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Abstract 

Purpose:  The rRT-PCR for COVID-19 diagnosis is affected by long turnaround time, potential shortage of reagents, 
high false-negative rates and high costs. Routine hematochemical tests are a faster and less expensive alternative for 
diagnosis. Thus, Machine Learning (ML) has been applied to hematological parameters to develop diagnostic tools 
and help clinicians in promptly managing positive patients. However, few ML models have been externally validated, 
making their real-world applicability unclear.

Methods:  We externally validate 6 state-of-the-art diagnostic ML models, based on Complete Blood Count (CBC) 
and trained on a dataset encompassing 816 COVID-19 positive cases. The external validation was performed based on 
two datasets, collected at two different hospitals in northern Italy and encompassing 163 and 104 COVID-19 positive 
cases, in terms of both error rate and calibration.

Results and Conclusion:  We report an average AUC of 95% and average Brier score of 0.11, out-performing existing 
ML methods, and showing good cross-site transportability. The best performing model (SVM) reported an average 
AUC of 97.5% (Sensitivity: 87.5%, Specificity: 94%), comparable with the performance of RT-PCR, and was also the best 
calibrated. The validated models can be useful in the early identification of potential COVID-19 patients, due to the 
rapid availability of CBC exams, and in multiple test settings.
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Introduction
Since its initial spread in January 2020, the COVID-19 
pandemic has so far affected more than 180 million peo-
ple and caused more than 3 million deaths worldwide.

The reverse polymerase chain reaction (PCR) and the 
reverse transcriptase-PCR (rRT-PCR) are the gold stand-
ard tests for the detection of SARS-CoV-2 coronavirus, 
causative of COVID-19. However, both present known 
shortcomings such as long turnaround time, high costs, 
high false-negative rates (up to 15%) [12], the need for 
specialized equipment, and the associated shortage of 
reagents [13].

For these reasons, Machine Learning (ML) have been 
applied to hematological parameters [22, 27, 36] for a 
more rapid and cost-effective detection of the COVID-19 
disease [13]. This is an interesting approach also in com-
parison to other alternative diagnostic methods, such as 
chest CT or X-rays. Indeed, although these latter meth-
ods have been associated with generally good perfor-
mances [11, 18], most studies were found to be lacking in 
terms of methodological soundness [29]. Moreover, even 
if we assume the performance of those models can be 
replicated [3], they are also associated with much higher 
transaction costs than routine blood exams (including 
logistics and patient handling), and with lower safety, 
not only due to the high amount of radiation doses of CT 
procedures, but also to the risk of contamination of the 
radiology suites [16].

Health Information Science 
and Systems

*Correspondence:  a.campagner@campus.unimib.it
1 DISCo, Università degli Studi di Milano-Bicocca, Milan, Italy
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0027-5157
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s13755-021-00167-3&domain=pdf


Page 2 of 15Campagner et al. Health Inf Sci Syst (2021) 9:37

Although the potential of ML methods, based on hem-
atochemical data, for COVID-19 detection is high, only 
a few models have been subjected to external validation 
[29].1 If we limit ourselves to ML models grounding on 
hematological data, among tens of publications, only the 
following publications report about an external valida-
tion procedure: [9, 26, 31, 35, 37]. Furthermore, to our 
knowledge only four studies studies are associated with 
either an online tool [5, 9, 19] or publicly available code 
[31] that interested healthcare practitioners could use on 
a set of their local cases (for which a definitive diagno-
sis of COVID-19 has been ascertained, possibly combin-
ing multiple techniques [33]) to perform what has been 
called ecological validation [8].

This lack of validation studies is quite striking in light 
of the need for fast and cost-effective diagnostic tests for 
COVID-19, and also in light of recent medical ML sur-
veys [8, 36] and guidelines [17] which have strongly advo-
cated the need to validate models externally. Indeed, lack 
of external validation has recently been noted in [29], 
together with lack of reproducibility [3, 36], as being one 
of the main challenges to the real-world adoption of ML-
based approaches for COVID-19 diagnosis.

Furthermore, even when models are externally vali-
dated, they are very seldom validated also in terms of 
(probability) calibration. Though often neglected [10], 
calibration is a fundamental characteristics of clinical 
predictive models in that a calibrated model is capable 
to provide reliable probability estimates of the possible 
outcomes.2

For this reason, clinicians can use information about 
calibration to evaluate model’s trustworthiness [1], even 
more soundly than by relying on the model’s error rate 
(and other confusion-matrix metrics) as this latter can be 
affected by overfitting or data imbalance [30], to estimate 
pre-test probabilities, to undertake bayesian reasoning 
so as to rule-out conditions or prioritize interventions, 
and to combine results from different test techniques in 
multiple-testing settings so as to achieve much higher 
predictive values [2].

In order to address this gap in the literature, and to 
extend the work presented in [5, 9], in this contribu-
tion we present the validation process of 6 ML models 
that are based on the complete Blood Count (CBC) data 

originally collected at the Ospedale San Raffaele.3 To the 
purpose of the external validation, data were collected 
at two different hospitals, the hospital of Desio and the 
hospital of Bergamo, facilities of 383 and 1080 beds and 
25 and 54 km away from the former setting, respectively. 
The above mentioned models were validated with respect 
to both error rate (through different metrics, including 
accuracy, sensitivity, specificity and AUC) and calibra-
tion. To this latter aim, other than the Brier score and 
the calibration plots, we also describe metrics that allow 
to understand the behavior of the models in regard to 
predictions associated with high probability scores, i.e 
the predictions on which the physicians would rely with 
higher confidence. Thus, the main objective of this study 
was to evaluate whether ML models for COVID-19 diag-
nosis, based on CBC data, could be robust to cross-site 
transportability and could thus be reliably deployed as 
medical decision support tools.

The rest of the article will be organized as follows. In 
“Methods” section we describe the validated models, 
focusing in particular on their training set and develop-
ment procedures, as well as the external validation data-
sets. We also describe a set of metrics to evaluate the 
calibration of ML models. In Section  3 we report the 
results of the external validation study, while in “Discus-
sion” section we discuss about the significance of the 
obtained results, as well as of validation studies more in 
general, we provide a comparison with existing state-of-
the-art ML diagnostic models, and we illustrate possible 
uses of the validated models. Finally, in “Conclusion” sec-
tion, we summarize our findings.

Methods
The study protocol (BIGDATA-COVID19) was approved 
by the Institutional Ethical Review Board (70/INT/2020) 
of IRCCS San Raffaele Scientific Institute in agreement 
with the World Medical Association Declaration of Hel-
sinki. In this article, we adopt the MINIMAR [17] and 
IJMEDI [7] checklists for the reporting of ML models 
development and validation. A summary illustration of 
the Methods and Results of the study is reported in Fig. 1.

For the external validation, we considered 6 different 
ML models:

–	 Random Forest (maximum tree depth = 14, number of 
estimators = 419, robust feature scaling)

–	 Logistic Regression ( l2 regularization)
–	 SVM (RBF kernel, standard feature scaling)

1  Practically speaking, to externally validate [23] a ML model means to evalu-
ate the model’s performance on data that have been collected in settings dif-
ferent from the ones involved in the training and test of the model.
2  Intuitively speaking, if a calibrated model yields a probability score of 
80% on a particular instance (and hence prediction), it means that on previ-
ously seen cases with the same prediction and probability score, the model 
has made the right prediction 8 times out of 10; this means that calibration 
assessment provides an idea of case-wise accuracy, while traditional meas-
ures only account for an aggregated (average) notion of accuracy.

3  The Ospedale San Raffaele is a 1350-beds and 3400-employee teaching hos-
pital in Milan, Italy, i.e., one of the most affected regions in the world during 
the first wave of the disease [14]
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–	 k-Nearest Neighbors (metric = euclidean, neighbors = 
9, distance-based weights, Yeo-Johnson feature scaling)

–	 Naive Bayes (Yeo-Johnson feature scaling)
–	 A voting ensemble model, obtained as the (un-

weighted) combination of the 5 previously mentioned 
models.

All training models were implemented in Python, using 
the scikit-learn [25] library (ver. 0.23.1), by means 
of a pipeline that encompassed: missing data impu-
tation (using multivariate nearest neighbors-based 
imputation); feature scaling and feature selection 
(using recursive feature elimination [15]) steps; and 

Fig. 1  A summary illustration of the Methods and Results of the study. HSR denotes the data collected at IRCCS Hospital San Raffaele, IOG denotes 
the data collected at IRCCS Istituto Ortopedico Galeazzi, while CBC stands for Complete Blood Count
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hyper-parameter selection (using grid-search 5-fold 
nested cross-validation [32]).

The above mentioned ML models were trained on 
a set of 21 parameters, including the results of CBC 
exams, age (average: 60.9± 0.9 years), gender (57% male, 
43% female) and the presence of COVID-19 related 
symptoms.

As previously explained in [9], the models were devel-
oped relying only on CBC data as these latter set of 
parameters can be acquired through rapid and inexpen-
sive routine procedures. Furthermore, the wide avail-
ability of routine blood test, which can performed also 
in resource- or infrastructure-limited settings and coun-
tries, would make ML methods based only on these 
parameters more widely applicable (e.g., in third world 
countries).

The full set of parameters is shown in Table  1. The 
training dataset encompassed 816 COVID-19 posi-
tive and 920 negative cases, collected at the emergency 
departments (ED) of the IRCCS Hospital San Raffaele 
and the IRCCS Istituto Ortopedico Galeazzi of Milan 
(Italy). COVID-19 positivity was assessed by means of 
the rRT-PCR naso-pharyngeal swab. Uncertain cases 

were further assessed by means of either CT or X-ray 
examination. The training dataset was manually extracted 
from the electronic health record (EHR) of the two above 
mentione hospitals, and is available on Zenodo.4 We refer 
the reader to [9] for full details about model development 
and evaluation.

The average AUC of the ML models on the internal 
validation set, evaluated through nested 5-fold cross-val-
idation5, was 0.85. Models were then retrained on the full 
set of training data, and have been made freely usable as 
a web-service.6

We validated the ML models on two different exter-
nal datasets, separately: the Desio (DS, from the Desio 
Hospital) and the Bergamo dataset (BG, from the Ber-
gamo Hospital). Both datasets encompass CBC data from 
COVID-19 positive patients retrospectively collected 

Table 1  The list of the 21 parameters, along with the target, used by the validated Machine Learning models

For each continuous parameter and each dataset we report the mean and the extremes of the 95% confidence intervals, as well as the missing rate (in parenthesis). 
For the discrete features, as well as for the target, we report the distribution of values, as well as the missing rate (in parenthesis). The considered external validation 
sets had no missing values, except for the Suspect parameter

Parameter Unit of measure Train (missing) Desio (missing) Bergamo (missing)

Age Years 60.93 ± 0.92 (3.11) 66.35 ± 1.97 (0.00) 54.38 ± 3.10 (0.00)

Hematocrit (HCT) % 39.21 ± 0.26 (3.63) 38.20 ± 0.67 (0.00) 37.77 ± 0.91 (0.00)

Hemoglobin (HGB) g/dL 13.14 ± 0.10 (3.63) 13.21 ± 0.25 (0.00) 12.86 ± 0.33 (0.00)

Mean Corpuscular Hemoglobin (MCH) pg/Cell 29.21 ± 0.13 (3.63) 29.62 ± 0.34 (0.00) 30.41 ± 0.36 (0.00)

Mean Corpuscular Hemoglobin Concentration (MCHC) g Hb/dL 33.45 ± 0.06 (3.63) 34.49 ± 0.16 (0.00) 33.98 ± 0.17 (0.00)

Mean Corpuscular Volume (MCV) fL 87.29 ± 0.33 (3.63) 85.72 ± 0.86 (0.00) 89.44 ± 0.92 (0.00)

Red Blood Cells (RBC) 10
1
2/L 4.52 ± 0.03 (3.63) 4.49 ± 0.09 (0.00) 4.25 ± 0.11 (0.00)

White Blood Cells (WBC) 10
9/L 8.72 ± 0.22 (3.63) 9.81 ± 0.85 (0.00) 8.31 ± 0.88 (0.00)

Platelets (PLT1) 10
9/L 235.66 ± 4.43 (3.63) 220.23 ± 9.60 (0.00) 204.00 ± 14.10 (0.00)

Neutrophils (NE) % 72.35 ± 0.62 (20.85) 75.03 ± 1.51 (0.00) 67.54 ± 2.13 (0.00)

Lymphocytes (LY) % 18.58 ± 0.52 (20.85) 16.56 ± 1.24 (0.00) 21.90 ± 1.80 (0.00)

Monocytes (MO) % 7.83 ± 0.18 (20.85) 7.17 ± 0.42 (0.00) 8.86 ± 0.58 (0.00)

Eosinophils (EO) % 0.88 ± 0.08 (20.85) 0.74 ± 0.17 (0.00) 1.23 ± 0.26 (0.00)

Basophils (BA) % 0.34 ± 0.01 (20.85) 0.18 ± 0.04 (0.00) 0.46 ± 0.05 (0.00)

Neutrophils (NET) 10
9/L 6.45 ± 0.21 (20.85) 7.47 ± 0.52 (0.00) 5.62 ± 0.53 (0.00)

Lymphocytes (LYT) 10
9/L 1.37 ± 0.04 (20.85) 1.63 ± 0.67 (0.00) 1.84 ± 0.60 (0.00)

Monocytes (MOT) 10
9/L 0.62 ± 0.03 (20.85) 0.64 ± 0.05 (0.00) 0.73 ± 0.11 (0.00)

Eosinophils (EOT) 10
9/L 0.07 ± 0.01 (20.85) 0.06 ± 0.01 (0.00) 0.09 ± 0.02 (0.00)

Basophils (BAT) 10
9/L 0.02 ± 0.00 (20.85) 0.02 ± 0.01 (0.00) 0.03 ± 0.00 (0.00)

COVID-19 specific symptoms at triage (suspect) Yes/No 68%/32% (0%) 100%/0% (52%) 90%/10% (53%)

Gender M/F 57%/43% (0%) 65%/35% (0%) 68%/32% (0%)

COVID-19 positivity (target) Positive/Negative 53%/47% 52%/48% 58%/42%

4  https://​zenodo.​org/​record/​40813​18#.​YAFe5​xYo-​Uk
5  Thus, during internal validation, each model was trained with 64% of the 
data; hyper-parameter optimization was performed with 16% of the data; 
and evaluation on the remaining 20% of data
6  https://​covid-​19-​blood-​ml.​herok​uapp.​com/

https://zenodo.org/record/4081318#.YAFe5xYo-Uk
https://covid-19-blood-ml.herokuapp.com/
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and assessed by means of rRT-PCR at the EDs in March/
April, 2020 (163 and 104 subjects for Desio and Bergamo, 
respectively), and from true negative cases collected at 
the same EDs in 2019 (174 and 145 subjects for Desio and 
Bergamo, respectively). CBC analysis was performed by a 
Sysmex XN-9000 analyzer. The average age in the Desio 
and Bergamo datasets were, respectively 66.3± 2.0 and 
54.4 ± 3.1 years. The distributions of biological sex were 
65% males and 35% females, for the Desio dataset, and 68% 
males and 32% females, for the Bergamo dataset. Based 
on the proportion of COVID-19 positive cases in the two 
external validation datasets, and assuming a baseline AUC 
of 0.85, the two datasets were adequate in terms of sample 
size (minimum sample size equal to 234 and 239, for the 
Desio and Bergamo datasets respectively) [28].

The external validation datasets were not affected 
by missing values, except for the Suspect feature (see 
Table 1). In this latter feature, the missing rates were 52% 
and 53%, for the Desio and Bergamo datasets, respec-
tively. Distributions of key parameters in the training 
and validation datasets are reported in Figs.  2 and  3. 
The external validation was performed in terms of both 

Fig. 2  Violinplots of key CBC parameters in the training and validation datasets: White Blood Cells, Neutrophils, Lymphocytes, Red Blood Cells, 
platelets count and patient’s age (the parameters shown are the 6 most important features as reported in [9]). In the Suspect Symptoms Figure, NA 
means that the information was missing

Fig. 3  Boxplot of the distribution of presence of COVID-19 suspect 
symptoms. NA means that the information was missing
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error-based metrics (accuracy, sensitivity, specificity, false 
positive rate, false negative rate and AUC score), utility 
(in terms of Net Benefit), and calibration. With respect 
to calibration, in addition to the Brier score (which meas-
ures the deviations between probability scores on a quad-
ratic scale), we describe an original set of metrics, whose 
goal is to better understand the performance of the mod-
els on the predictions they are most confident about (that 
is, so-called highly-confident (HC) predictions).

In this article we consider a threshold of 75% for 
defining HC predictions (for either the positive or 
negative class). We then report the values of standard 
metrics (accuracy, sensitivity, specificity, AUC) on this 

subset of instances, all together with the Coverage, i.e. 
the proportion of predictions for which the models 
were “highly confident”; as well as the Total Variation 
[20] on the HC predictions. This latter metric, in par-
ticular, is defined as follows:

where h(xi) is the probability score, for the positive class, 
of model h on instance xi ; yi is the class associated with 
instance xi ; and Z = {xi : h(xi) ≥ 75% ∨ h(xi) ≤ 25%} is 
the set of HC predictions.

(1)
1

|Z|

∑

xi∈Z

|yi − h(xi)|

Fig. 4  The results of the evaluated models on the Desio dataset. The performance of the models is reported in ROC space, along with the respec-
tive Area Under the ROC Curve (AUC)
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Results
The average results, together with the results of the dif-
ferent models, are reported in Table 2. The ROC curves 
of the models and their respective AUCs, are reported in 
Figs. 4, 5.

On average, the AUC and accuracy of the models are, 
respectively, 95% and 87%. The Decision Curves of the 
models are reported in Figs.  6,  7. All models reported 
good predictive performance. In particular all models 
were consistently better than the Treat All baseline, while 
all models but Naive Bayes were consistently better than 
the Treat None baseline. The worse performing model 
(Naive Bayes) reported an average accuracy of 82.5% and 
an average AUC of 93.5%. The Naive Bayes model was 
also the worse calibrated one, with an average Brier score 
of 0.135, and the one with smallest Net Benefit (average 
0.605). In particular, the Naive Bayes model reported a 

Net Benefit smaller than the Treat None baseline for all 
threshold values greater than 0.83. The overall best per-
forming model, in terms of both AUC and Brier score, 
was Support Vector Machine with an average AUC of 
97.5%, an average Brier score 0.08, and an average Net 
Benefit of 0.81. On average, the models reported better 
performances on the Desio dataset, in terms of Sensi-
tivity, AUC, Net Benefit and Brier score. However, bet-
ter Specificity was achieved on the Bergamo dataset. 
The models were not affected by gender bias. Indeed, 
the average accuracy on male patients was 86%, while on 
female patients was 89%. The difference was not signifi-
cant (two-tailed Z score test, z = −1.02, p = 0.308).

The calibration (or reliability) plots for the evalu-
ated models, and their respective Brier scores, are 
reported in Figs.  8,  9. The values of the HC metrics, 
Coverage and Total Variation are reported in Table  3. 

Fig. 5  The results of the evaluated models on the Bergamo dataset
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Table 3  The results of the evaluated models on the two external validation datasets: Desio dataset and Bergamo dataset

Models were evaluated in terms of the HC metrics (i.e., metrics evaluated on instance on which the model reported a probability score greater than 75%, for either of 
the two classes): accuracy, sensitivity, specificity, area under the ROC curve (AUC). Coverage reports the proportion of HC predictions

Model HC HC HC HC Tot. HC HC HC HC Tot.

Acc. Sens. Spec. AUC​ Cov. Var. Acc. Sens. Spec. AUC​ Cov. Var.

(DS) (DS) (DS) (DS) (DS) (DS) (BG) (BG) (BG) (BG) (BG) (BG)

Random Forest 0.98 0.98 0.97 0.99 0.55 0.15 0.97 0.91 1.00 0.97 0.39 0.17

Logistic Regression 0.99 0.98 1.00 1.00 0.50 0.16 0.97 0.92 0.99 0.97 0.53 0.16

k-Nearest Neighbors 0.96 0.98 0.93 0.98 0.69 0.12 0.93 0.87 0.98 0.95 0.65 0.15

Support Vector Machine 0.98 0.96 1.00 0.99 0.70 0.15 0.98 0.95 1.00 0.98 0.67 0.16

Naive Bayes 0.86 0.94 0.76 0.95 0.88 0.15 0.88 0.81 0.92 0.95 0.86 0.13

Ensemble 0.96 0.97 0.95 0.99 0.68 0.15 0.97 0.93 0.99 0.98 0.65 0.16

Average 0.95 0.97 0.93 0.98 0.67 0.15 0.95 0.90 0.98 0.97 0.62 0.15

Fig. 6  The decision curves of the evaluated models on the Desio dataset. The performance of the models is reported in Net Benefit space, showing 
the variation in Net Benefit with respect to the selection of a probability threshold. Treat None refers to the always negative (i.e. all patients consid-
ered as COVID-19 negative) baseline, while Treat All refers to the always positive (i.e. all patients considered as COVID-19 positive) baseline
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In all cases, the performance of the models on the 
Highly Confident instance improved compared to the 
results on all the instances: the average improvement 
in terms of AUC was 2.5%, while the average improve-
ment in terms of accuracy was 8%. The best models in 
terms of both HC Accuracy and HC AUC were Logistic 
Regression and Support Vector Machine, both of which 
reported a value of 98% and 98.5%, respectively. These 
results suggest that the models were highly accurate 
on the instances less affected by epistemic uncertainty. 
In terms of Coverage, all models but Random Forest 
reported a Coverage greater than 50%. In particular, 
the best performing models (Logistic Regression and 
Support Vector Machine) reported an average cover-
age of 51.5% and 68.5%. All models reported a Total 

Variation greater than the corresponding Brier score: in 
particular, the best performing model in terms of Total 
Variation was k-Nearest Neighbors which reported an 
average value of 0.135.

The feature importances for the best performing mod-
els (namely, Logistic Regression and Support Vector 
Machine), computed on the external validation datasets 
using the Shapley values method [21], are reported in 
Fig.  10a, b. These two models used different features in 
their predictions. The Neutrophils percentage was found 
to be among the most predictive feature for the Logis-
tic Regression model, while the most predictive feature 
for the SVM model was the Mean Corpuscolar Volume. 
Nonetheless, both models had a large degree of overlap in 
the features identified as most predictive (even more so, 

Fig. 7  The decision curves of the evaluated models on the Bergamo dataset
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if we consider that each formula component was meas-
ured through two paired parameters). Indeed, Red Blood 
Cells and Mean Corpuscular Volume were among the 5 
most predictive features for both models, and also differ-
ent formula components (Neutrophils, Eosinophils and 
Monocytes) were found to be highly predictive. Notably, 
all these parameters have been previously recognized as 
highly predictive biomarkers for COVID-19 diagnosis 
[13, 38].

Discussion
As reported above, all AUC scores are above 90% (see 
Figs. 4 and 5); moreover, the Brier scores are always lower 
than 0.15 (see Table 2), and the models exhibited excel-
lent performance on the most confident predictions.

But what does this mean, practically speaking? A vali-
dated ML model that uses CBC data to detect COVID-19 

can be adopted either as a complementary method to the 
RT-PCR test, for the fast and cost-effective identification 
of COVID-19 positive patients. Also other use cases are 
viable: even after the COVID-19 pandemics will have 
backed off to a more endemic and controlled disease, 
the fast triaging of admitted patients on the basis of CBC 
test results could facilitate healthcare practitioners in 
terms of prophylactic management and ward allocation. 
Furthermore, a validated CBC model can be useful for 
its probabilistic scores, as these can be used in multiple-
test settings: to estimate Negative Predictive Values, so 
as to help general practitioners in ruling out COVID-19 
positivity from subjects in self-quarantine; or to better 
estimate the prior probability of disease of other tests 
to detect COVID-19 and increase the reliability of their 
positive predictive value.

Fig. 8  The calibration plot for the evaluated models on the Desio dataset, along with the respective Brier scores
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Fig. 9  The calibration plot for the evaluated models on the Bergamo dataset, along with the respective Brier scores

Fig. 10  Feature importances for the Logistic Regression model. Feature importances for the Support Vector Machine model
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The models that we have validated compare favora-
bly with the existing state of the art: more specifically, 
they outperform the model described by Yang et al. [37], 
which reported an AUC score of 84% and was, so far, the 
only ML model defined as having clinical viability [22]. 
Similarly, the reported results are competitive also with 
respect to the other works in the literature that have 
undergone external validation: Soltan et  al. [31] report 
an AUC of 87%; Plante et al. [26] report an AUC of 91%, 
with high sensitivity (between 92.6% and 95.9%) but very 
low specificity (between 41.7%); Wu et  al. [35] report 
an accuracy of 96% (sensitivity: 95%, specificity: 97%), 
though the model was described as being affected by bias 
[26, 36], both in terms of population size (the model was 
trained and externally validated on datasets encompass-
ing only 146 and 74 patients, respectively) and task defi-
nition (the model was trained to distinguish COVID-19 
patients from patients affected by other lung-related dis-
eases, such as lung cancer or tuberculosis).

Compared to these other approaches [26, 31, 35, 
37], the validated models were developed using more 
advanced pre-processing techniques, including multi-
variate imputation (as compared to e.g. median-based 
imputation in [31, 37]) and extensive hyper-parameter 
optimization [9]. Furthermore, as described in [9], the 
gold standard used for training the validated models 
was obtained by means of a composite test which, for 
the more uncertain cases, combined the result of the 
molecular swab with the result of chest radiography and/
or chest X-ray, so as to minimize labeling uncertainty, 
improve over the sensitivity of the molecular swab alone 
[34], and thus improve the data quality. Finally, differently 
from the approaches described in [26, 31, 35, 37], the 
models we developed to detect COVID-19 are based on 
demographic and CBC parameters only. As mentioned in 
the introduction, this is a fast and inexpensive diagnostic 
test, which is also less subject to analytic and biological 
variability as compared to other biomarkers [6].

Interestingly, the performance of the validated mod-
els was comparable with the performance of other, non 
ML-based diagnostic tests. Indeed, as highlighted in a 
recent systemic review [4], the average specificity of the 
best performing model (i.e. Support Vector Machine) 
was higher than all other reviewed diagnostic tests except 
for blood-based IgG immunological tests, while its sen-
sitivity was higher than all other reviewed diagnostic 
tests except for sputum-based RT-PCR and Computed 
Tomography [4]. The proposed ML approaches, there-
fore, offer a good trade-off between sensitivity and speci-
ficity, with performance (in terms of AUC) comparable to 
that of the RT-PCR. Being based on routine blood tests, 
i.e. a rapidly available and inexpensive testing method-
ology, the validated ML models could be useful in the 

rapid identification and triaging of COVID-19 infec-
tions, as well as in multiple test settings, in combination 
with the gold standard RT-PCR test or other diagnostic 
approaches, so as to improve sensitivity and specificity.

Our models also report good calibration. Indeed, 
the best performing model (Support Vector Machine) 
reported a Brier score of 0.08. In order to better under-
stand the reliability and calibration of the validated mod-
els’ probability scores, we can observe the values for the 
HC metrics in Table  3. All performance metrics, of all 
models, improved when we consider the instances where 
the models achieved high confidence in the prediction: 
all measures are above 95%. This means that most of the 
instances that had been wrongly classified were associ-
ated with greater model uncertainty (hence, lower prob-
ability scores). In particular, the most accurate model 
(that is, the Support Vector Machine model) reports an 
HC specificity equal to 1. This means that all “highly con-
fident” predictions on negative instances were correct, 
thus proving that our models can be an effective tool for 
ruling-out a COVID-19 diagnosis.

Furthermore, all models report coverage higher than 
50% and small Total Variation. In regard to coverage, the 
above result means that at least one half of the predic-
tions were produced with high confidence and hence 
could be practically useful to physicians7. In regard to the 
total variation,we recall that a model associating all posi-
tive instances with a probability score of at least 75% (and 
all negative instances with a probability no greater than 
25%) would result in a Total Variation value ≤ 0.25. Thus, 
a model which reports a Total Variation lower than 25%, 
as the validated models described in this article, makes 
few error on its HC predictions and its probability scores 
on the HC predictions are well-calibrated.

Conclusion
In this article, we reported about the external validation 
of 6 state-of-the-art ML models for COVID-19 diagno-
sis based on routine hematochemical parameters. The 
ML models reported excellent performance on two dif-
ferent, independent, external validation sets, both in 
terms of diagnostic accuracy and calibration. In particu-
lar, the best performing model (Support Vector Machine) 
reported an average AUC of 97.5% (Sensitivity: 87.5%, 
Specificity: 94%), out-performing the existing state-
of-the-art ML methods, and reaching a performance 
comparable with the gold standard diagnostic tests (i.e. 
RT-PCR). Thus, being based on routine, rapidly available 
and inexpensive blood tests, the validated methods could 

7  That said, discussing whether physicians should rely also on low-confidence 
predictions is beyond the scope of this contribution
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be useful for the early identification of COVID-19 infec-
tion, due to the rapid availability of CBC exams as com-
pared to RT-PCR, as well as in multiple test settings, in 
combination with other diagnostic tests, so as to improve 
sensitivity and specificity, or to provide prior probabilities 
for Bayesian reasoning. Following the recommendations 
reported in [22], the data used for model development 
has been made publicly available (on Zenodo8), so that 
authors of other studies amd developers of other ML 
tools for COVID-19 detection could use those data to 
perform external validations of their models.

Moreover, the models that we have validated in this 
paper have been made freely available online as a web 
tool9. For this reason, they could be easily adopted in 
developing countries as well as in any country facing 
a rapid increase in contagions, since CBC is a widely 
adopted diagnostic investigation [24]. Moreover, this web 
tool, which so far has been used more than 1300 times, 
has been designed to visually show prediction results in 
terms of probability scores, so as to be more interpretable 
and informative to both specialists and lay people [22].
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