0.921-0. 973), LR 0.906 (95% CI 0.869–0.943), AdaBoost 0.937

(95% CI 0.905–0.969), DT 0.903 (95% CI 0.863–0.944), GNB

0.909 (95% CI 0.877–0.941), SVM 0.752 (95% CI 0.702–0.803)

and MLP 0.687 (95% CI 0.625–0.750). Except for the DT, MLP

and SVM models, the AdaBoost, XGBoost, and GNB models

demonstrated superior performance to the traditional LR

models. The accuracy values of the seven machine learning

models ranged from 0.64 to 0.896, sensitivity values ranged

from 0.635 to 0.915, and specificity values ranged from 0.697

to 0.872. Furthermore, XGBoost exhibited the highest area under

the precision-recall curve (AUPR) in both the training and valida-

tion sets (Figures 3C and 3D). Based on these results, particularly

considering the sensitivity, specificity, and AUPR values,

XGBoost is the optimal model choice [AUC: 0.947 (95% CI

0.921–0.973), accuracy 0.896 (95% CI 0.887–0.905), sensitivity

0.901 (95% CI 0.872–0.931), specificity 0.869 (0.837–0.901),

AUPR 0.957 (0.944–0.971)].

The SHAP to model interpretation
The Shapley Additive exPlanations (SHAP) method was used to

assess the significance of each variable in predicting outcomes

in the XGBoost machine learning model (Figures 4A and 4B).

Table 1. Distribution of urinary stone composition and CT values

Parameter Patients,n (%) Range Mean ± SD

Predominantly infection stones 241（19.93） 308.67�1346.43 855.68±177.20

Pure struvite 13（1.07） 308.67–812.49 666.43 ± 128.46

Mixed-predominantly struvite 68(5.62) 637.85–1328.43 902.03 ± 165.34

Pure carbapatite 10(0.83) 637.85–1328.43 731.72 ± 161.56

Mixed-predominantly carbapatite 125 (10.34) 506.30–1346.43 889.51 ± 171.64

struvite +carbapatite 25(2.07) 554.36–886.54 708.41 ± 83.62

Predominantly noninfection stones 968（80.07） 165.58�1843.23 1156.49±354.07

Pure calcium oxalate 308（25.48） 789.56–1796.66 1346.05 ± 175.02

Mixed-predominantly calcium oxalate 500（41.36） 568.90–1843.23 1241.36 ± 219.86

Pure uric acid 50（4.14） 165.58–738.88 426.58 ± 103.97

Mixed-predominantly uric acid 104（8.60） 267.52–1461.28 526.49 ± 202.45

Pure calcium phosphate 6（0.50） 1098.50–1608.35 1354.75 ± 162.42

Simple infection stones are defined as having R95% of that infection stone component, and mixed infection stones are defined as having R50% of

that infection stone component. Mixed-predominantly struvite Includes struvite + calcium oxalate, struvite + carbapatite + calcium oxalate. Mixed-pre-

dominantly carbapatite Includes carbapatite + calcium oxalate, carbapatite + struvite + calcium oxalate. Mixed-predominantly calcium oxalate In-

cludes calcium oxalate + struvite/carbapatite. Mixed - predominantly uric acid stones including uric acid + calcium oxalate.
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Figure 4A displays 11 important features of the XGBoost model,

where each line on the vertical axis represents a feature, and the

horizontal axis represents the SHAP values (the distribution of

the effect of features on the model output). Each dot on a feature

line represents a sample, with red dots indicating higher feature

values and blue dots indicating lower feature values. Factors

such as moderate stone HU values, elevated urinary leukocytes,

increased stone load, reduced blood uric acid, urinary urease-

producing bacterial infections, heightened urinary pH, female

gender, increased urinary proteins, recurrent stones, and posi-

tive urinary leukocyte esterase and urinary nitrites promote the

development of infection stones. Figure 4B shows the mean

Table 2. Univariate analysis between infection and noninfection stone groups in the training and validation sets

Characteristics

Training set validation set

Non-infection stones infection stones Non-infection stones Infection stones

(n = 680) (n = 166) p (n = 288) (n = 75) p

Gender (Female)(%) 194 (28.5) 98 (59.0) <0.001 85 (29.5) 41 (54.7) <0.001

Age (years),(mean (SD)) 52.87 (13.50) 50.73(14.64) 0.073 52.06 (13.33) 51.72(15.37) 0.848

BMI (kg/m2),(mean (SD)) 24.05 (3.41) 23.39 (3.14) 0.023 23.96 (3.65) 23.94 (3.52) 0.969

Diabete,(n%) 81 (11.9) 27 (16.3) 0.168 30 (10.4) 17 (22.7) 0.009

Hypertension,(n%) 194 (28.5) 40 (24.1) 0.295 77 (26.7) 16 (21.3) 0.42

Recurrence,(n%) 179 (26.3) 66 (39.8) 0.001 84 (29.2) 22 (29.3) 0.999

Number of stones(mean(SD)) 2.69 (1.62) 3.3 (2.18) <0.001 2.61 (1.49) 3.21 (2.26) 0.006

Stone burden (mm2)(mean (SD)) 218.60(274.78) 430.14(552.20) <0.001 204.99(247.84) 404.82(504.64) <0.001

HU (mean (SD)) 1144.94(359.9) 857.78(180.68) <0.001 1183.74(338.96) 851.03(170.34) <0.001

Recurrent kidney stones,(n%) 122 (17.9) 60 (36.1) <0.001 56 (19.4) 22 (29.3) 0.089

Stone location (n%) <0.001 0.004

Bladder 34 (5.0) 11 (6.6) 19 (6.6) 2 (2.7)

Ureter 190 (27.9) 20 (12.0) 85 (29.5) 9 (12.0)

Kidney 454 (66.8) 134 (80.7) 182 (63.2) 64 (85.3)

Urinary tract 2 (0.3) 1 (0.6) 2 (0.7) 0 (0.0)

Degree of hydronephrosis(n%) 0.294 0.001

None 92 (13.5) 20 (12.0) 46 (16.0) 2 (2.7)

Light 267 (39.3) 54 (32.5) 111 (38.5) 23 (30.7)

Medium 196 (28.8) 55 (33.1) 93 (32.3) 31 (41.3)

Heavy 125 (18.4) 37 (22.3) 38 (13.2) 19 (25.3)

Urine pH (mean (SD)) 5.98 (0.59) 6.50 (0.65) <0.001 6.01 (0.62) 6.53 (0.65) <0.001

Urine specifc gravity(mean(SD)) 1.02 (0.01) 1.02 (0.01) 0.085 1.02 (0.01) 1.02 (0.01) 0.136

Positive urinary nitrite,(n%) 55 (8.1) 44 (26.5) <0.001 19 (6.6) 17 (22.7) <0.001

Positive urinary glucose,(n%) 36 (5.3) 9 (5.4) 0.999 19 (6.6) 5 (6.7) 0.999

Positive urinary protein,(n%) 233 (34.3) 91 (54.8) <0.001 97 (33.7) 46 (61.3) <0.001

Positive urine occult blood,(n%) 571 (84.0) 156 (94.0) 0.001 226 (78.5) 75 (100.0) <0.001

Positive ULE,(n%) 428 (62.9) 139 (83.7) <0.001 177 (61.5) 65 (86.7) <0.001

Positive urine_turbidity,(n%) 252 (37.1) 85 (51.2) 0.001 100 (34.7) 35 (46.7) 0.076

Urine RBC (mean (SD)) 2.20 (1.68) 2.39 (1.72) 0.183 1.89 (1.51) 2.32 (1.49) 0.027

Urine WBC (mean (SD)) 2.04 (1.40) 2.93 (1.45) <0.001 2.05 (1.41) 3.05 (1.58) <0.001

Positive urine culture,(n%) 158 (23.2) 89 (53.6) <0.001 63 (21.9) 36 (48.0) <0.001

Positive urease producing

bacteria(n%)

25 (3.7) 49 (29.5) <0.001 11 (3.8) 25 (33.3) <0.001

Serum uric

acid(umol/L),(mean (SD))

395.61(104.55) 317.61 (84.85) <0.001 388.22 (101.34) 323.99 (84.28) <0.001

BUN (mmol/L),(mean (SD)) 100.91 (65.63) 105.74 (65.40) 0.395 96.97 (57.80) 95.68 (43.87) 0.857

Blood calcium (mmol/L),(mean (SD)) 2.39 (0.13) 2.39 (0.16) 0.725 2.38 (0.13) 2.38 (0.16) 0.997

Leukocytes counts (mean (SD)) 7.07 (2.31) 7.41 (2.54) 0.096 7.08 (2.89) 7.08 (2.72) 0.999

Neutrophils (mean (SD)) 64.85 (10.25) 67.12 (10.90) 0.012 65.22 (10.19) 66.32 (9.65) 0.397

The bold numbers indicate statistically significant values. BMI, body mass index; BUN, blood urea nitrogen; urine RBC, urine red blood cells; SD, stan-

dard deviation; ULE, urine leukocyte esterase; urine WBC, urine white blood cells; HU, Hounsfield unit, CT value.
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absolute values of the SHAP values of the 11 features, indicating

the importance of these features, with the horizontal axis repre-

senting the mean absolute SHAP values.

Model evaluation
In the XGBoostmodel, the DCA curves demonstrate a net benefit

within the threshold probability range, indicating that utilizing the

model for decision-making can yield greater benefits than the

‘‘treat-all’’ and ‘‘treat-none’’ approaches. These findings under-

score the clinical value of the model, offering decision-makers

valuable insights for informed decision-making. Moreover, the

calibration curves exemplify the high accuracy and strong diag-

nostic performance of the XGBoost model within the cohort

(Figures 5A and 5B).

DISCUSSION

The integration of machine learning algorithms into medical

practice has witnessed a substantial increase in recent years,

equipping clinicians with invaluable tools for swift and precise

disease diagnosis and the customization of treatment protocols.

This study developed and assessed seven distinct machine

learning models, including XGBoost, Logistic Regression (LR),

Adaptive Boost (AdaBoost), Decision Tree (DT), Gaussian Naive

Bayes (GNB), Multilayer Perceptron (MLP), and Support Vector

Machine (SVM), to discriminate between patients with infectious

stones and those with non-infectious stones. The comprehen-

sive analysis spanned a wide array of parameters, incorporating

CT imaging features, demographic attributes, and urine culture

findings. Among the seven machine learning models, XGBoost

emerged as the optimal model, exhibiting superior perfor-

mance[AUC: 0.947 (95% CI 0.921–0.973), accuracy 0.896

(95% CI 0.887–0.905), sensitivity 0.901 (95% CI 0.872–0.931),

specificity 0.869 (0.837–0.901), AUPR 0.957 (0.944–0.971)].

The study utilized DCA and calibration curves to assess the

effectiveness of the XGBoost model in predicting infection

stones. Furthermore, the utilization of the SHAP method

improved the predictive accuracy and interpretability of our

model and provided insights into the relative significance of indi-

vidual features in the prediction process. Significantly, our find-

ings highlighted the significant role of Hounsfield Unit (HU) values

among the features in improving the predictive accuracy of the

model. The incorporation of conventional clinical parameters in

our machine learning prediction model not only ensures accessi-

bility and user-friendliness but also eliminates the need for com-

plex technical requirements. Consequently, the model holds

promise for widespread adoption in primary healthcare settings,

offering considerable potential for enhancing clinical decision-

making and patient care outcomes.

Infectious stones represent a distinct subtype of urinary tract

stones, posing considerable challenges in urolithiasis manage-

ment. Characterized by rapid growth, high recurrence rates,

and a tendency for serious complications, infection stones

can quickly assume staghorn-shaped formations, exacerbating

Figure 2. Use of lasso regression analysis for variable selection

(A) Vertical lines were drawn over selected values using 10-fold cross validation, where the best lambda produced 11 non-zero coefficients.

(B) Distribution of coefficients for 19 texture features extracted from the log (l) sequence. Vertical dashed lines are drawn at the minimum mean square error

(l = 0.006) and the standard error of the minimum distance (l = 0.02). optimal l When the value is 0.02, our model selects 11variables: Gender, stone burden,

Recurrent kidney stones, HU, Urine PH, Urinary protein, Urinary nitrite, Urine leukocyte esterase, Urine WBC, Urease producing bacteria, Serum uric acid.
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clinical complexities.17 If left untreated, these stones can result in

severe complications such as renal pelvic necrosis, perinephric

abscess formation, renal failure, and, in extreme cases, may

require kidney removal or lead to fatality.18 Recent studies

have shown that patients with untreated staghorn stones have

a 50% risk of kidney loss,19 and the 15-year overall survival

rate for patients with untreated infection stones is only 41%.

Moreover, 30% of patients with untreated infection stones who

do not undergo surgical intervention ultimately succumb to

sepsis or renal failure.20 Surgical treatment introduces a high

risk of postoperative infectious complications. Previous litera-

ture has reported a sepsis rate of 0.3–9.3% after surgery for uri-

nary tract stones,21 while Liu et al.22 noted a 19% incidence of

postoperative septicemia in infection stones.

Accurate preoperative identification of these stone types is

crucial for guiding appropriate treatment decisions in clinical

practice. The most widely accepted treatment for infection

stones is the complete surgical extraction of stone fragments,

as any remaining fragments can form new infection stones.23

Percutaneous nephrolithotomy is recommended for larger renal

infection stones (>2 cm), while ureteroscopy and extracorporeal

shock wave lithotripsy (SWL) are alternatives for stones <2 cm.

Ureteroscopy and percutaneous nephrolithotripsy offer a higher

stone clearance rate than ESWL.24 Due to their relatively soft and

friable nature compared to other urinary stones,25 infection

stones are more easily fragmented during surgical procedures.

However, the substantial volume of stone debris produced dur-

ing fragmentationmay release infectious bacteria into the urinary

tract, increasing the risk of re-infection and stone recurrence.26

Therefore, in addition to surgery, the treatment of infection

stones should incorporate preoperative and postoperative

antibiotic regimens, urine acidification, and urease inhibitor sup-

plementation to reduce the risk of recurrence and growth of

infection stones.27

The initial step in managing infection stones entails the

detection and identification of the stones. CT is a rapid and reli-

able method for detecting and precisely locating stones within

the urinary tract. On CT scans, stones manifest as dense calci-

fication shadows; however, the density of various stone types

varies, resulting in differing CT values. For instance, typical

struvite stones exhibit a density of 900 HU or lower on CT imag-

ing.28 Consistent with our research, the mean CT value of infec-

tion stones in our study was 855.68 ± 177.20 HU, while non-

infection stones had a mean CT value of 1156.49 ± 354.07

HU, showing a significant difference (p < 0.05) (Table 1). How-

ever, there is an overlap in CT values between infection stones

and other types of stones (e.g., calcium oxalate and uric acid

stones), thereby limiting the utility of CT values alone in predict-

ing infection stones.11 Therefore, we constructed a compre-

hensive prediction model based on CT values to facilitate the

preoperative identification of infection stones. Furthermore,

CT scans indicated that infection stones are predominantly sit-

uated in the kidney, exhibiting a greater number and burden

compared to non-infection stones (Table 2).

Urinary tract infections and metabolic disorders are the two

main causes of urinary tract stone development.29 Struvite

stones are conventionally linked to urinary tract infections insti-

gated by urease-producing bacteria.30 A positive urine cultureT
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is considered a risk factor for infection stones,31 and urease-pro-

ducing bacteria in the urine culture suggests that the urinary

stone might be an infection stone. This study identified positive

urine culture and urease-producing bacterial infection as predic-

tors of infection stones. However, the occurrence of urease-pro-

ducing bacteria in infection stones was not notably high

(30.71%) (Table 2), possibly due to the utilization of mid-stream

urine for cultivation. Previous studies have underlined the inade-

quacy of urine culture as a precise method for pathogen identi-

fication in conditions linked with urinary tract infections.32 To

enhance accuracy, future strategies might involve direct

culturing of stone samples or, when stone cultures are unavai-

lable, obtaining urine specimens from the closest infection site,

such as directly from the renal pelvis.33

Urease-producing bacteria synthesize urease, an enzyme that

hydrolyzes urea in urine to generate carbon dioxide and ammonia.

Consequently, NH4+ and HCO3- ions are produced, causing an

increase in urine pH. When the pH of the urine exceeds certain

Figure 3. Comprehensive analysis of machine learning models in training and validation sets

(A) Training cohort ROC and AUC; (B) Validation cohort ROC and AUC.

(C) Training set PR curve and AP, and (D) validation set PR curve and AP. The y axis represents precision, and the x axis represents recall. If the PR curve of one

model is completely covered by the PR curve of another model, it can be concluded that the latter is better than the former, and the higher the AP value, the better

the model performance. The different colors in the image represent the corresponding models.
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thresholds, it promotes the gradual saturation of metal salts, lead-

ing to the crystallization of infectious stone components.3 Carbon-

ate apatite crystals precipitate when the pH exceeds 6.8, whereas

struvite crystals form at pH > 7.2,34 and carbonate apatite can

form larger aggregates at high pH > 8.5.35 Our study supports

that an elevated urinary pH contributes to the precipitation of

infection stones, consistent with the existing literature. The utiliza-

tion of a comprehensive 24-h urinalysis is essential for the meta-

bolic assessment of urinary stones and plays a pivotal role in

developingour infection stonespredictionmodel. Urinary pH, pro-

tein, nitrite, and leukocytes emerged as significant predictors

through univariate analysis and lasso regression.

This study observed a higher prevalence of urinary stones in

males and a greater incidence of infection stones in females

(M/F = 0.73 p < 0.05) (Table 2). The increased susceptibility of

women to develop infection stonesmay beattributed to the higher

frequency of urinary tract infections and generally elevated urine

pH levels in females.36 Other factors, such as age, diabetes,

and hyperuricemia, are also recognized as potential risk factors

for infection stones.29,37,38 However, our study did not identify a

significant correlation between age, diabetes, and the occurrence

of infection stones. Utilizing the SHAP method (Figure 4A), our

analysis revealed that low blood uric acid levels could predispose

individuals to infectious stone formation. Despite the higher sus-

ceptibility of diabetics to urinary tract infections, our findings did

not show a significant association between diabetes and infection

stone formation. A study39 proposed that urinary glucose compet-

itively inhibits uric acid reabsorption in diabetic patients, resulting

in higher uric acid excretion. Additionally, insulin resistance in di-

abetics may alter urinary hydrolases, increase urine acidity, and

decrease urinary pH, which may not be conducive to infection

stone crystallization.

While previous research has explored machine learning

models for infection stones,40–42 it presents several advantages.

Firstly, we possess a notably large sample size, the largest in the

current literature. Secondly, our study incorporated CT imaging

features of stones, and by applying the SHAP method, we have

identifiedCT value as a critical predictor for infected stones. Sub-

sequently, we developed seven machine learning models using

lasso regression for variable selection. After analyzing the AUC

and AUPR, we found that the XGBoost model outperformed the

other models. The DCA and calibration curves of the XGBoost

modelwereplotted to validate its robust diagnostic performance.

While machine learning models demonstrate high accuracy,

elucidating their decision-making processes comprehensively

and transparently remains challenging. Hence, we applied the

SHAP method to the XGBoost model to enhance interpretability

and determine the importance of the modeled variables.

Our study has several limitations. First, it is a retrospective

study conducted at a single institution so that it may be suscep-

tible to bias. Second, the lack of multicenter external validation

restricts the model’s applicability to other cohorts. Third, though

the sample size is relatively large, it remains limited. Therefore,

further large-scale, prospective, multicenter studies are neces-

sary for optimizing and externally validating the model.

Conclusions
This study used lasso regression analysis to screen 11 variables,

selected from those identified as significant in the univariate

analysis of the training set. These variables were then incorpo-

rated into seven distinct machine learning algorithms to

construct a predictive model (MLP, SVM, DT, AdaBoost,

XGBoost, GNB, and LR). Following a thorough evaluation, which

included an assessment of the AUC, DCA, and calibration

curves, the XGBoost model was identified as the most optimal,

demonstrating robust diagnostic performance. Furthermore,

SHAP scores were calculated to determine the relative impor-

tance of features within the model. This study represents the first

instance of employing a machine learning model to predict uri-

nary infection stones based on CT values. The XGBoost model

Figure 4. SHAP interprets the model

(A) The vertical axis ranks the features according to the sum of the SHAP values of the samples and the horizontal axis is the SHAP value. Each point represents a

sample, with red points representing higher feature values and blue points representing lower feature values.

(B) Ranking of feature importance by mean(|SHAP value|). HU = Hounsfield unit = CT value. urine WBC = urine white blood cell. SHAP value = Shapley Additive

exPlanations value.
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can promptly identify infection stones before surgery, showing

commendable predictive accuracy. These findings are expected

to enhance the understanding of urologists in the management

of infection stones, potentially leading to improved patient out-

comes and more efficient clinical interventions.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A total of 1413 patients who were admitted to the Second Affiliated Hospital of Nanchang University for surgical removal of urinary

tract stones (percutaneous nephrolithotripsy, ureteroscopic lithotripsy, or cystoscopic lithotripsy) from February 2021 to September

2023 were selected as study subjects. All these patients are of East Asian descent. The inclusion criteria were as follows: (1) all sub-

jects underwent a CT scan to confirm the diagnosis of urinary stones before surgical lithotripsy; (2) availability of complete medical

records and relevant laboratory test results; (3) postoperative stone samples were obtained and analyzed using infrared spectrom-

etry (infrared spectroscopy SUN-3G intelligent stone analysis system) to determine the composition of the stones. The exclusion

criteria were: (1) absence of a CT scan; (2) refusal of stone composition analysis; (3) incomplete medical records or relevant exam-

inations. Based on these criteria, 1209 eligible patients were included in the modeling.

METHOD DETAILS

Data collection and data preprocessing
The clinical data of patients were retrospectively collected, including 31 indicators such as CT values, age, gender, bodymass index,

presence of diabetesmellitus, hypertension, urinalysis results, and urine culture. Urine samples for analysis were obtainedwithin 24 h

of admission, while urine culture samples were taken frommidstream urine within a week before surgery. A positive urine culture was

defined as a single pathogen colony count exceeding 105/mL of urine. Urease-producing bacteria, such as Proteus mirabilis, Kleb-

siella pneumoniae, and Pseudomonas aeruginosa, are highly correlated with the formation of infection stones.

The composition of stones from the patients collected post-surgery, was analyzed using the LIIR-20 infrared spectroscopy auto-

mated analysis system (Tianjin Lammertech) (Figure S1). Urinary stones were categorized into four groups based on their main

component (>50%): calcium oxalate stones (including calcium oxalate monohydrate and calcium oxalate dihydrate), infection stones

(including struvite, carbonate apatite, and ammonium urate), uric acid stones, and calcium phosphate stones. Infection stones were

further divided into two categories based on composition: (1) Simple infection stones, where the stone is composed of one or more of

struvite, carbonate apatite, or ammonium urate (R95%); (2) Mixed infection stones, where the stone composition is predominantly

struvite or carbonate apatite (R50%).

Diagnosis of urological calculi was primarily performed using a German Siemens 256-row spiral CT. The acquisition of urological

CT imaging features such as CT values (Unit of measure: HU), stone load, stone location, number of stones and degree of urological

hydrops were assessed by two specialist urologists. The images were processed and stored using the Picture Archiving & Commu-

nication System (PACS). Tomeasure the CT value of the stone, the plane with the largest cross-sectional area was selected, and 50%

of the area in the center of the stonewas defined as the region of interest (ROI). The CT valuewasmeasured three timeswithin the ROI

and averaged. Different locations were repeatedly measured in the case of complex stones to obtain an average value (Figure S2).43

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw urinary stones CT data This paper N/A

Software and Algorithms

R version_4.3.2 R CRAN https://cran.r-project.org/

Python_3.11.4 Python Software https://www.python.org/

XGBoost _1.7.7.1 R CRAN https://cran.r-project.org/web/packages/xgboost/

glmnet_4.1–8 R CRAN https://cran.r-project.org/web/packages/glmnet/

pROC_1.18.5 R CRAN https://cran.r-project.org/web/packages/pROC/

PRROC_1.3.1 R CRAN https://cran.r-project.org/web/packages/PRROC/

caret_6.0–94 R CRAN https://cran.r-project.org/web/packages/caret/

shapviz_0.9.3 R CRAN https://cran.r-project.org/web/packages/shapviz/

ggplot2_3.5.1 R CRAN https://cran.r-project.org/web/packages/ggplot2/

extrafont_0.19 R CRAN https://cran.r-project.org/web/packages/extrafont/

RandomizedSearchCV_0.14 Scikit-learn sklearn.model_selection.RandomizedSearchCV —

scikit-learn 1.4.2 documentation
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The stone loadwas calculated according to a specific formula:
Pn

k = 1ð0:785 $Widthmax $ LengthmaxÞ.44 Patients with recurrent kid-

ney stones were defined as those with two or more ipsilateral kidney stone findings.

Selection of predictors
Initially, all case samples were randomly split into a training set (70%) and a validation set (30%) to aid in model development and

evaluation. A total of thirty-one variables were extracted from the participants’ clinical, imaging, and laboratory data. Variables

with excessive missing values, such as C-reactive protein and squamous epithelial cells, were excluded. One-way analyses of vari-

ance were exclusively conducted on the training set. Variables showing statistical significance (p < 0.05) were subjected to Lasso

regression for further screening. The rationale behind screening variables exclusively within the training set is to ensure the integrity

of the dataset division, simulating the model’s performance on unseen data and accurately assessing its generalization capabilities.

Screening variables on the entire dataset risks ’leakage’ of information from the validation set, potentially compromising the reliability

of model performance assessment. The 11 variables identified from the Lasso regression analysis were utilized in seven machine

learning algorithms: MLP, SVM, DT, AdaBoost, XGBoost, GNB, and LR to construct predictive models.

Model development
For each model, the RandomizedSearchCV class in the scikit-learn library was used to perform a random search to set the machine

learning parameters. Random search identifies the optimal model parameters by randomly selecting combinations within a given

parameter space. This method allows for quickly finding the optimal parameter combination among numerous possibilities, thereby

enhancing the model’s performance. To avoid overfitting, we evaluated each model’s performance under each criterion through

10-fold cross-validation. Our model aims to identify patients with infection stones preoperatively and guide clinicians to early and

appropriate intervention and treatment, thereby improving patient outcomes and quality of life and reducing recurrence.

Evaluation of model performance
ROC curves were generated for the seven predictive models to assess their ability to discriminate between infection and non-infec-

tion stones using the AUC. Sensitivity, specificity, PPV, NPV, accuracy, and F1 scores were also computed to comprehensively eval-

uate the models’ performance. The threshold for model performance characteristics is determined based on the Youden Index. The

model calculates a threshold using the Youden Index during each training session, and the final threshold is determined based on the

optimal model.

Due to the sample imbalance, where only 19.9% (241 patients) had infected stones, Precision-Recall (PR) curves were plotted to

better evaluate model performance in imbalanced datasets. The AUPR provides valuable insights for model evaluation. Additionally,

decision curve analysis (DCA) and calibration curves were used to assess the diagnostic performance of the final model. These

analytical techniques enhance the robustness and reliability of the model’s predictive capabilities, facilitating informed clinical deci-

sion-making processes within the domain of urology.

Visualization of predictors
SHAP scores were computed to determine the significance of each variable integrated into the modeling procedure. This measure

improves the transparency and interpretability of machine learning models, reducing the inherent "black box" characteristics asso-

ciated with such methodologies.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted using SPSS 26.0 software. The Shapiro-Wilk test was applied to assess the normality of distri-

butions. Quantitative data were presented as mean ± standard deviation (mean ± SD); t-tests were used for normal distributions,

while the Mann-Whitney U test was used for non-normal distributions. Count data were represented as percentages, with group

differences evaluated through the chi-squared or Fisher exact tests. A two-tailed p-value <0.05 indicated statistical significance.

Statistical analyses were carried out using R version 4.2.3 and Python version 3.11.4.
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