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Metabolic adaptation to the changing nutrient levels in the cellular microenvironment 
plays a decisive role in the maintenance of homeostasis. Eukaryotic cells are equipped 
with nutrient sensors, which sense the fluctuating nutrients levels and accordingly pro-
gram the cellular machinery to mount an appropriate response. Nutrients including amino 
acids play a vital role in maintaining cellular homeostasis. Therefore, over the evolution, 
different species have developed diverse mechanisms to detect amino acids abundance 
or scarcity. Immune responses have been known to be closely associated with the 
cellular metabolism especially amino acid sensing pathway, which influences innate 
as well as adaptive immune-effector functions. Thus, exploring the cross-talk between 
amino acid sensing mechanisms and immune responses in disease as well as in normal 
physiological conditions might open up avenues to explore how this association can be 
exploited to tailor immunological functions toward the design of better therapeutics for 
controlling metabolic diseases. In this review, we discuss the advances in the knowledge 
of various amino acid sensing pathways including general control nonderepressible-2 
kinase in the control of inflammation and metabolic diseases.

Keywords: amino acid sensing, general control nonderepressible-2 kinase, mammalian target of rapamycin, 
inflammation, immune response, metabolic diseases

iNTRODUCTiON

The association between inflammation and metabolism has been known since 1930s when Kempner 
and Peschel published their work on the subject and used the term “immunometabolism” for the 
first time (1, 2). However, growing evidence suggests that the nutrient availability and cellular 
metabolism plays a central role in physiological processes including cell proliferation, differentia-
tion, and cell death (3). Accordingly, all organisms have developed diverse sensing mechanisms to 
detect and respond to scarcity and abundance of different nutrients. Unlike unicellular organisms 
(which sense the availability of nutrients in the environment directly), multicellular organisms 
consist of various nutrient sensing mechanisms to sense and respond to both extracellular and 
intracellular nutrient fluctuations (4, 5). Eukaryotic cells detect changes in nutrients levels through 
sensors that could be a transporter, receptor, signaling proteins or an enzyme. This is also pertinent 
to the immune cells, as they highly rely on energy supplies for expansion, differentiation, and the 
synthesis of immune effector molecules required for clearance of the infected or altered cells (3). 
The close association of immune system with the metabolic pathways involved in the sensing, 
management of the metabolites plays a crucial role in the maintenance of immune homeostasis, 
and therefore, dysregulation in the functioning of these pathways results in chronic inflammatory 
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conditions (3). Accumulating evidence suggests that caloric 
restriction (CR) without malnutrition increases lifespan and 
protects from age-associated inflammatory diseases, such as 
diabetes, cardiovascular diseases, cancer, and brain atrophy  
(6, 7). It has been postulated that regulatory genes, which 
are fundamental to energy metabolism play a vital role in 
CR-induced physiological benefits (8). Although CR-associated 
benefits have often been related to reduced energy intake, grow-
ing shreds of evidence implicate dietary amino acid limitations 
to CR benefits (9). Amino acids are the building blocks of 
proteins and the predominant macromolecules in the cell. Also, 
amino acids are vital nutrients for cellular homeostasis, not 
only as the energy source or constituents of proteins but also as 
the signaling modules, which is evident from the evolutionar-
ily conserved pathways that play a fundamental role in amino 
acid sensing (10). Recent studies have unveiled that amino acid 
restriction alone enhances insulin sensitivity in mice (11). Also, 
it has been shown that administration of reduced amino acid 
diet protects mice from DSS induced intestinal inflammation by 
activating the cellular homeostatic process, such as autophagy 
(12). Therefore, understanding the mechanisms through which 
cells sense and mount an appropriate response to the bioavail-
ability of amino acids has been an area of active research. It has 
been well established that amino acids presence or absence in 
mammals are sensed by predestined distinct signaling pathway 
involving mammalian target of rapamycin (mTOR) or general 
control nonderepressible-2 kinase (GCN2), respectively (13). 
mTOR acts as one of the primary metabolic switches, which 
integrate amino acid, growth factor, and energy availability to 
promote anabolic processes such as protein synthesis, while at 
the same time it inhibits catabolic functions such as autophagy 
(14). In contrary, depletion of even single amino is directly 
sensed by GCN2, which in turn program cellular machinery to 
promote catabolic processes such as autophagy. Recent studies 
implicate the centrality of GCN2 in the maintenance of immune 
homeostasis (15), and the dysfunction underlies several chronic 
metabolic diseases (12, 16). Here, we present a survey of the 
current research advances made toward understanding the link 
between GCN2-mediated amino acid sensing mechanisms and 
immunological regulation and further discuss the recent find-
ings of their implications in the pathogenesis of acute or chronic 
inflammatory and metabolic diseases.

AMiNO ACiD SeNSiNG MeCHANiSMS

Amino acids are the vital macronutrients that not only serve 
as the primary building blocks of proteins but also serve as an 
alternate energy source (17). The process of protein synthesis 
is one of the most energy-requiring processes in the cell, and 
therefore, mechanisms to efficiently sense the availability of 
amino acids and trigger appropriate responses become perti-
nent for the maintenance of cellular homeostasis (18). Across 
the species, various mechanisms have been evolved to detect the 
scarcity or abundance of different extracellular and intracellular 
amino acids in the microenvironment. Bacterial cells sense 
amino acid bioavailability through programming its transcrip-
tional control, while eukaryotic cells sense footprints of amino 

acids scarcity by diverse mechanisms, including accumulated 
uncharged cognate tRNAs sensing (9). Eukaryotic cells are well 
equipped with sensors such as mTOR, which gets activated dur-
ing the amino acid sufficiency and programs various anabolic 
processes required for the growth (19, 20). In contrast, intracel-
lular depletion of even single essential amino acid (EAA) or 
non-essential amino acid is directly sensed by the GCN2 via 
binding of uncharged cognate tRNAs (21). GCN2 and mTOR 
pathways have evolved together in eukaryotes to serve as a major 
regulatory switch dictating protein synthesis in response to the 
fluctuating levels of amino acids (22). mTOR, an evolutionarily 
conserved serine/threonine kinase initially identified in yeast as 
TOR (23), is activated in the presence of specific amino acids 
especially leucine, arginine, and methionine (19, 20) and links 
amino acids availability with the cell growth, proliferation, and 
differentiation (24–26). Accumulating evidence suggests that 
mTOR localizes to lysosomes as a function of amino acids (27). 
During amino acid sufficiency, vacular H+ATPase (v-ATPase, 
the first downstream target known so far) triggers the guanine 
exchange factor activity of Ragulator complex, which results in 
the nucleotide exchange and activation of RAG GTPase (28). 
Further, activated RAG GTPase binds and recruits mTORC1 to 
the lysosomal membrane in close proximity to mTORC1 activa-
tor RHEB (27, 29). Together, these stimuli lead to the mTORC1 
activation. Activated mTORC1 translocates to the lysosome and 
phosphorylates 4EBP1, to release the translation initiation factor, 
eIF4E, which recruits mRNA to the ribosomes to initiate protein 
synthesis (24, 30) (Figure 1). Also, mTOR has central control 
over various transcription factors, like NF-κB, STAT3, and 
HIF1α (31). Conversely, in the absence of amino acids, mTOR 
is inactivated and diffused in the cytosol (32), which increases 
the 4EBP1 de-phosphorylation and halts protein translation 
(20). Albeit the precise amino acid sensor in the cytosol or at 
the lysosome is unknown, recent cell-based biochemical studies 
have shown the proteins responsible for Rag GTPases tethering 
to the lysosomal surfaces (27), and other regulatory proteins 
functioning upstream of Rag GTPases (28, 33, 34).

Mammalian target of rapamycin integrates various cel-
lular functions including protein synthesis, cell proliferation, 
autophagy, and metabolism. It gets activated by virtue of 
signaling events initiated by receptors for particular antigens, 
cytokines, and growth factors (35). Several studies report 
that antigen engagement of T-cell receptor (TCR) and CD28 
(costimulatory receptor) leads to the activation of phosphatidyl 
inositol 3 kinase (PI3K) and Akt, which eventually leads to 
mTOR activation (36, 37). Albeit Akt plays a central regulatory 
role in signaling pathways implicated in T  cell proliferation, 
metabolism, migration, and activation (38, 39), a study has 
demonstrated that phosphorylation of S6 downstream of the 
TCR and CD28 stimulation is not majorly dependent on Akt 
(40). Furthermore, a recent study by Hamilton et al., established 
that adaptor protein Carma1 and one of its associated proteins, 
MALT1 are essential for optimal activation of mTOR in T cells 
(41). Also, Akt and mTOR pathways play a key role B cell pro-
liferation and differentiation (42).

Recent studies suggest that mTOR gets activated in immune 
cells through numerous factors including growth factors, 
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FiGURe 1 | Amino acid sensing and integration of downstream pathways. Schematic representation of the cellular events during amino acid-deficient and amino 
acid sufficient conditions. General control nonderepressible-2 kinase senses amino acid insufficiency and orchestrate various homeostatic processes via eIF2 
phosphorylation followed by downregulation of global protein synthesis and simultaneously also inhibits mammalian target of rapamycin (mTOR) activation. On the 
other hand, under the condition of amino acid sufficiency, mTORC1 complex translocates to lysosomal surfaces by virtue of Rag GTPase activation and further 
initiates protein translation by the release of translation initiation factor eIF4E.
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cytokines, and TLR ligands association with its cognate receptor. 
Activation of the receptor leads to the recruitment of PI3k to the 
receptor complex via various adaptor molecules including the 
GTPase RAB8A. Further PI3K induced secondary messenger 
phosphatidylinositol-3,4,5-trisphosphate recruits and activates 
Akt, which consists of two key effectors such as FOXO1 and 
TSC2. In unstimulated cells, TSC2 heterodimerizes with TS1 and 
causes mTOR inactivation. Conversely, stimulation of cells results 
in TSC2 phosphorylation at threonine 1462 by Akt, which further 
leads to mTOR activation eventually (43).

On the other hand, general control nonderepressible 2 
kinase (GCN2), a serine/threonine kinase, which detects the 
scarcity of any amino acids and constitutes the evolutionarily 
conserved amino acid starvation response (AAR) pathway. 
Under normal physiology, during protein translation, amino 
acid-loaded tRNAs assemble at ribosome and provide amino 
acids for the elongation of nascent peptide. During amino acid 
deficiency, uncharged or unloaded tRNAs accumulate in the cell 
and initiate signaling pathways to reserve cellular energy and 
resources by repressing global protein translation, at the same 
time derepressing the translation of particular mRNAs required 
for the restoration of cell homeostasis (44). During amino acid 
deficiency, accumulated tRNAs bind to the GCN2 kinase, which 

undergoes a conformational change to initiate a downstream 
pathway. Basically, binding of GCN2 kinase with uncharged 
tRNAs initiates autophosphorylation (due to the conformational 
change) and simultaneous phosphorylation of translation 
initiation factor, eIF2α at serine 51, which results in the attenu-
ation of general protein translation initiation due to decrease in 
eIF2/tRNAiMet/GTP ternary complex, required for polysome 
formation and translation (45) (Figure 1). Thus, translationally 
stalled mRNAs along with initiation factors assemble into stress 
granules (SGs) through the recruitment of RNA-binding proteins 
(RBPs), such as TIA-1/TIAR, which in turn determines the fate of 
mRNAs translatability or decay (46). Simultaneously, translation 
of specific stress-responsive mRNAs, such as the transcription 
factors ATF4 and CHOP that influence the genes involved in the 
amino acid synthesis, homeostasis, and cell survival are upregu-
lated (47).

General control nonderepressible-2 kinase is among the four 
vital kinases along with PKR, PERK, HRI which form the core of 
integrated stress response (ISR) pathway (46). While GCN2 is a 
metabolic sensor, HRI senses heme deprivation within the cell, 
PERK senses ER stress, and PKR gets activated as a part of the 
antiviral response of mammalian cell by detecting viral dsRNA, 
interferons (IFNs), and growth factors (26). All these four kinases 
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upon activation phosphorylate eIF2α, which in turn decreases 
the global proteome of the cell as an artistry to economize the 
energy of the cell for the maintenance of cellular homeostasis 
(48, 49). Earlier studies report a cross-talk between the GCN2 
and mTOR signaling pathways in both yeast and mammals  
(50, 51). Further, through mixed lymphocyte reaction in human 
CD4+ T cells, Eleftheriadis et al., demonstrated that both these 
pathways elicit immunosuppression, influence cell proliferation, 
and differentiation, but through different mechanisms (52). 
Moreover, in a study by Xiao et  al., the authors reported that 
dietary leucine deprivation enhances the insulin sensitivity in 
mice (11). Similarly, pharmacological or genetic reduction in 
mTOR signaling has been shown to increase the lifespan in model 
mammalian organisms. Consequently, it becomes inevitable to 
gain the better understanding of the role of amino acid sensing 
pathways in immunomodulation and how it can be used to design 
potential therapeutic targets for metabolic diseases.

AMiNO ACiD SeNSiNG BY GCN2 AND 
iNFLAMMATiON

The initiation of inflammation during any infection/injury 
is characterized by the recruitment of neutrophils and other 
immune cells at the site of pathogen invasion (53) followed by the 
release of a storm of cytokines, chemokines, and other immune 
effector molecules. As the pathogen is cleared, resolution phase 
of inflammation sets in, that is marked by tissue homeostasis and 
regeneration (54). All these processes require enormous energy 
and nutrients especially amino acids.

In recent times, burgeoning information about the amino 
acid sensing pathways and their link to innate as well as adap-
tive immunity has emerged (55). Immune cells are known to be 
auxotrophs for amino acids, and the condition of inflammation 
or infection influences cellular amino acid requirement for pro-
tein synthesis (56). During an immune response, a redistribution 
of amino acids is observed, with a shift from cellular growth to 
the synthesis of immunological proteins (57). Lately, it has also 
become evident that local deprivation of amino acids could 
modulate immune responses (58). For instance, during patho-
gen invasion, such as Shigella infection, the bacteria damage the 
host cell membrane and create an environment of amino acid 
scarcity, which induces the GCN2 kinase-mediated activation 
of ISR pathway, and simultaneously reduction in mTOR activity 
(59). Thus, host senses the amino acid starvation induced by 
pathogens and triggers protective immune responses. It has also 
been shown that immune response activated under the condi-
tions of starvation severely affects the survival of insects (60). 
Further insights into the mechanisms implicated in amino acid 
sensing driven protective responses identified a crucial role for 
the amino acid sensor, GCN2 in the metabolic reprogramming 
in response to cellular stress (61). In Drosophila, ingestion of 
Pseudomonas entomophila damages the gut and inhibits trans-
lation via GCN2 kinase activation and TOR inhibition. The 
inhibition of protein translation not only leads to the shaping 
of immune response but also in pathogenesis, by inhibiting 
repair processes (62). Concomitantly, mice deficient in GCN2 

are highly prone to intestinal inflammation, while activation 
of the GCN2 pathway by reduced amino acid diet dramatically 
reduced inflammation-associated intestinal pathologies (12). 
During amino acid insufficiency, uncharged tRNAs accumulate 
and bind to GCN2 which results in a conformational change in 
GCN2 and its kinase activation (4). Activated GCN2 phospho-
rylates translation initiation factor eIF2α which further leads 
to decrease in ternary complex, such as eIF2/tRNAiMet/GTP, 
essential for translational initiation (45). Thus, 48S preinitiation 
complex assembly at 5′ region of capped mRNA is interrupted, 
which leads to polysome disassembly and SG formation through 
recruitment of RBPs, such as TIA-1/TIAR (45) (Figure 2). These 
RBPs specifically bind to adenine- and uridine-rich elements 
present at 3′ untranslated regions of mRNAs through RNA 
recognition motif and dictate their stability/degradation (63).  
In immune cells, RBPs play a central role in the posttranscrip-
tional regulation of immune effector molecules. It has been 
shown that RBPs, HUR, and TIA-1 act together and inhibit the 
translation of proinflammatory cytokines such as TNF and IL-1β 
thereby offer anti-inflammatory effect (63). In addition to SGs 
formation, amino acid deprivation activates autophagy (a cellu-
lar stress response that targets long-lived proteins, damaged cell 
organelles to lysosomes for degradation and is known to affect 
inflammation negatively) (64, 65) to maintain cellular homeosta-
sis. In a recent study Ravindran et al. show that mice deficient of 
GCN2 produced substantially high level of reactive oxygen spe-
cies (ROS) and subsequently proinflammatory mediator, IL-1β, 
in response to cellular stress, where they suggest that this effect 
is due to lack of autophagy in GCN2-deficient mice, whereas 
reduced amino acid diet fed mice show significantly low level 
of oxidative stress and inflammatory responses to cellular stress 
(12). Further mechanistic insights depict that GCN2 induced 
autophagy interferes with oxidative stress and inflamma-
some activation thereby controls inflammation (12) (Figure 2). 
Furthermore, Liu et al., demonstrate that GCN2 kinase signaling 
significantly affect macrophage cytokine production in response 
to LPS stimulation of macrophages expressing indolamine 
2,3-dioxygenase (IDO), and further suggest that although GCN2 
mediates the enhanced IL-6 mRNA expression, its translation is 
blocked by virtue of eIF2 phosphorylation (61, 66).

GCN2-MeDiATeD AMiNO ACiD SeNSiNG 
AND T-CeLL iMMUNe ReSPONSe

T cells constitute the major component of adaptive immunity and 
are prevalent during inflammation, infection, and autoimmune 
diseases. αβT cells are classified majorly based on the coreceptor 
as CD8+ and CD4+ (67). Upon activation of naive or resting T cell 
by cognate antigen-MHC signals, they undergo rapid expansion, 
differentiation followed by contraction (68). CD8+ T cells expand 
and differentiate into effector cytotoxic cells, which help in clear-
ing tumor, virally infected cells (69), while CD4+ cells undergo 
proliferation and functional specialization, depending upon the 
cytokine milieu, as Th1, Th2, Th17, or regulatory T cell (Treg) 
response, each with its effector function (70). T cell population 
undergoes different stages of development in the thymus to 
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FiGURe 2 | General control nonderepressible-2 kinase (GCN2)-mediated amino acid sensing in the control of inflammation during cellular stress. Amino acid 
deficiency leads to accumulation of uncharged tRNAs, which are recognized by the nutrient sensor GCN2. Upon its activation, the phospho-GCN2 inhibits the 
translation initiation ternary complex through the phosphorylation of eIF2α, thus stalls the protein translation. As a result, the RNA-binding proteins are recruited to 
the translationally stalled mRNAs, forming stress granules that either arrest or decay the stalled mRNAs, and ultimately decreasing the inflammation. At the same 
time eIF2 phosphorylation leads to translation of specific mRNA, such as ATF4, which translates stress-response genes, GADD34, CHOP, etc. On the other hand, 
GCN2 pathway induces autophagy which reduces inflammation through inhibition of the reactive oxygen species and inflammasome activation.
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activation, expansion, differentiation, and migration at the site of 
requirement, driven by synthesis or degradation of multiple new 
proteins. Therefore, to achieve continuous supply of new proteins 
they are heavily dependent on nutrient availability, including 
amino acids, and associated metabolic pathways (71). Although 
T cell activation in response to antigenic exposure is driven by a 
multitude of factors ranging from the immune receptor, signal-
ing proteins, cytokines, transcription factors, growing evidence 
suggests that the dynamic regulation of cellular metabolome 
controls T cell proliferation, expansion, differentiation, and con-
traction (71). For instance, mTOR has been shown to integrate 
multiple cues (cytokines, environmental signals) and governs 
the outcome of TCR activation or anergy. Recent studies suggest 
mTOR as a major metabolic switch activated during TCR and 
CD28 signaling, which triggers the surface expression of glucose, 
nutrients particularly amino acid transporters (72, 73).

The amino acid uptake in T  cells is predominantly con-
trolled by the SLC7 family of transporters (74). The foremost 
amino acid transporters expressed by T  cells include LAT1 
(SLC7A5), ASCT2, and GAT1 that play an important role in 
T cell metabolism and hence the inflammatory responses (75). 
Also, it has been reported by Sinclair et  al. that the leucine 
transporter, SLC7A5 null T  cells are unable to either evoke 
a robust response to antigen exposure or differentiate into 
effector cells (76). Moreover, the expression of amino acid 
transporters is increased upon any antigen exposure and it 
has been established that the type of amino acid transporter 
could decide the fate of T  cell differentiation into different 
T cell populations (76). Expression of transporters, LAT1 and 
ASCT2, and subsequent activation of mTOR pathway tilts the 
T  cell differentiation toward a Th1/Th17-mediated response, 
which was further confirmed by ASCT2 KO mice that show 
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defective mTORc1 activation and hence, impaired CD4+ T cell 
responses (77–79).

In a separate investigation, GCN2-mediated pathway 
involvement in T  cells proliferation and differentiation has 
also been reported, where it has been shown that the GCN2 
activation has a negative impact on T cells proliferative capacity 
and affects the Treg cells differentiation (80). Further, a link 
has also been reported between indoleamine 2,3-dioxygenase 
(IDO), a tryptophan catabolizing enzyme, regulated T  cell 
responses and immune tolerance with subsequent activation 
of GCN2 kinase-mediated ISR pathway (80). A recent study 
reported that topical exposure of phorbol myristate acetate 
causes plasmacytoid dendritic cell (pDCs) induction in local 
draining lymph nodes to express IDO, which confers T  cell 
suppressive activity, thereby favors tumor development after 
carcinogen exposure. Further mechanistic insights depict that 
IDO expression in pDCs is dependent on inflammatory signal-
ing including interferon-I and II (IFN-I/II) receptors, IL-1/
TLR signaling (81). Although depletion of tryptophan locally 
is known to create an immunosuppressive environment for 
tumors, GCN2 activation in T cells has no role to play toward 
tumor immunity (82). Tryptophan depletion and GCN2 activa-
tion associated induction of autophagy has also been observed 
in case of kidney transplantation, where it is known that IFNγ 
is the central regulator of rejection upon transplantation. The 
study by Fougeray et al. demonstrates that IFNγ causes trypto-
phan depletion and thus, controls the immune response toward 
transplantation, by activating GCN2 and the downstream 
autophagy (83). Moreover, as the IDO-dependent tryptophan 
catabolism mimics the condition of amino acid deficiency (80, 
84), it has been reported in inflammatory macrophages that the 
IDO increases IL-10 expression and simultaneously decreases 
IL-12 levels via translation inhibition in a GCN2 depend-
ent manner, which has also been confirmed by the absence 
of immune-tolerance on GCN2 deletion (46). Macrophages 
expressing IDO reduce tryptophan in microenvironment, and 
thus, restrict the CD8+ T cell proliferation (65). IDO has also 
been shown to induce GCN2-dependent immune tolerance 
to apoptosis antigens. During apoptosis or apoptosis antigen 
exposure macrophages decrease the proinflammatory cytokine 
expression posttranscriptionally by inhibiting the IL-12 mRNA 
association with polysomes while increasing IL-10 transcripts 
translation (61). Thus, IDO-mediated T cell regulation has been 
implicated in different inflammatory conditions, but it requires 
further investigation to elucidate the upstream and downstream 
pathways involved.

In a separate study, the GCN2 arbitrated T cell response has 
been associated with antigen presentation and subsequent CD8+ 
immune response to yellow fever vaccine (YF-17D) (85). Yellow 
fever vaccine is one of the most potent vaccines ever developed in 
humans. Despite its efficiency and extensive use, the mechanisms 
implicated in YF-17D-induced protective immune responses 
remain poorly defined. In an earlier investigation using systems 
biology approach, it was highlighted that there is an association 
between the CD8+ immune response in blood upon YF17D 
vaccination and the activation of GCN2 (86). Consequently, 
in the study by Ravindran et  al., the authors investigated the 

role of GCN2 in adaptive immunity upon YF17D vaccination, 
where they report that the stimulation of dendritic cells (DCs) 
with YF17D induces SGs formation, and activates autophagy 
in a GCN2 dependent manner. The study also confirmed that 
induction of autophagy enhanced antigen cross-presentation in 
the YF17D vaccinated mice (85).

Th17 immune responses among the varied immune effector 
functions have been concomitant with autoimmune diseases. The 
naïve CD4+ T cells upon stimulation with cytokines IL6, IL1β, 
TGFβ, result in expression of RORγt and STAT3, the transcrip-
tion factors, which induce IL17a production and elicits the Th17 
response. Carlson et  al., in their study investigated the role of 
AAR pathway on the immune response, where it was observed 
that AAR pathway activator Halofuginone (HF) dampens the 
Th17 response, influences STAT3 posttranscriptionally and 
hence, blocks its expression (87) (Figure 3).

It becomes evident that the amino acid regulation is crucial 
during T  cell immune responses. Therefore, targeting nutrient 
sensors and amino acid transporters could be an approach to 
regulate T cell activation and immune response during diseases 
and thus, to design translational therapeutics.

ReGULATiON OF AMiNO ACiD  
SiGNALiNG DURiNG MeTABOLiC  
AND AUTOiMMUNe DiSeASeS

Growing evidence categorically suggest a close association 
between the cellular metabolism and immune response, there-
fore, it becomes imperative to tightly control nutrient sensing 
mechanisms to maintain cellular homeostasis. The malfunction 
of nutrient sensing pathways has been linked with different 
metabolic diseases in recent times, including obesity, diabetes, 
atherosclerosis, inflammatory bowel diseases (IBDs), autoim-
mune diseases, and others, which pose a huge burden on global 
health (3, 88–90).

The prevalence of obesity and its associated metabolic dis-
eases, such as diabetes, increases enormously worldwide (91–93). 
In addition to metabolic alterations, both obesity and diabetes 
are associated with inflammation as well, which led to the notion 
of the term “meta-inflammation” or metabolically triggered 
inflammation (94). With nutrient signaling pathways being all 
interconnected and associated with insulin signaling, it has been 
reported that the levels of branched-chain amino acids (BCAA) 
affect the nutrient signaling and metabolism (95, 96). mTOR 
being a central regulator of amino acid and insulin signaling  
(97, 98), under amino acid abundance, it phosphorylates IRS1 
(at serine 307) and inhibits the downstream insulin signaling  
(99, 100). Whereas the amino acid deprivation can increase 
insulin sensitivity, where Xiao et  al. reported the activation of 
GCN2 and simultaneous inhibition of mTOR upon leucine 
deprivation in vivo as well as in vitro, which improved the insulin 
activity under insulin-resistant conditions typically observed in 
diabetes (11). Furthermore, a recent study unveiled that increased 
insulin sensitivity is associated with the rise in serum BCCA 
and decreased BCAA catabolism concomitantly with enhanced 
proinflammatory gene expression in adipose tissue (101).
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Autoimmune diseases, such as rheumatoid arthritis, multiple 
sclerosis (MS), psoriasis, have been associated with immune 
responses, particularly with the Th17-mediated responses. 
Under normal physiology, cells have their own mechanisms to 
control immune responses and hence, prevent autoimmunity, 
by induction of apoptosis or through immune tolerance toward 
self-antigens. The apoptotic cells initiate an anti-inflammatory 
response to prevent any further development of autoimmun-
ity. In a study on lupus mice, Ravishankar et al. have reported 
an increase in immune responses and overall mortality post-
GCN2 depletion (61). Systemic Lupus Erythematosus is an 
autoimmune disease where apoptotic cell components act as 
the antigens to increase cellular immune responses. The authors 
demonstrated that the IDO in macrophages influences the 
cytokine levels in a GCN2-dependent manner. It was observed 
that the anti-inflammatory IL-10 responses are elevated while 
the IL-12 levels are reduced (61). The role of GCN2 in T cell 

response has also been identified with the neuronal chronic 
inflammatory condition, MS (82). MS is characterized by 
infiltration of Th1 and Th17 cells in CNS, leading to demyeli-
nation. It has been reported that during the recovery phase of 
the disease, the Tregs migrate to the affected area in the CNS 
and play an important role in keeping MS and inflammation 
under check. However, the GCN2-depleted Tregs are unable to 
migrate to the concerned area (82). In another study by Orsini 
et al., the authors investigated in the GCN2-KO mice subjected 
to myelin oligodendrocyte glycoprotein peptide and reported 
higher inflammation and Th1/Th17  cells in the CNS (102). 
Psoriasis is an autoimmune inflammatory skin disease, associ-
ated with CD4+ T cell responses (103). In a preliminary study 
on keratinocyte differentiation, Collier et al. have reported the 
role of GCN2 phosphorylation-mediated translational control 
in the normal differentiation and formation of the epidermis.  
It was observed that the absence of GCN2 disturbed this control 
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over differentiation and therefore could be a cause of various 
skin diseases, including psoriasis (104).

Amino acid sensing pathways also have control over intes-
tinal inflammation, where the study by Ravindran et  al. has 
demonstrated the role of GCN2 pathway in IBDs (12). Since 
intestine is the constant environment of fluctuations in nutri-
ent levels, the amino acid sensing becomes crucial to maintain 
the homeostasis. The authors revealed that induction of DSS-
mediated colitis in the absence of GCN2 increased inflamma-
tion and subsequent production of inflammatory mediators, 
such as IL-1β and IL-17. GCN2 activation in macrophages 
and DCs during IBD results in autophagy activation, which 
is known to decrease the proinflammatory cytokine produc-
tion (12, 105, 106). Different studies indicate that the amino 
acid signaling pathways could be exploited for health benefits. 
Dietary or calorie restriction, since a long time, is known to 
have a positive influence on health, stress resistance, and lon-
gevity, as it is evident from different studies across species from 
yeast to rodents (107, 108). The study has shown that proteins 
demonstrate utmost impact upon dietary restriction (109).  
It has also been established in humans that the low-protein diet 
is associated with protection from cancer and diabetes (110). 
In another study, it has been demonstrated in Drosophila that 
the withdrawal of EAAs contributes more toward the beneficial 
effect of dietary restriction as compared to the carbohydrates 
(111, 112). The study by Peng et al. demonstrates dietary tryp-
tophan depletion decreases inflammation and extends protec-
tive role in hepatic ischemic injury (14). The evolutionarily 
conserved GCN2-mediated ISR pathway responds to dietary 
starvation and is known to modulate immune responses (58). 
These different studies highlight the health benefits of dietary 
or amino acid restriction. Concurrently, pharmacological 
activators like HF can also mimic amino acid starvation, and 
various studies have reported their immunomodulating anti-
inflammatory impact (87). HF is an analog of plant-derived 
compound febrifugine, which is a known GCN2 activator 
and has shown to activate amino acid starvation response 
pathway. It acts by imitating the amino acid proline restriction 
by competitively binding to and inhibiting the prolyl-tRNA 
synthetase, leading to accumulation of uncharged prolyl-tRNA 
and further initiation of AAR pathway (47). In a separate study 
by Sundrud et  al., the authors have also demonstrated in a 
mouse model of experimental autoimmune encephalomyelitis 
(EAE) or MS that HF targets precisely the proinflammatory 
Th17 response by disrupting the STAT3 phosphorylation (113). 
HF has been tested in different disease conditions, including 

malaria, cancer, and autoimmune diseases, with a few clinical 
trials in the field (114). Consequently, more studies with an 
emphasis on the mechanism of action of HF in amino acid 
sensing and the downstream responses could help us in design-
ing therapeutics that could be tested in the different conditions 
discussed earlier.

CONCLUSiON

Although the association between nutrient sensing with immune 
response and the concept of “immunometabolism” is not new, 
yet there has been a lack of mechanistic understanding, which 
requires further investigations. Several studies illustrate the 
importance of amino acid sensing in evoking the innate as well 
as adaptive effector immune functions. For instance, recent 
studies have established the link between amino acid starvation 
sensor GCN2 and its control over inflammation by highlight-
ing the posttranscriptional mechanisms, and autophagy. These 
studies not only raise some important questions with respect to 
metabolic control of Th17/Treg ratios and immune response but 
also point out that it might be interesting to test these hypotheses 
in the case of obesity as well as during inflammation observed in 
various diseases including neurological disorders. Therefore, all 
these reports and preliminary investigations open up avenues for 
future research in cross-talk between the nutrient sensing and 
immune responses, which can be extrapolated to clinical trials 
for inflammatory and metabolic diseases.
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