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SUMMARY
The circulatingmetabolome provides unique insights intomultiple sclerosis (MS) pathophysiology, but exist-
ing studies are relatively small or characterized limited metabolites. We test for differences in the metabo-
lome between people with MS (PwMS; n = 637 samples) and healthy controls (HC; n = 317 samples) and
assess the association betweenmetabolomic profiles and disability in PwMS.We then assess whether meta-
bolic differences correlate with changes in cellular gene expression using publicly available scRNA-seq data
and whether identified metabolites affect human immune cell function. In PwMS, we identify striking abnor-
malities in aromatic amino acid (AAA) metabolites (p = 2.77E�18) that are also strongly associated with
disability (p = 1.01E�4). Analysis of scRNA-seq data demonstrates altered AAA metabolism in CSF and
blood-derived monocyte cell populations in PwMS. Treatment with AAA-derived metabolites in vitro alters
monocytic endocytosis and pro-inflammatory cytokine production. We identify shifts in AAA metabolism re-
sulting in the reduced production of immunomodulatory metabolites and increased production of metabo-
toxins in PwMS.
INTRODUCTION

Multiple sclerosis (MS) is an inflammatory and neurodegenera-

tive disorder of the central nervous system (CNS)1 The etiology

of MS is multifactorial and involves multiple levels of biological

interactions with genetic and environmental contributors.2,3

However, a detailed understanding of these interactions or un-

derlying mechanisms remains rudimentary. Molecular profiling

of circulating small molecules using metabolomics integrates

many of these systems, as an individual’s metabolic phenotype

reflects an intersection between environmental sources of varia-

tion such as lifestyle characteristics (e.g., diet), upstream genetic

influences, and activity of the gut microbiota.4,5 Thus, the as-

sembly of a detailed global map of functional relationships in

MS using circulating biologic intermediates may provide a valu-

able step forward in improving our understanding of potential

contributors to MS pathogenesis.

Preliminary studies suggest that metabolic alterations exist

in people with MS (PwMS) with respect to global metabolomic

profiles, specific pathways, and individual metabolites.6–9

These results are consistent with observations from metabolo-
Cell Repo
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mics studies of other neurological disorders, including

Alzheimer’s and Parkinson’s diseases, and other autoimmune

disorders.10–12 However, with respect to MS, these studies

have been restricted to small patient populations and limited

arrays of metabolites. Critically, most prior studies have not eval-

uated the links between metabolomic differences and patient

characteristics, including measures of disease severity or other

candidate biological drivers of disease.

In the present study, we compare nearly 1,000 detailedmetab-

olomic profiles from PwMS and healthy people from across the

age spectrum using individual metabolite and pathway-level an-

alyses. Our findings highlight distinct abnormalities in aromatic

amino acidmetabolism that imply an altered balance of immuno-

modulatory metabolites (e.g., arylhydrocarbon receptor [AhR]

and hydroxycarboxylic acid-3 [HCA3] receptor agonists) and a

shift toward production of known metabotoxins (e.g., indole ac-

etate, phenylacetylglutamine, p-cresol sulfate/glucuronide). Me-

tabolomic alterations, particularly in these immunomodulatory

amino acids and metabotoxins, were associated with disease

severity. We then integrated publicly available single-cell tran-

scriptomics data to identify alterations in genes involved in
rts Medicine 2, 100424, October 19, 2021 ª 2021 The Author(s). 1
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Table 1. Characteristics of included study participants

Disease status HC MS

No. samples 317 637

No. of participants 241 515

Age, y, mean (SD) 35.85 (15.71) 42.54 (14.91)

Age range (min, max) 7, 84 7, 76

Female gender, n (%) 224 (70.66) 468 (73.47)

White race, n (%) 253 (79.81) 542 (85.09)

Disease duration, y,

mean (SD)

– 13.45 (10.63)

Progressive MS, n (%) – 205 (32.18)

EDSS (417 scores available),

median (IQR)

– 2.50 (1.50, 5.00)

Use of cane, n (%) – 97 (23.2)

Disease-modifying

therapy, n (%)

– –

No treatment – 195 (30.61)

Interferon-b – 60 (9.42)

Glatiramer acetate – 130 (20.41)

Dimethyl fumarate – 36 (5.65)

Teriflunomide – 2 (0.31)

Natalizumab – 82 (12.87)

Alemtuzumab – 2 (0.31)

Daclizumab – 1 (0.16)

Mycophenolate mofetil – 2 (0.31)

Ocrelizumab – 1 (0.16)

Rituximab – 14 (2.2)

Missing – 112 (17.58)
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aromatic amino acid metabolism in MS peripheral blood and ce-

rebrospinal fluid (CSF)-derived immune cells. Lastly, we tested

the effects of the identified AAA-derived metabolites on human

peripheral immune cells and noted changes in the production

of pro-inflammatory cytokines, as well as endocytosis in mono-

cytes (as a candidate cell type), suggesting functional roles for

metabolites that are altered in MS and are related to disease

severity.

RESULTS

After applying several quality-control steps (Figures S1 and S2;

STAR Methods), we included 954 metabolomic profiles from

756 individuals withMSor healthy controls (HC) (514MSpatients

and 241 HC), in which 269 metabolites were reliably measured.

Participants were aged 40.26 ± 15.46 years and were predomi-

nantly female (73.49%) and non-Hispanic whites (84.21%; Table

1; Figure S1; Data S1A). With respect to MS, the majority of par-

ticipants had relapsing-remitting MS (RRMS; 72.71%), disease

duration was 13.45 ± 10.63 years, and they were, on average,

moderately disabled (median Expanded Disability Status Scale

[EDSS] score = 3.0; 27% reported using a cane).

Initial analyses compared the distribution of within-person and

between-person dissimilarity in overall metabolomic profiles;

profiles were largely consistent within individuals; the distribu-
2 Cell Reports Medicine 2, 100424, October 19, 2021
tion of dissimilarity between subjects was significantly larger

than within-subject dissimilarity, as expected (p < 1E�16; Fig-

ure S1). The distributions of within-person and between-person

Mahalanobis dissimilarity were similar when stratified by disease

status (e.g., MS versus HC).

Metabolomic differences between MS and HC
Metabolic dysfunction score in overall metabolomic

profiles

Overall, we detected shifts in age- and gender-adjusted metab-

olomic profiles in PwMS relative to HC (Figure 1A; p = 4.89E�7)

using our age- and gender-adjusted metabolomic dysfunction

classifier score. We identified samples that were highly divergent

from the reference population (defined as >90th percentile of the

metabolomic dysfunction score in HC); 131 (20.56%) MS pa-

tients had metabolomic dysfunction scores greater than this

threshold, providing additional evidence of divergence in overall

metabolite profiles (p = 7.65E�5). Differences in overall metabo-

lomic dysfunction were consistent when we only included pa-

tients who were not on a disease-modifying therapy (DMT) at

the time of blood collection (Figure S3).

Differences in individual metabolites and metabolic

pathways

In analyses using individual metabolites, we found strong reduc-

tions among MS patients in lactate-related metabolites in aro-

matic amino acid (AAA) pathways. For example, phenyllactate

(PLA), 3-(4-hydroxyphenyl)-lactate, indolelactate (ILA), and imid-

azole lactate were significantly reduced in PwMS (all false dis-

covery rate [FDR]-adjusted p < 1E�8; Figures 1B and 1C; Table

2). Results were consistent when comparing HC to PwMS in an-

alyses where we (1) included only MS patients whowere not on a

DMT at the time of blood collection, (2) included only progressive

MS (PMS) patients, (3) excluded patients for whom treatment

status was missing, and (4) restricted it to MS patients on any

DMT. For example, PLA, 3-(4-hydroxyphenyl)-lactate, ILA, and

imidazole lactate were reduced in PwMS versus HC regardless

of the subset of patients included (Data S1B). Findings were

also consistent in sensitivity analyses excluding pediatric sam-

ples. Similarly, in analyses in which we grouped metabolites a

priori based on related biological functions (e.g., glutathione

metabolism, tryptophan metabolism), we identified highly statis-

tically significant differences in metabolic pathways including

other AAA metabolites (Figures 1D and 1E; Table 3; all FDR-

adjusted p < 1E�4). These results were consistent across

different types of pathway and network analyses (Table 3; Data

S1C). We also found strong reductions in branched-chain

amino acid (BCAA)-related metabolites in both individual and

pathway-based analyses. We observed differences in metabo-

lite pathways related to bile acid metabolism (FDR-adjusted

p = 3.14E�3; Table 3), xanthine metabolism (FDR-adjusted p =

4.91E�5), and acetylated amino acid metabolism (FDR-adjusted

p = 4.19E�4). In analyses using compounds and reactions from

the MetaCyc13 reaction database (as a proxy for estimated

enzyme activity), we also identified a network of amino acids

(predominantly AAA) and xanthine (caffeine) metabolites en-

riched in PwMS. Likewise, we also noted alterations in ratios of

tyrosine (reactant) to 4-hydroxyphenylpyruvate (product) and

phenylalanine to phenylpyruvate in PwMS, suggesting a reduced
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activity of enzymes involved in these metabolic reactions (Data

S1D). Intriguingly, in analyses comparing age-matched PMS

patients to relapsing remitting patients, differences in 3-(4-hy-

droxyphenyl)-lactate, ILA, phenylacetylglutamine, and p-cresol

glucuronide were generally more extreme in PMS patients (Fig-

ure 2B; Data S1E).

Sensitivity analyses assessing whether observed

differences in metabolites and metabolic pathways in

primary analyses were associated with different MS

DMTs

For metabolites that were significantly different between MS pa-

tients and HC (e.g., those metabolites with FDR-adjusted p <

0.05 between MS patients and HC), we also assessed whether

observed metabolomic differences were related to MS DMTs

by comparing DMT classes (based on efficacy) versus no ther-

apy and individual DMTs (among DMTs with R30 users) versus

no therapy. For selected metabolites with significant differences

between MS and HC, individual DMTs or DMT class did not

appear to be strongly associated with differences in levels for

these metabolites (Data S1F).

Other sensitivity analyses for primary metabolomics

analyses between MS versus HC

The adjusted mean difference between MS and HC in a given

metabolite level was not associated with how strongly a

metabolite correlated with age in HC (correlation [bMS versus HC,

bAge in HC] = �0.09; p = 0.16; Figure S4A). We also observed

consistent results when stratified by median age (<40 years,

R40 years; Data S1G). Results were relatively consistent when

we adjusted for BMI when available. Results were also consis-

tent when repeating analyses using a leave-one-out procedure

excluding individual batches and repeating all of the analyses

in the remaining set. Results were also similar in stratified ana-

lyses by serum versus plasma.

Association of metabolomics profiles with MS
characteristics and disease severity measures
Having established that significant alterations exist in the circu-

lating metabolome in MS patients compared to HCs, we then

addressed the question of whether alterations in the metabo-

lome are linked to MS disease severity (clinical or based on im-

aging [optical coherence tomography, OCT] measures). Higher

levels of metabolic dysfunction were associated with increased

disability status; MS patients using a cane had the highest
Figure 1. Differences in metabolomic profiles between MS and healthy
(A) Differences in overall metabolomic profiles. The dotted line denotes the 90th

(B) Volcano plot of results of individual metabolites. Each point denotes 1 metab

patients and HC, while the y axis denotes the �log(p value) for a test of the differe

significantly different between MS and HC (FDR-adjusted p < 0.05).

(C) The distribution of metabolites that significantly differed between MS versus

within HC.

(D) Largest connected component of the agnostic metabolite network derived usin

ametabolite; the color of the node represents the module color, as labeled byWGC

between MS patients and HC.

(E) The blue network represents all Metacyc metabolic reactions; nodes represent

connection). We mapped results of the individual metabolites that differed betw

metabolite interactions (corresponding roughly to metabolic pathways) using Pri

represent the 2 largest subnetworks extracted after PCSF optimization. All of the

See also Figures S2–S4 and Data S1B–S1D, S1F, and S1G.
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dysfunction scores (Figure 2A). In analyses assessing the asso-

ciation between individual metabolites and EDSS scores, we

observed that reductions in several AAA metabolites were

associated with higher EDSS scores independent of age (Fig-

ures 2C and 2D; Data S1H). Results were consistent when re-

stricting to subsets of MS patients in which we (1) included only

patients who were not on a DMT at the time of blood collection,

(2) included only PMS patients, (3) excluded patients for which

treatment status was missing, and (4) restricted to MS patients

on any DMT (Data S1H). Specifically, reduced levels of 3-(4-hy-

droxyphenyl)lactate (tyrosine metabolism) were significantly

associated with higher EDSS scores (FDR-adjusted p < 0.05).

Reductions in other AAA metabolites (ILA, imidazole lactate,

PLA, kynurenine, kynurenate, tryptophan, and phenylalanine)

were also nominally associated with higher EDSS scores (unad-

justed p < 0.05; Data S1H). Several of these metabolites are

largely produced by the reductive pathway of gut microbial

AAA metabolism. In network or pathway-based analyses, we

also observed consistent significant associations between

AAA pathway metabolites and EDSS scores and in analyses

stratified by age (Data S1I–S1K). In addition, increases in mul-

tiple gut microbiota-derived AAA metabolites (which are also

uremic metabotoxins)—p-cresol glucuronide, p-cresol sulfate,

and phenylacetylglutamine—were associated with greater

disability (Figures 2C and 2D). These metabolites are derived

from the oxidative pathway of gut microbial AAA metabolism.14

To assess whether the balance between the reductive and

oxidative metabolism of AAA in the gut was associated with

MS and disease severity, we used ratios of metabolites derived

from these pathways for individual amino acids (Figures 2E and

2F). We noted highly significant associations between the ratio

of oxidative to reductive metabolites of phenylalanine (phenyl-

acetylglutamine to PLA ratio), tyrosine (p-cresol glucuronide

or sulfate to 3-(4-hydroxyphenyl)lactate), and tryptophan

(indole acetate to ILA ratio) and EDSS scores, suggesting that

a shift in reductive versus oxidative metabolism of AAA may

be related to disability (Figure 2F). In addition, results were

consistent when we used the Age-Related Multiple Sclerosis

Severity (ARMSS) (rather than the EDSS) as a measure of dis-

ease severity. Sensitivity analyses also confirmed that the as-

sociation between a given metabolite and EDSS was not also

associated with how strongly a metabolite correlated with

age in HC (Figure S4B).
control (HC)
percentile of our metabolomic dysfunction classifier in HC.

olite. The x axis denotes the mean difference in metabolite levels between MS

nce between MS and HC. Red-colored and labeled metabolites denote those

HC (FDR-adjusted p < 0.05); plotted distributions are scaled to the median

g weighted gene correlation network analysis (WGCNA). Each node represents

NA. The brown, green, yellow, pink, and redmodules are significantly different

a metabolite and edges represent a metabolic reaction (e.g., reactant-product

een MS versus HC with FDR < 0.25 and extracted subnetworks of enriched

ze-collecting Steiner Forest (PCSF) graph optimization. The bottom networks

plots in this figure were derived from n = 984 samples.



Table 2. Analyses of metabolomic differences between multiple sclerosis (MS) and healthy controls (HCs) for individual metabolites with FDR-adjusted p < 0.05

Metabolite Metabolite pathway HMDB IDa Metabolite modulea
Mean difference between

MS versus HC (95% CI)b p FDR-adjusted p

Phenyllactate (PLA) phenylalanine metabolism HMDB00779 pink �6.54 (�7.93 to �5.15) 3.16E�20 8.49E�18

3-(4-Hydroxyphenyl)lactate tyrosine metabolism HMDB00755 pink �6.19 (�7.62 to �4.76) 1.73E�17 4.63E�15

Indolelactate tryptophan metabolism HMDB00671 pink �5.76 (�7.19 to �4.33) 2.61E�15 6.97E�13

Tryptophan tryptophan metabolism HMDB00929 brown �4.51 (�5.87 to �3.15) 7.21E�11 1.92E�8

Imidazole lactate histidine metabolism HMDB02320 pink �4.82 (�6.28 to �3.35) 1.12E�10 2.98E�8

4-Hydroxyphenylpyruvate tyrosine metabolism HMDB00707 brown �4.47 (�5.89 to �3.06) 5.89E�10 1.55E�7

a-Hydroxyisocaproate leucine, isoleucine, and

valine metabolism

HMDB00746 pink �4.29 (�5.74 to �2.85) 6.22E�9 1.64E�6

Asparagine alanine and aspartate metabolism HMDB00168 brown �4.42 (�5.93 to �2.90) 1.03E�8 2.70E�6

Methionine methionine, cysteine, S-adenosyl

methionine (SAM), and

taurine metabolism

HMDB00696 brown �3.97 (�5.36 to �2.59) 1.86E�8 4.86E�6

N-Acetylcarnosine dipeptide derivative HMDB12881 pink �3.83 (�5.18 to �2.49) 2.36E�8 6.13E�6

2-Hydroxy-3-methylvalerate leucine, isoleucine, and

valine metabolism

HMDB00317 pink �3.98 (�5.51 to �2.46) 3.03E�7 7.85E�5

Tyrosine tyrosine metabolism HMDB00158 brown �3.51 (�4.89 to �2.12) 7.25E�7 1.87E�4

Choline phosphate phospholipid metabolism HMDB01565 gray �3.42 (�4.80 to �2.04) 1.20E�6 3.07E�4

N-Acetylleucine leucine, isoleucine, and

valine metabolism

HMDB11756 green-yellow �3.35 (�4.75 to �1.95) 2.60E�6 6.67E�4

Catechol sulfate benzoate metabolism HMDB59724 turquoise �3.36 (�4.77 to �1.95) 2.98E�6 7.59E�4

Histidine histidine metabolism HMDB00177 brown �3.15 (�4.51 to �1.80) 5.07E�6 1.29E�3

Phenylpyruvate phenylalanine metabolism HMDB00205 pink �3.24 (�4.64 to �1.84) 5.71E�6 1.45E�3

N-(2-Furoyl)glycine food component/plant HMDB00439 turquoise �3.38 (�4.87 to �1.89) 8.84E�6 2.23E�3

Isovalerylcarnitine (C5) leucine, isoleucine, and

valine metabolism

HMDB00688 red �3.13 (�4.55 to �1.70) 1.71E�5 4.29E�3

Glucuronate aminosugar metabolism HMDB00127 gray 2.82 (1.53–4.11) 1.89E�5 4.73E�3

Theobromine xanthine metabolism HMDB02825 gray �2.80 (�4.09 to �1.51) 2.06E�5 5.12E�3

Hippurate benzoate metabolism HMDB00714 turquoise �3.06 (�4.47 to �1.65) 2.12E�5 5.26E�3

O-Methylcatechol sulfate benzoate metabolism HMDB60013 turquoise �2.99 (�4.40 to �1.57) 3.60E�5 8.90E�3

Tiglylcarnitine (C5:1-DC) leucine, isoleucine, and

valine metabolism

HMDB02366 red �3.12 (�4.61 to �1.64) 3.66E�5 9.00E�3

3-Hydroxybutyrate

(BHBA)

ketone bodies HMDB00357 blue 2.82 (1.47–4.16) 3.92E�5 9.60E�3

2-Methylbutyrylcarnitine

(C5)

leucine, isoleucine and

valine metabolism

HMDB00378 red �3.03 (�4.49 to �1.58) 4.52E�5 1.10E�2

N-Palmitoylglycine fatty acid metabolism

(acyl glycine)

HMDB13034 blue 2.92 (1.48–4.37) 7.22E�5 1.75E�2

(Continued on next page)

C
e
llR

e
p
o
rts

M
e
d
ic
in
e
2
,
1
0
0
4
2
4
,
O
c
to
b
e
r
1
9
,
2
0
2
1

5

A
rtic

le
ll

O
P
E
N

A
C
C
E
S
S



T
a
b
le

2
.

C
o
n
ti
n
u
e
d

M
e
ta
b
o
lit
e

M
e
ta
b
o
lit
e
p
a
th
w
a
y

H
M
D
B
ID

a
M
e
ta
b
o
lit
e
m
o
d
u
le

a

M
e
a
n
d
if
fe
re
n
c
e
b
e
tw

e
e
n

M
S
v
e
rs
u
s
H
C
(9
5
%

C
I)
b

p
F
D
R
-a
d
ju
s
te
d
p

B
e
ta
in
e

g
ly
c
in
e
,
s
e
ri
n
e
,
a
n
d

th
re
o
n
in
e
m
e
ta
b
o
lis
m

H
M
D
B
0
0
0
4
3

g
ra
y

�2
.8
7
(�

4
.3
3
to

�1
.4
0
)

1
.2
2
E
�4

2
.9
5
E
�2

p
-C

re
s
o
l-
g
lu
c
u
ro
n
id
e
*

ty
ro
s
in
e
m
e
ta
b
o
lis
m

H
M
D
B
1
1
6
8
6

p
u
rp
le

2
.8
0
(1
.3
6
–
4
.2
3
)

1
.3
2
E
�4

3
.1
8
E
�2

3
-M

e
th
y
l
c
a
te
c
h
o
l
s
u
lf
a
te

(1
)

b
e
n
zo

a
te

m
e
ta
b
o
lis
m

H
M
D
B
0
2
4
0
6
6
2

tu
rq
u
o
is
e

�2
.7
7
(�

4
.2
1
to

�1
.3
2
)

1
.7
2
E
�4

4
.1
3
E
�2

N
-A

c
e
ty
lt
y
ro
s
in
e

ty
ro
s
in
e
m
e
ta
b
o
lis
m

H
M
D
B
0
0
8
6
6

g
re
e
n
-y
e
llo

w
�2

.7
3
(�

4
.1
5
to

�1
.3
0
)

1
.8
1
E
�4

4
.3
3
E
�2

X
a
n
th
u
re
n
a
te

tr
y
p
to
p
h
a
n
m
e
ta
b
o
lis
m

H
M
D
B
0
0
8
8
1

p
in
k

�2
.8
2
(�

4
.3
0
to

�1
.3
4
)

1
.8
9
E
�4

4
.5
1
E
�2

a
H
M
D
B
,
H
u
m
a
n
M
e
ta
b
o
lit
e
D
a
ta
b
a
s
e
id
e
n
ti
fi
e
r.
M
e
ta
b
o
lit
e
m
o
d
u
le

d
e
n
o
te
s
th
e
W
G
C
N
A
m
o
d
u
le

in
w
h
ic
h
th
e
m
e
ta
b
o
lit
e
fa
lls
.

b
M
e
a
n
d
if
fe
re
n
c
e
s
a
re

a
d
ju
s
te
d
fo
r
a
g
e
,
g
e
n
d
e
r,
a
n
d
ra
c
e
;
v
a
lu
e
s
d
is
p
la
y
e
d
d
e
n
o
te

m
e
a
n
d
if
fe
re
n
c
e
s
p
e
r
S
D
in

m
e
ta
b
o
lit
e
le
v
e
ls
.

6 Cell Reports Medicine 2, 100424, October 19, 2021

Article
ll

OPEN ACCESS
A subset of participants had OCT-derived measures of dis-

ease severity available. In these participants, AAA metabolites

(xanthurenate, p-cresol-glucuronide*, 4-hydroxyphenylpyru-

vate, phenylacetylglutamine, and PLA) and metabolite ratios

(phenylacteylglutamine to PLA and p-cresol glucuronide to

3-(4-hydroxyphenyl)lactate) were also associated with differ-

ences in ganglion cell + inner plexiform layers (GCIPL) thickness

(Data S1L). Thus, results were consistent using either clinical or

imaging measures of disease severity.

Interestingly, we also noted a significant positive association

between the magnitude of the difference between MS and HC

for a given metabolite and the magnitude of the association be-

tween individual metabolite level and EDSS scores (correlation

[bMS versus HC, bEDSS] = 0.41; p = 1.35E�12). For example, the

metabolite p-cresol-glucuronide is elevated in PwMS relative

to HC; higher levels are also associated with higher levels of

disability (Figures 1B and 2C).

Single-cell metabolic gene expression in MS versus HC
in blood and CSF
We used publicly available single-cell RNA sequencing (scRNA-

seq) data from an existing study comparing cellular-level differ-

ences in metabolic gene expression from an integrative analysis

of blood and CSF from MS patients and HC. After downloading

raw cell counts, we implemented a standard quality control and

cell clustering procedure to identify clusters of cells usingmarker

gene expression (Figure S5) for use in subsequent analyses.

Because of the strong differences in amino acid metabolism

(specifically in AAA metabolism) identified using circulating

metabolomics, we concentrated our scRNA-seq analyses of

pathway differences in cell-type-specific gene expression be-

tween MS and HC in blood and CSF on these metabolic path-

ways in particular (Figure 3A). We identified significant differ-

ences in the pathway activity of AAA metabolic pathways

between MS and HC in monocyte cell clusters (Figure 3B),

including both clusters of cells enriched in blood and CSF;

PwMS tended to have significantly lower levels of pathway activ-

ity in theses cell types. Relatedly, as we hypothesized that the

observed abnormalities in AAA metabolism may also imply an

altered balance of immunomodulatory metabolites (e.g., AhR

or HCA3 agonists), we also tested whether a network of genes

interacting with AhR or HCA3 was similarly altered; networks

were defined using protein-protein interaction databases. We

detected lower levels of AhR network genes in monocytes in

PwMS relative to HC (p < 0.001; Figure 3C; Data S1M). We

also found lower levels of expression for HCA3-network genes

in PwMS; however, this difference was not statistically signifi-

cant (p = 0.11; Figure 3C; Data S1M).

Effects of AAA-derived metabotoxins and lactate
metabolites on human monocytes
Besides serving as biomarkers, circulating metabolites can have

direct effects on cells through a variety of receptors. We first

tested the effects of AAA-derived metabotoxins—indole acetate

and phenylacetyl glutamine—that were identified as being

related to higher EDSS severity and lower GCIPL thickness, on

human peripheral blood mononuclear cells (PBMCs) from

healthy controls (Figure 4A). Since our scRNA-seq analyses



Table 3. Analyses of metabolomic differences between multiple sclerosis (MS) and HCs using WGCNA

Modulea
Module

sizeb

Including all samples (n = 954) Restricting to MS patients on no therapy and HCs (n = 434) Restricting to MS patients on any therapy and HCs (n = 710)

Overview of

module

composition

Mean

difference

between MS

versus HC

(95% CI)c p

FDR-

adjusted

p

Mean

difference

between

MS and

HC (95% CI)c p

FDR-

adjusted p

Mean

difference

between

MS and HC

(95% CI)c p

FDR-

adjusted p

Pink aromatic

amino acids,

branched

chain amino

acids

12 �2.12

(�2.58 to

�1.65)

2.13E

�19

2.77E

�18

�1.87

(�2.51

to �1.22)

1.55E�8 2.02E�7 �1.95

(�2.48 to

�1.43)

3.39E�13 4.41E�12

Brown other amino

acids

22 �1.16

(�1.64 to

�0.69)

1.29E

�6

1.55E

�5

�1.43

(�2.09

to �0.78)

1.65E�5 1.99E�4 �0.79

(�1.32 to

�0.26)

3.60E�3 3.24E�2

Turquoise xanthine

metabolites

26 �0.97

(�1.43 to

�0.50)

4.17E

�5

4.59E

�4

�0.96

(�1.67

to �0.24)

8.75E�3 8.75E�2 �1.33

(�1.88 to

�0.79)

1.86E�6 2.24E�5

Green-

yellow

acetylated

amino acid

derivatives

7 �0.96

(�1.41 to

�0.50)

4.24E

�5

4.59E

�4

�0.81

(�1.53

to �0.09)

2.65E�2 2.39E�1 �1.10

(�1.62 to

�0.59)

2.94E�5 3.23E�4

Red branched

chain amino

acids;

carnitine

metabolites

14 �0.93

(�1.39 to

�0.47)

7.94E

�5

7.15E

�4

�0.96

(�1.63

to �0.28)

5.55E�3 6.10E�2 �0.91

(�1.43 to

�0.39)

5.60E�4 5.60E�3

Magenta bile acid

metabolites

9 �0.78

(�1.25 to

�0.32)

9.36E

�4

7.48E

�3

�0.75

(�1.45

to �0.05)

3.52E�2 2.81E�1 �0.66

(�1.19 to

�0.13)

1.40E�2 9.79E�2

Blue fatty acid

metabolites;

acyl carnitine

metabolites

25 0.52

(0.05

–0.99)

2.97E

�2

2.08E

�1

0.68

(�0.03

to 1.39)

5.87E�2 4.11E�1 0.27

(�0.25

to 0.80)

3.07E�1 4.49E�1

Tan vitamin

metabolites

5 �0.31

(�0.75 to

0.14)

1.81E

�1

9.03E

�1

�0.00

(�0.63

to 0.62)

9.94E�1 1.00E+0 �0.54

(�1.07

to 0.00)

5.08E�2 2.54E�1

Yellow steroid

metabolites

21 0.12

�0.34

to 0.58)

6.11E

�1

1.00E

+0

0.43

(�0.23

to 1.09)

2.01E�1 1.00E+0 0.61

(0.12

–1.11)

1.51E�2 9.79E�2

Purple aromatic

amino acids,

benzoate

metabolism

7 �0.07

(�0.53 to

0.38)

7.48E

�1

1.00E

+0

0.07

(�0.62

to 0.75)

8.46E�1 1.00E+0 �0.43

(�0.96

to 0.10)

1.12E�1 4.49E�1

(Continued on next page)
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implicated potential differences in AAA metabolism in mono-

cytes, we concentrated our analyses on this cell type. We noted

an increase in tumor necrosis factor-a (TNF-a) production from

CD14high monocytes with indole acetate (IAA) treatment with a

clear dose-response relationship (Figures 4B and 4C). In a

subset of participants, we also noted an increase in interleukin-

6 (IL-6) production from CD14high monocytes with either phenyl-

acetylglutamine (PAG) or IAA treatment (Figure S6B).

Since we noted that alterations in the balance of oxidative and

reductive-pathway AAA metabolites are related to disease

severity, we next assessed the effects of AAA-derived lactate

metabolites ILA and PLA on human monocyte (CD14+) function

(Figure 4D). We noted that treatment with ILA 50 mM led to an

increased proportion of cells endocytosing dextran-AF647 (Fig-

ures 4E and 4F) compared to vehicle.We did not note an effect of

PLA on monocyte endocytosis. We also noted that treatment

with ILA 50 mM reduced IL-6 and IL-1b production from mono-

cytes compared to vehicle (Figures 4G and 4H).

DISCUSSION

This large-scale study identified differences in metabolomic pro-

files in PwMS relative to HC using a set of individual and

pathway-based analyses. Several AAA were altered in MS and

lower levels of AAAmetabolites derived from the reductive meta-

bolic pathway, and increased levels of AAA metabolites derived

from the oxidative pathway were associated with higher

disability scores. In addition, analysis of scRNA-seq data from

blood- and CSF-derived immune cells demonstrated altered

AAA metabolism in MS compared to controls. Finally, the identi-

fied AAA metabolites linked to disability status had functional ef-

fects on human monocytes modulating pro-inflammatory cyto-

kine production and endocytosis in this population of immune

cells.

We identified amarked disruption ofmultiple amino acidmeta-

bolic pathways, especially in the downstream metabolism of

several AAAs that are primarily derived from gut microbial reac-

tions (Figures 2E and 2F). Specifically, we noted a broad shift in

AAA toward oxidative pathway metabolites relative to reductive

pathway metabolites (e.g., Figure 2F). For example, reductive

pathway metabolites (e.g., 3-[4-hydroxy]phenylactate [tyrosine],

indole lactate [tryptophan], PLA [phenylalanine]) were largely

reduced in PwMS. These specific AAA metabolites are found

in large quantities in fermented foods and were recently identi-

fied as agonists for the HCA3 receptor, which is highly expressed

on innate immune cells in humans and is thought to be involved

in anti-inflammatory responses.15 Furthermore, these metabo-

lites (e.g., ILA) can serve as agonists for the AhR and mediate

immunosuppressive actions in immune and glial cells (e.g.,

limiting pathogenic activities of astrocytes); lower levels could

result in increased inflammatory disease activity, both in the pe-

ripheral immune system and within the CNS. Consistent with ob-

servations that an imbalance between these two pathways has a

role in MS, we noted strong associations between oxidative AAA

pathway metabolites and increased MS risk and disease

severity. Intriguingly, these results were consistent with analyses

of metabolic pathway-level changes in gene expression in

several cell types, most notably in a cluster of CSF-enriched



(legend on next page)
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monocytes whose marker gene signature resembled homeo-

static microglia.16,17

Phenylacetylglutamine, derived from phenylacetate, is a

product of the gut microbial oxidative metabolism of phenylal-

anine.14,18 A recent study demonstrated that phenylacetylglut-

amine (phenylalanine oxidative product) is associated with the

risk of cardiovascular disease due to a direct effect on platelet

reactivity through adrenergic receptor signaling.18 Similarly,

the products of oxidative metabolism of tyrosine (p-cresol sul-

fate and p-cresol glucuronide) and tryptophan (indole acetate)

are also metabotoxins associated with inflammation promo-

tion.19 They are altered in other neurologic diseases and can

increase the risk for cardiovascular disease and cardiac

dysfunction.18 Several epidemiologic studies in MS have

demonstrated a negative impact of vascular and related co-

morbidities on MS disease severity, and these metabolic alter-

ations may serve as a link between the two conditions.20,21

Intriguingly, specific bacterial genes are required for reductive

versus oxidative (porA for the oxidative pathway and fldH for

the reductive pathway); future studies will explicitly link shifts

in AAA with changes in these candidate metagenomic

genes.14 Functional analyses also demonstrated that treat-

ment with indole acetate led to increased production of the

pro-inflammatory cytokine TNF-a from human monocytes. In

additional functional analyses, we noted that ILA led to

reduced production of the pro-inflammatory cytokines IL-6

and IL-1b and also promoted endocytosis (a function gener-

ally associated with an anti-inflammatory phenotype).22 Over-

all, this suggests that the imbalance in circulating levels of

oxidative (higher) and reductive (lower) pathway AAA metabo-

lites in MS would lead to more inflammatory myeloid cells pro-

ducing larger amounts of key pro-inflammatory phenotypes.

TNF-a, IL-6, and IL-1b have important roles in MS disease

pathogenesis,23–25 and the effect of metabolites on the pro-

duction of these cytokines from myeloid cells provides a

possible mechanism by which alterations in the metabolome

could lead to worsened MS disease activity and severity.
Figure 2. Association between metabolomic profiles and disability in p

(A) Differences in overall metabolomic profiles by disability status (HC versus no

tabolomic dysfunction in HC.

(B) Volcano plot of results of comparison of individual metabolite concentration

(PMS) participants; each dot is a single metabolite, and the x axis denotes the me

axis denotes the�log(p value) for a test of difference between the 2 groups. Red-c

and HC (FDR-adjusted p < 0.05).

(C) Volcano plot of results of individual metabolites; the x axis denotes the assoc

�log(p value) for a test of association between metabolite level and EDSS score.

(D) The distribution of metabolites that were potentially associated with EDSS sco

to the median within HC.

(E) Oxidative and reductive pathway metabolism of aromatic amino acids (adapt

metabolites (and are the denominators for ratios plotted included in Figure 3F). M

numerators for ratios plotted in Figure 3F).

(F) The association between oxidative versus reductive pathway metabolism for s

the ratio of oxidative terminal metabolites to reductive terminal metabolites, as ide

denotes differences between MS patients and HCs, while the bottom panel deno

(e.g., having a high level of disability) relative to those not using a cane (e.g., lowe

(GEE) models adjusting for age, gender, and race. For models of disability status,

using a similarly adjusted GEE model.

All of the plots in this figure were derived from n = 417 samples, except for (B), wh

and S1H–S1L.
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Also consistent with prior studies, we noted changes in other

tryptophan pathway metabolites, with lower circulating levels

of both circulating tryptophan and its endogenous metabolism-

derived (e.g., kynurenine) metabolites in MS compared to

HC.9,26 As described above, some tryptophan metabolites limit

CNS inflammation via AhR-mediatedmechanisms in bothmicro-

glia and astrocytes. In the experimental autoimmune encephali-

tis (EAE) model of MS, microglial AhR deletion worsened EAE,

increasing demyelination and CNS monocyte recruitment.

Levels of related amino acid metabolites were also reduced in

PwMS; the source of these changes remains unclear: diet,

altered gut microbiota metabolism of these amino acids, or

increased consumption by activated immune cells all may

contribute. For example, mechanistic studies have shown that

in mice lacking the programmed cell death protein-1 (PD-1)

inhibitory checkpoint receptor on T cells, systemic decreases

in tryptophan and tyrosine were due to increased uptake by acti-

vated T cells.27 Downstream reductions in circulating levels of

these specific amino acids led to a deficiency in the neurotrans-

mitters serotonin and dopamine in the brain and resulted in

increased anxiety-like behaviors. Mood disorders such as

depression and anxiety are very common in PwMS; it is possible

that reduced levels of these metabolites could be a contributing

cause of these common comorbidities in MS.28

Several other metabolic pathways, including BCAA, bile acid

metabolism, and xanthine metabolism, were altered in MS

compared to HCs and have been previously reported in smaller

studies of PwMS or in animal models. Circulating levels of

BCAAs were reduced in MS. BCAAs are critical for the mainte-

nance of regulatory T cells and their suppressive function in vivo.

Hence, lower BCAA levels could impair Treg number and func-

tion and predispose to increased inflammatory T cell activity.29

We recently identified reduced circulating bile acid levels

in PwMS and found that bile acid supplementation prevented

the polarization of astrocytes andmicroglia to neurotoxic pheno-

types both in vitro and in EAE.30 Here, we also noted changes in

xenobiotic metabolism, including xanthine/caffeine metabolism
eople with MS

cane versus use of cane). The dotted line denotes the 90th percentile of me-

s between relapsing-remitting MS (RRMS) and age-matched progressive MS

an difference between RRMS and age-matched PMS participants, while the y

olored and labeledmetabolites denote those significantly different betweenMS

iation between metabolite level and EDSS scores, while the y axis denotes the

The dotted horizontal line denotes nominal significance (e.g., �log[p = 0.05]).

res by disability status (FDR-adjusted p < 0.15); plotted distributions are scaled

ed from Dodd et al.14). Metabolites colored in blue denote reductive pathways

etabolites colored in red denote oxidative pathway metabolites (and are the

elected aromatic amino acids (AAAs) metabolites. For each test, we modeled

ntified from previous studies and noted in Figure 3D. The top plot for each ratio

tes the difference in the ratio of metabolites between MS patients using a cane

r levels of disability). p values are derived from generalized estimation equation

we evaluated the association between metabolite ratios and continuous EDSS

ich was derived from n = 260 samples. See also Figure S4 and Data S1D, S1E,



Figure 3. Differences in pathway activity scores between MS and HC by cell type

(A) Heatmap of amino acid pathway activity differences between MS and HC across cell types. The color of the cell denotes the degree of difference in pathway

activity scores; darker blue cells denote pathway activity scores that are higher in HC relative to MS, whereas darker orange cells denote pathway scores that are

higher in MS relative to HC. *p < 0.05, **p < 0.01.

(B) Differences in pathway activity scores for monocyte-like cell clusters for AAA pathways between MS and HC samples from CSF (left; n = 11 samples) and

blood (right; n = 10 samples).

(C) Differences in network activity scores for monocyte cell clusters for AhR and HCA3 signaling pathways between MS and HC samples (n = 21 samples). *p <

0.05, **p < 0.01.

See also Figure S5 and Data S1M.
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inMS. Caffeinemetabolism is altered in other neurodegenerative

disorders, and intake of caffeine has been linked to the risk of

developing MS, as well as disease severity; our results may sug-

gest that altered caffeine metabolism may underlie the observed

associations. In complementary analyses, mapping identified

metabolites to a network created from known metabolic reac-

tions, we identified two networks of metabolites that were en-

riched in MS compared to controls – these again included a

network of multiple AAA and BCAAs and a network of caffeine

metabolites. Thus, both agnostic and pathway-based analyses

yielded complementary results.

Prior studies in PwMS note divergent metabolomic profiles,

which is consistent with our findings,8,31–36 and several studies

note alterations in AAA-related metabolites.8,37 Intriguingly,

one study also found reduced levels of ILA, which was linked

with lower levels of ILA-producing bacteria in the gutmicrobiome

in PwMS.36 Distinct from our findings, other metabolomics

studies have noted differences in various lipid subspecies (phos-

phatidylcholine, short-chain fatty acids).31,36 Differences be-

tween results from these studies and the results presented

here may be related to differences in the analytical platform

used to assess metabolomic profiles or differences in the under-

lying study populations. We also only included metabolites that

were consistently measured across populations in our study. It

is worth noting that the vast majority of previous studies were

of relatively limited sample sizes, and a key strength of our study

is its large size; that is, we are able to detect relatively precise es-

timates of metabolomic differences between PwMS and HC.

There are several noteworthy strengths of this study, which

include its large sample size, multiple sites, detailed analyses,

and comprehensive assessment of circulating metabolites that

were performed using the same metabolomics platform. We

also implemented a stringent QC protocol evaluating metabolite

stability within- and between-persons and over time. We com-

plemented our primary analyses with extensive sensitivity ana-

lyses; we repeated analyses using a leave-one-out procedure

to ensure that results were not driven by a single site or batch.

We were also able to integrate data from other omics sources

in novel multi-omics analyses to help guide the interpretation

of our findings.

In summary, we have demonstrated strong differences in me-

tabolomic profiles between PwMS and HC individuals. Namely,
Figure 4. Effects of AAA-derived metabolites on human monocytes

(A)We treated freshly isolated peripheral blood mononuclear cells from HCs with

identified from our initial metabolomics analyses, for 24 h.

(B). We then used multiparametric flow cytometry to evaluate the change in pro

increase in TNF-a production with increasing doses of IAA; a representative plot

(C) Quantification of the increase in the proportion of TNF-a-producingmonocytes

the box indicates the 25th and 75th percentiles, the whiskers indicate 1.53 inter

(D) We isolated CD14+ monocytes from HCs and treated them with either vehicl

overnight and then evaluated endocytosis of flurophore-labeled dextran, or for 3

(E) We used flow cytometry to evaluate endocytosis of AF647-dextran by monoc

plot is shown here.

(F) Quantification of proportion of monocytes endocytosing AF647-dextran with IL

for each individual. Bars represent means and error bars represent standard erro

(G) Boxplot of proportion of monocytes producing IL-6 with vehicle or various do

(H) Boxplot of proportion of monocytes producing IL-1b with vehicle or various d

Also see Figure S6.
we note consistent alterations across each AAA toward

increased oxidative relative to reductive pathway activity (impli-

cating a specific subset of gut microbial alterations) as being

associated with both MS risk and disability. These changes sug-

gest a shift toward the increased production of metabotoxins,

with a potential reduction in the production of immunomodula-

tory metabolites. We also identify altered AAA metabolic gene

expression in MS monocytic cell populations in the blood and

CSF and demonstrate the direct effects of AAA-derived metab-

otoxins and lactate metabolites on human monocytes. Ulti-

mately, this novel metabolomics study has implications both

for advancing cross-omics methods to understand the disease

and for providing critical new insights into candidate pathologic

mechanisms contributing to MS.

Limitations of the study
Despite the strengths of the study noted above, there are some

limitations. The cross-sectional design limits certain conclu-

sions; longitudinal studies are needed to evaluate how metabo-

lomic changes can influence MS risk or disability changes over

time. We included individuals who are largely prevalent DMT

users. Therefore, we could not optimally assess the effects of

initiation of different DMTs on the metabolome; several smaller

studies have identified changes in circulating metabolites asso-

ciated with different DMTs.38 However, for metabolites that

strongly differed between PwMS and HC, results were consis-

tent when we (1) included only MS patients who were not on a

DMT at the time of blood collection, (2) included only PMS pa-

tients, (3) excluded patients for whom treatment status was

missing, and (4) restricted to MS patients on any DMT. It will

be important for future longitudinal studies to systemically char-

acterize the association between DMT initiation and resultant

change to the metabolome. We also lacked comprehensive

bodymass index (BMI) information on all of the participants. Still,

results were consistent after adjusting for BMI in the subset of in-

dividuals where this information was available. We also did not

have information on the time of last meal for all of the partici-

pants. A detailed assessment of diet or other potentially relevant

comorbidities affecting metabolomic profiles was also not avail-

able. Many key metabolites differing between MS patients and

HCs are derived from gut microbial reactions, and we lacked

this information. Future studies will link metabolomic profiles
either vehicle or escalating doses of AAA-derived metabotoxins (in duplicate),

-inflammatory cytokine production from monocytes (CD14high) and noted an

is shown here.

with IAA treatment (n = 9). For all boxplots, the center line indicates themedian,

quartile range (IQR), and the dots indicate outliers.

e or escalating doses of AAA-derived lactate metabolites (in duplicate), either

6 h and then assessed cytokine production.

ytes and noted an increase with indolelactate (ILA) treatment; a representative

A treatment (n = 5). The data for the various ILA doses is normalized to vehicle

rs of the mean.

ses of ILA.

oses of ILA. *p < 0.05, **p < 0.01, and ****p < 0.001.
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with both composition and metagenomic features of the gut mi-

crobiota. Also, several studies of PwMS note differences in

short-chain fatty acids. Because of the specific methods

required to detect and quantify these biomarkers accurately,

wewere unable to assess their association withMS in our cohort.

While intriguing, analyses that identified shifts in metabolic gene

expression in AAA pathways within specific cell types are cross-

sectional. Thus, they cannot identify whether such changes are a

contributing cause or a result of the observed differences in the

circulating metabolome. We also note that metabolic changes in

several of the cell types have not been extensively characterized

in PwMS or HC.
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CD14-FITC Biolegend Cat#367116; RRID: AB_2571929

CD16-PerCP Biolegend Cat#302030; RRID: AB_940380
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IL1b-AlexaFluor 647 Biolegend Cat#508208; RRID: AB_604135

Chemicals, peptides, and recombinant proteins

Indole-3-acetic-2,2-d2 acid Sigma-Aldrich Cat#492817-100MG; CAS#24420-86-8

Phenylacetyl L-Glutamine Cayman Chemical Company Cat#16724; CAS#28047-15-6

DL-3-Phenyllactic acid Sigma-Aldrich Cat#P7251-10G; CAS#828-01-3

DL-Indole-3-lactic acid Sigma-Aldrich Cat#I5508-1G-A; CAS#832-97-3

Deposited data

Metabolomics data deposited in Mendeley

Data

Metabolon, Inc (Durham, NC) Medeley Data: https://data.mendeley.com/

datasets/zgtn6k2xsh/1

Single-cell RNA-seq data GEO GEO: GSE138266

Software and algorithms

Code to reproduce the main findings Github https://github.com/kfitzg13/metabolomics

R version 3.6.1 N/A https://www.R-project.org/

sva version 3.34.0 N/A https://bioconductor.org/packages/

release/bioc/html/sva.html

ms.sev version 1.0.4 N/A https://cran.r-project.org/web/packages/

ms.sev/index.html

gdata version 2.18.0. N/A https://cran.r-project.org/web/packages/

gdata/index.html

lubridate version 2.18.0 Grolemund and Wickham39 https://cran.r-project.org/web/packages/

lubridate/index.html

foreign version 0.8-72 N/A https://cran.r-project.org/web/packages/

foreign/index.html

haven version 2.1.1 N/A https://cran.r-project.org/web/packages/

haven/index.html

impute version 1.60.0. N/A https://cran.r-project.org/web/packages/

impute/index.html

ggplot2 version 3.3.3 Wickham40 https://cran.r-project.org/web/packages/

ggplot2/index.html

WGCNA version 1.68 Langfelder and Horvath41,42 https://https://cran.r-project.org/web/

packages/WGCNA/index.html

gee version 4.13-19 N/A https://cran.r-project.org/web/packages/

gee/index.html

geepack version 1.2-1 Højsgaard et al.,43 Yan and Fine,44 Yan45 https://cran.r-project.org/web/packages/

geepack/index.html

scater version 1.14.6 McCarthy et al.46 https://cran.r-project.org/web/packages/

scater/index.html

edgeR version 3.28.1 Robinson et al.,47 McCarthy et al.48 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

scran 1.14.6 Lun et al.49 https://bioconductor.org/packages/

release/bioc/html/scran.html

uwot version 0.1.5 N/A https://cran.r-project.org/web/packages/

uwot/index.html

Rtsne version 0.15 N/A https://github.com/jkrijthe/Rtsne

Seurat version 3.1.3 Hao et al.50 https://cran.r-project.org/web/packages/

seurat/index.html

EnsDb.Hsapiens.v86 version 2.99.0 N/A http://bioconductor.org/packages/release/

data/annotation/html/EnsDb.Hsapiens.

v86.html

BiocSingular version 1.2.2 N/A https://github.com/LTLA/BiocSingular

BiocNeighbors version 1.4.2 N/A https://bioconductor.org/packages/

release/bioc/html/BiocNeighbors.html

SingleR version 1.0.5 Aran et al.51 https://bioconductor.org/packages/

release/bioc/html/SingleR.html

pheatmap version 1.0.12 N/A https://cran.r-project.org/web/packages/

pheatmap/index.html

batchelor 1.2.4 Haghverdi et al.52 https://bioconductor.org/packages/

release/bioc/html/batchelor.html

Matrix 1.2-17 N/A https://cran.r-project.org/web/packages/

Matrix/index.html

AUCell version 1.8.0 Aibar et al.53 https://bioconductor.org/packages/

release/bioc/html/AUCell.htmlN/A

GSA version 1.03.1 N/A https://cran.r-project.org/web/packages/

GSA/index.html

ggrepel version 0.8.1 N/A https://cran.r-project.org/web/packages/

GSA/index.html

Flowjo BD 10.7

Other

Dextran, Alexa Fluor 647, 10,000 MW,

Anionic, Fixable

ThermoFisher D22914

AIM V Medium, liquid (research grade) ThermoFisher 12055091

CD14 MicroBeads UltraPure, human Miltenyi Biotec 130-118-906
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Pavan

Bhargava, MD (pbharga2@jhmi.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Metabolomics data have been deposited to Mendeley Data as listed in the Key resources table and are publicly available as of the

date of publication.

Single-cell RNaseq datasets were obtained as directed in the references for each dataset listed in the Key resources table.

All code used for analysis has been deposited as noted in the Key resources table and is publicly available as of the date of

publication.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Metabolomics study population
Study participants were pooled from three sites: Johns Hopkins MS Center (JHU), the University of California at San Francisco

(UCSF), and the Henry Ford Hospital MS Center or Accelerated Cure Project (ACP; samples were acquired by Henry Ford).

JHU study population
JHU study participants (n = 640) were pooled from several ongoing or recently completed clinical research studies in which blood

samples were acquired for metabolomics analyses. We included baseline metabolomics samples (e.g., before the initiation of the

intervention) from two recently completed studies of dietary interventions in people with relapsing-remitting MS: one study

included relapsing-remitting MS patients aged 18-75, with BMI R 25 kg/m2 and receiving natalizumab, the other included relaps-

ing-remitting MS patients, aged 18-50, untreated or treated with injectable MS therapies (interferon beta or glatiramer acetate) and

a BMI R 22.5 kg/m2,54,55 We also included samples from an observational study of relapsing-remitting MS patients who were

treated with dimethyl fumarate and age- and race-matched HC.38 Finally, we included baseline samples from a study of Caucasian

age-matched relapsing-remitting MS patients and HC who had serum 25-hydroxyvitamin D levels < 20ng/mL.56 For remaining

studies, participants with MS (including both relapsing-remitting and progressive subtypes) and HC were recruited by convenience

sampling from the JHU MS Center and provided blood samples. Participants for this study (both MS and HC) were members of a

long-standing observational cohort and could contribute multiple samples; the MS samples were collected at different time points

of treatment and were generally not pre- and post- treatment samples. Blood was processed within 3 h of collection using a stan-

dardized protocol that was common to all the studies conducted at JHU, and serum or plasma was aliquoted and stored at �80

C� until metabolomics analyses.

In a subset of study participants (n = 305), information on measures of disease severity, including measures of disability status

(via the Expanded Disability Status Scale [EDSS]), were available. A subset of participants (n = 192) also had optical coherence

tomography (OCT) scans, as an imaging biomarker of retinal neurodegeneration that were obtained within 6 months of metabo-

lomics assessment. Segmentation of retinal layer thicknesses was performed using a validated automated segmentation algo-

rithm, as previously described.57–59 We assessed the association between metabolite levels and thickness of the macular ganglion

cell + inner plexiform layers (GCIPL); we selected GCIPL thickness as the primary OCT phenotype as this composite measure is

more strongly associated with brain atrophy and is less vulnerable to swelling that may occur in the context of inflammation of the

optic nerve.58,60 Eligible participants were those who did not have a history of diabetes mellitus, uncontrolled hypertension, glau-

coma, prior ocular surgery or trauma, refractive errors exceeding ± 6 diopters, or other significant neurological or ophthalmological

conditions.

Henry Ford/ACP study population
Individuals with MS (including both relapsing-remitting and progressive subtypes) as well as HCwere recruited by convenience sam-

pling from the Henry Ford Hospital MSCenter. A subset ofMS serum samples was acquired from serum repository at the Accelerated

Cure Project (ACP). For both sets of MS samples, participants (n = 184 total) had to have a confirmed diagnosis of MS and provide

blood samples, which were used for metabolomics assessment. Metabolomics assessment was conducted in a single batch,

regardless of the original parent study (e.g., Henry Ford or ACP). Blood samples from HFH MS Center and ACP were obtained

through an IRB approved study of the metabolomics signature in MS.

UCSF pediatric study population
MS patients and controls were selected randomly from two cohort studies of pediatric MS led by investigators at UCSF (n = 136).

These cohorts included: 1) pediatric MS or clinically isolated (CIS) patients enrolled in a prospective cohort study from the UCSF

Pediatric MS clinic, 2) pediatric MS or CIS patients who participated in a multi-center case-control study evaluating risk factors for

pediatric MS and who also provided demographic and clinical information.9,61,62 For both cohorts, eligible MS participants were

those with relapsing-remitting MS or CIS with high risk of conversion to MS (e.g., R 2 T2 hyperintense foci on MRI), with disease

onset < 18 years and who had seen a neurologist within 4 years of symptom onset.63 Diagnoses were confirmed by a pediatric MS

specialist. HC were recruited from general or specialty pediatric clinics and were aged < 22 years, did not have a history of auto-

immune disorders (except asthma or eczema) or previous history of severe health condition or treatment with immunosuppressive

medications or have a biological parent or sibling with MS. All participants provided a blood sample at the time of recruitment into

the study. Disability status via the EDSS score was also available on people with MS. Blood was processed and frozen at �80 C�

within 3 h of collection.

Peripheral blood mononuclear cells from HC
We performed phlebotomy and collected blood from healthy controls (n = 9) and peripheral blood mononuclear cells (PBMCs) were

isolated using SepMate tubes (STEM cell). These cells were then utilized for in vitro studies examining the effects of AAA-derived

metabloites on human monocytes as detailed below.
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METHOD DETAILS

Assessment of metabolomic profiles
All metabolomics analyses viamass spectrometry were conducted atMetabolon (Durham, NC), andmethods have been described in

detail elsewhere.7 JHU samples were pooled from metabolomics analyses conducted in 7 different batches, while UCSF and Henry

Ford samples were each analyzed in separate single batches, totaling 9 batches overall. Briefly, samples were thawed and under-

went additional preparation (derivatization), as previously described. The derivatized samples were subjected to either gas chroma-

tography followed by mass spectrometry (GC/MS) or liquid chromatography followed by tandem mass spectrometry (LC/MS/MS).

Mass spectra obtained from these techniques were then matched to a library of spectra derived from standards to identify specific

metabolites, and the area under the curve for the mass spectra was used to calculate the relative abundance of each metabolite.

scRNA-seq of blood and CSF in MS versus HC
In follow-up analyses, we also assessed whether any metabolic differences we observed in the serum or plasma correlated with

changes in gene expression at the cellular level. To do so, we used publicly available single cell RNA sequencing (scRNA-seq)

data from an existing study comparing cellular-level differences in metabolic gene expression from an integrative analysis of blood

and CSF from MS patients and HC.16 Eligible MS patients for the original study were treatment-naive patients with an initial episode

suggestive of MS (CIS) or those with relapsing-remitting MS. Eligible control subjects were those providing blood and CSF samples

following workup for idiopathic intracranial hypertension (IIH) matched to MS subjects by age, gender, and CSF features (protein,

lactate, and glucose levels); full details are provided in Schafflick et al.16

AAA-derived metabotoxins on human monocytes
To determine whether AAA-derived metabotoxins affect human immune cell function, we isolated peripheral blood mononuclear

cells (PBMCs) from 9 healthy controls and cultured 5e5 cells in 96 well U-bottom plate for 24 h in AIM-V serum-free media (Thermo-

Fisher) with either vehicle or varying doses of indole acetic acid (IAA) or phenylacetylglutamine (PAG) in duplicate. For the final 5 h of

culture, monensin was added (BioLegend). At the end of this time period we washed cells then Fc blocked (TruStain, BioLegend) and

stained with a fixable viability marker (Zombie NIR, BioLegend). We then stained with surface antibodies (CD14, CD16, CD83, CD86.

BioLegend) followed by washing. Cells were then fixed and permeabilized overnight with IC Fix/Perm (ThermoFisher). Cells were

washed in permeabilization buffer (ThermoFisher) and stained with cytokine markers (IL6, TNFa. BioLegend). Cells were then ac-

quired on a flow cytometer (Cytek Aurora, Cytek Biosciences).

AAA-derived lactate metabolites on human monocytes
To determine whether AAA-derived lactate metabolites affect human monocytes, we isolated PBMCs from 5 healthy controls and

isolated CD14+monocytes by positive bead selection (CD14 UltraPure Microbeads, human, Miltenyi Biotec). CD14+ purity was typi-

cally �95% following isolation. Monocytes were then cultured in 200 ml serum-free defined media (AIM-V, ThermoFisher) at concen-

tration of �2e5 cells/well. Cells were cultured either overnight (endocytosis assay) or for �36 h (cytokine assay) at 37�C, 5% CO2 in

the presence of AAA-derived lactate metabolites (DL-Indole-3-lactic acid [ILA], Phenyllactic acid [PLA], Sigma-Aldrich) at specified

concentrations or vehicle in duplicate. For endocytosis, after an overnight incubation 10kD dextran beads conjugated to Alexa Fluor

647 (ThermoFisher) were added at concentration of 50 mg/mL and incubated for 90 min at 4�C (negative control) or 37�C. Cells were

then washed twice in FACS buffer (2% FBS, 2mM EDTA in PBS), stained with propidium iodide, and analyzed on a flow cytometer

(Cytek Aurora, Cytek Biosciences). After gating on viable singlet cells, Alexa Fluor 647 fluorescence was evaluated. For cytokine

assessment, monensin (Biolegend) was added for the last 5 h of the 36 h incubation. Cells were then Fc blocked and stained with

a fixable viability marker (Zombie NIR, Biolegend) for 20 min at room temperature, then fixed with IC Fixation Buffer (ThermoFisher)

for 30 min at room temperature and permeablized in Permeabilization Buffer (ThermoFisher). Intracellular staining was then per-

formed in the permeabilization buffer for 1 h at room temperature. Cells were then washed twice with permeabilization buffer,

once with FACS buffer, resuspended in FACS buffer and analyzed on a flow cytometer (Cytek Aurora, Cytek Biosciences).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quality control
We initially included 329 metabolites that were measured in all 9 metabolomics runs in 960 total samples. We then implemented the

following quality control (QC) procedure to identify potential outlyingmetabolites and/or samples. First, we removedmetabolites with

> 20%missing values across samples (n = 27) and imputed missing metabolite values using k-nearest neighbors (10 neighbors used

for each imputation); consistent results were observed when using the minimum value of observed metabolites. We then log-trans-

formed all metabolites. We adjusted for batch (and site/specimen type) using the ComBat algorithm, which is a harmonization tech-

nique that was designed to remove batch-related extraneous variation while conserving biological variation64,65; ComBat has been

extended beyond gene expression (where it was originally developed) to adjust for scanner or site effects from segmented MRI volu-

metric data.65 Results before and after the application of ComBat by batch are displayed in Figure S2A and by sample matrix type -

serum versus plasma in Figure S2B. Our metabolomics analyses also included both within-batch replicates (e.g., the same sample
e4 Cell Reports Medicine 2, 100424, October 19, 2021
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was included twice in the samemetabolomics run; n = 70 samples) and between batch samples in which one serum and one plasma

sample were included. We calculated the intraclass correlation coefficient (ICC) for both within- and between-batch replicate sam-

ples. ICCs for both within- and between-batch were generally high; the median ICC for within-batch replicates was 0.94 (IQR: 0.86,

0.98; Figure S2D) and the median for between-batch replicates was 0.79 (IQR: 0.63, 0.89; Figure S2C). We removed metabolites

which had ICCs < 0.40 in 1) between batch replicates (n = 27 metabolites), 2) within-batch replicates (n = 4 metabolites) or 3)

both (n = 2metabolites). The final analyses included 269metabolites. Frommetabolomic samples with within- or between-batch rep-

licates, we randomly selected one from each set to be eligible for inclusion in the main analyses. We tested for potential sample out-

liers using principal components analyses (PCA); we excluded those who were > 3 standard deviations (SD) of the mean for PC1 and

PC2 (n = 1 excluded). We also identified potential outliers using a Euclidean distance-based sample network (and a standardized

network connectivity measure [Zk], as described in Langfelder and Horvath.); outlying samples were classified as those who had

Zk values < �4 (n = 5 samples), as suggested by Langfelder and Horvath; leaving 954 samples (99.1%; n = 756 unique individuals)

eligible for the analysis.66

We also compared the distribution of within-person and between-person dissimilarity in overall metabolomic profiles, as several

participants in our study contributed multiple samples. We calculated the within-person dissimilarity as the median Mahalanobis

dissimilarity betweenmetabolomic profiles taken from the same individual.67 To calculate between-person dissimilarity, we first aver-

aged metabolomic profiles taken from the same individual to estimate a composite ‘‘average’’ metabolomic profile. We then calcu-

lated the median Mahalanobis dissimilarity between metabolomic profiles from different individuals.

Primary analyses comparing MS versus HC
For our primary analyses, we compared metabolomic profiles between people with MS and HC considering 1) global differences in

the overall metabolome, 2) differences in individual metabolites, and 3) differences in composite metabolic pathway measures.

Metabolomic dysfunction classifier
Our initial goal was to test for overall differences in the circulating metabolome between people with MS and HC using a single sum-

mary measure which we denoted as a ‘‘metabolomic dysfunction’’ classifier to be used in statistical tests (as we hypothesized MS

patients to have highly divergent metabolomic profiles and this measure allowed us to formally assess this hypothesis). To create this

classifier, we set the ‘reference population’ as all age- and gender-adjusted metabolomic profiles from HC and derived a metabo-

lomic dysfunction score as the median Mahalanobis dissimilarity among age- and gender-adjusted metabolomic profiles in MS

patients to this reference set. To identify samples which were highly divergent from the reference population, we thresholded the

metabolomic dysfunction score at the 90th percentile (e.g., samples which have metabolomic feature configurations that have <

10% probability of occurring in a person without MS.67 Sensitivity analyses also adjusted for race/ethnicity in metabolomic dysfunc-

tion scores.

Individual and pathway-based analyses
Wecompared individual log-transformedmetabolites between people withMS andHCusing generalized estimating equations (GEE;

to account for multiple metabolomic profiles contributed by some participants) with a Gaussian link function and adjusted for age,

gender, and race/ethnicity. Additional analyses adjusted for body mass index (BMI; kg/m2), which was only available for a subset of

individuals (n = 568). For metabolic pathway-based analyses, we performed two sets of complementary analyses: an agnostic

approach to discover sets of related metabolites and another incorporating known information on metabolic pathways and metab-

olite interactions. For the agnostic approach, we derived novel sets of related metabolites using a weighted gene-expression corre-

lation network analysis (WGCNA)66; WGCNA is a systems biology-based technique that was originally developed to study correlation

patterns in gene expression and has been extended to other settings (including our previous work in metabolomics), cancer, and

neuroimaging.7,38,68 The goal of WGCNA is to find clusters (or metabolic modules in this case) of highly interconnected nodes (me-

tabolites, here) using a correlation network. The identified metabolic modules can be summarized into single measures (i.e., eigen-

metabolites) as the first principal component of the identified module and can be used in subsequent analyses. For a priori-based

pathway analyses, we performed two sets of related analyses incorporating known biological information. For the first, we classified

metabolites into groups (> 3 metabolites) based on related biologic function (e.g., glutathione metabolism, tryptophan metabolism,

among others); pathway memberships for each metabolite are included as a part of Data S1B. We applied a resampling-based per-

mutation-based algorithm to assign statistical significance while preserving metabolite-metabolite correlation. To do so, we fit indi-

vidual models for each metabolite (via GEE, adjusting for age, gender and race/ethnicity, as above) and extracted and ranked the

obtained p value; ranks for a given pathway set were then averaged. We then permuted phenotype labels 10,000 times and repeated

the above procedure to calculate an average rank of the p values for a pathway set for each permutation. Finally, the p value for a

given pathway set is the probability that the observed average rank is less than the expected average rank (as calculated from

the 10,000 permutations). For the second, we used known metabolic reactions and interactions from available databases to create

a metabolic network to use for subsequent analyses. To do so, we downloaded all MetaCyc compounds and corresponding reac-

tions.13 Individual compounds served as the nodes, and we set an edge to be a known (or predicted) reactant-product metabolic

interaction; in total, the network included 2248 nodes (metabolites) and 7449 edges (reactant-product metabolic interaction).

We then mapped results of the individual metabolites that are potentially different between MS patients and HC (e.g., individual
Cell Reports Medicine 2, 100424, October 19, 2021 e5
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metabolites which differed between MS versus HC with FDR < 0.25) and extracted subnetworks of enriched metabolite interactions

(corresponding roughly to metabolic pathways) using Prize-collecting Steiner Forest (PCSF) graph optimization.69 We also per-

formed analyses assessing pairwise ratios of measured metabolites on opposite sides of MetaCyc-defined metabolic reactions,

as a proxy for estimated enzyme activity of metabolic reactions. For this analysis, we included 139 metabolite-metabolite ratios

participating in 207 metabolic reactions and tested for differences between MS and HC using multivariable-adjusted GEE, as above.

Sensitivity analyses
Weperformed an additional set of sensitivity analyses where repeated analyses using a leave-one-out procedure where we excluded

individual batches and repeated all analyses in the remaining set to ensure that a single subgroup of samples was not driving the

observed associations. Sensitivity analyses additionally stratified by serum and plasma origin of each individual sample and pooled

results using meta-analysis methods.

Sensitivity analyses related to MS therapies
We also assessed whether metabolomic differences that we observed in primary analyses were associated with specific MS disease

modifying therapies (DMTs) by comparing DMT efficacy classes (higher, moderate, lower) versus no therapy and individual DMTs

(among DMTs with R 30 users) versus no therapy. Higher efficacy medications included rituximab, natalizumab, daclizumab and

mycophenolate mofetil. Moderate efficacy DMTs included dimethyl fumarate and teriflunomide, and lower efficacy DMTs included

glatiramer acetate and interferon beta preparations.

Analyses of disease severity measures
We assessed the association between EDSS (417 EDSS scores from 312 individuals with MS) and metabolomic profiles (i.e., global

metabolomic differences, individual metabolites, and pathway-based analyses) and metabolite ratios using multivariable-adjusted

GEE, as above. In sensitivity analyses, we also assessed the age-related MS severity score (ARMSS; as a marker of MS severity)

and metabolomic profiles (and did not adjust for age in these analyses). ARMSS is similar to the MS severity score, except it uses

age instead of disease duration, as age is typically unbiased and more readily obtained than disease duration. In the subset of in-

dividuals with OCT imaging linked to ametabolomics sample (n = 192), we also assessed whether GCIPL thickness (as a quantitative

imaging measure of retinal neurodegeneration) was associated with selected metabolites (or metabolite ratios) that demonstrated

significant differences between MS and HC (metabolites with FDR-adjusted p < 0.05 among the 269 individual metabolite tests).

Similar to above, we used GEE (to account for multiple eyes per person) and adjusted for a similar set of covariates. Similar sensitivity

analyses additionally stratified by serum and plasma origin of each individual sample and pooled results using meta-analysis

methods.

Pathway activity scores for scRNA-seq data
After downloading raw cell counts, we implemented a standard quality control procedure (e.g., excluding low quality samples with

few detected cells and features, cells with fewer than 200 features [gene], cells withR 2500 features, cells with < 5%of percentage of

all features coming from mitochondrial gene sets,). Normalized samples were integrated using the Seurat pipeline v3 (e.g., selection

of integration anchors using canonical correlation analysis and 30 PCs). Samples were then clustered using a shared nearest

neighbor (SNN) modularity optimization-based clustering algorithm; clustering and sample integration were then inspected visually

for quality and separation. Based on marker gene expression, we identified a several clusters of T cells: effector-memory (EM)-like

CD4+ T cells (CD69), central-memory (CM)-like CD4+ T cells (CD27), naive CD4+ T cells (TRAC, CD4), activated CD8+ cells (CD8B

and CCL5), non-activated CD8+ cells (CD8B and CCR7) and T-regulatory cells (FOXP3). We also identified clusters of NK cells

(GNLY, NKG7), B cells (CD79A), and plasmablasts (IGHG). We also identified monocyte clusters and monocyte cell clusters that

were mostly blood-derived (Mono-B; FCGR3A/CD16) or CSF-derived (Mono-CSF; CD14, C1QA, C1QB). Other myeloid lineage cells

were clustered into mDC type 1 (mDC1; WDFY4, BATF3), mDC type 2 (mDC2; FCER1A, CD1C). Other clusters included plasmacy-

toid dendritic cells (pDC; TNFRSF21) and megakaryocytes (MegaK; GNG11). We detected one cluster of red blood cells (HBA1,

HBA2, andHBB), which was removed from the analysis. tSNE plots following sample clustering and labeling are depicted for all cells

in Figure S5A and by sample type (blood, CSF) in Figure S5B. Our primary goal for this analysis was to identify cell-type specific shifts

in metabolic gene expression occurring between MS and HC at the pathway level. To do so, we calculated a cell-type specific

pathway activity score using curated gene/pathways lists ways (including pathways with at least 10 genes) that are available in

Xiao et al.70 and adapting a similar methodology described therein. Briefly, the pathway activity score is calculated through the

following steps 1) calculate the mean expression level for gene i for cell type j for k individuals as Ei;j =

Pnj

k
gi;k

nj
and the average

gene expression across all cell types, 2) calculate average relative expression for a given cell type relative to the average expression

across cell types as ri;j =
Ei;j

i
N

PN

j
Ei;j

, 3) derive final pathway activity score for t pathways as the weighted average of cell type-specific

relative expression values, ri;j, for each participating gene as pt;j =

Pmt

i
wi 3 ri;jPmt

i
wi

. Weights are derived as the number of pathways in which

a gene participates. Pathway activity scores for each cell type were averaged for MS and HC and calculated overall and stratified by
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sample type (blood, CSF) separately. In analyses, we compared the ratio between MS and HC pt =
pHC; t

pMS;t
. Statistical significance was

assessed by a permutation test of sample labels. As our primary results suggest that alterations in AAAmetabolismmay also imply an

altered balance of immunomodulatory metabolites (e.g., AhR or HCA3 agonists that have been shown by previous studies to have

relevance to MS), we also tested whether the network of genes interacting with AhR or HCA3 were similarly reduced in people

with MS in specific cell types. To perform this test, we identified networks of genes interacting with AhR or HCA3 using the STRING

protein-protein interaction (PPI) database,71 as it provides both physical and functional interactions (e.g., signaling cascades). We

then tested for differences in network activity between people with MS and HC across cell types using a score derived similarly

to the pathway activity scores. For example, the mean expression for gene in the network for each cell type is calculated. Then,

the relative average expression of a gene in the network in a given cell type relative to its expression across all cell types is calculated.

Finally, the network activity is determined by calculating a weighted average of cell type-specific relative expression values for each

gene. The weights are determined by the number of edges in the overall STRING PPI. Similar to the pathway activity score, we calcu-

lated each network activity score (for AhR and HCA3 networks) in MS patients and in HC separately and compared the ratio between

MS versus HC. Statistical significance was also determined via permutation.

AAA-derived metabotoxins on human monocytes
We identified CD14high monocytes (gating strategy is shown in Figure S6A) – and determined the proportion producing pro-inflam-

matory cytokine production (IL6, TNF-a). We then analyzed the effects of these metabolites on human monocytes using a one-way

ANOVA with Dunnett’s multiple comparisons test to compare proportion of cytokine producing cells between the different treatment

groups.

AAA-derived lactate metabolites on human monocytes
For endocytosis assay we identified monocytes that were positive for Dextran-AF647 and measured the proportion of cells involved

in endocytosis. We used a one-way ANOVA with Dunnett’s multiple comparisons test to compare proportion of monocytes

endocytosing Dextran-AF647 between the different treatment groups. Similarly, we identified monocytes producing pro-inflamma-

tory cytokines IL-6 and IL-1b and then utilized a one-way ANOVA with Dunnett’s multiple comparisons test to compare proportion of

monocytes producing these cytokines between the different treatment groups.
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