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ABSTRACT

Tumor-infiltrating immune cells as integral compo-
nent of the tumor microenvironment are associated
with tumor progress, prognosis and responses to
immunotherapy. Genetic variants have been demon-
strated to impact tumor-infiltrating, underscoring the
heritable character of immune landscape. Therefore,
identification of immunity quantitative trait loci (im-
munQTLs), which evaluate the effect of genetic vari-
ants on immune cells infiltration, might present a
critical step toward fully understanding the contri-
bution of genetic variants in tumor development. Al-
though emerging studies have demonstrated the de-
terminants of germline variants on immune infiltra-
tion, no database has yet been developed to sys-
tematically analyze immunQTLs across multiple can-
cer types. Using genotype data from TCGA database
and immune cell fractions estimated by CIBERSORT,
we developed a computational pipeline to identify
immunQTLs in 33 cancer types. A total of 913 im-
munQTLs across different cancer types were identi-
fied. Among them, 5 immunQTLs are associated with
patient overall survival. Furthermore, by integrating
immunQTLs with GWAS data, we identified 527 im-
munQTLs overlapping with known GWAS linkage dis-
equilibrium regions. Finally, we constructed a user-
friendly database, CancerImmunityQTL (http://www.
cancerimmunityqtl-hust.com/) for users to browse,
search and download data of interest. This database
provides an informative resource to understand the
germline determinants of immune infiltration in hu-

man cancer and benefit from personalized cancer im-
munotherapy.

INTRODUCTION

Tumor microenvironment (TME) comprises a complex
milieu of non-malignant cells including vascular vessels,
fibroblasts, extracellular matrix and immune infiltrates,
which can interact closely with tumor cells and affect tumor
growth and metastasis (1,2). As the integral component of
tumor microenvironment, the immune infiltrates play a crit-
ical role in tumor progress, clinical outcome and responses
to immunotherapy. Correlations between the levels of im-
mune cell infiltration in tumors and clinical outcome have
been investigated in many cancers, identifying several cell
types that could be regarded as prognosis markers (3). The
immune infiltrate is often a heterogeneous mixture of dis-
tinct cell types which have different effects on tumor con-
trol. The density and location of these immune cells could
vary according to cancer type and are very diverse from pa-
tient to patient, resulting in only a subset of patients ben-
efit from immunotherapy (3,4). To explore the role of this
underappreciated determinant of heterogeneity among pa-
tients with cancer, researchers tried to link germline genetic
variants to cancer risk by altering immune cell contents in
the corresponding cancer target tissue (5,6).

Individual genetic characteristics play an essential part
in the development of tumor, which also are crucial fac-
tors in determining tumor susceptibility. The contribution
of inherited genetic factors to the causation of cancer is
about 27–42% (7). Apart from the rare high penetrance
mutation, single nucleotide polymorphisms (SNPs) as the
most frequent genetic variants in humans could be respon-
sible for the development of malignant diseases (8,9). Large-
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scale genome-wide association studies (GWAS) have identi-
fied great amount of trait/disease-associated variants, while
these variants explain only a small fraction of the heritabil-
ity of complex traits, and the identification of causal vari-
ants, genes, and disease mechanisms still needs to be further
explored (10–12). Quantitative trait locus (QTL) analysis is
considered as a useful approach to evaluate the effects of
genetic variants on intermediate molecular phenotypes and
discern the causal variant within GWAS loci (13–15). In-
herited genetic variants have been demonstrated to impact
baseline and induced host immune responses, underscoring
the heritable character of immune landscape (16,17). More-
over, results from GWAS have identified risk-associated
variants that could affect anti-tumor immune response. For
example, the first GWAS of cervical cancer identified a locus
in MICA which encodes a membrane-bound protein acting
as a ligand for NKG2D to activate natural killer (NK) and
T cells (18). Inflammation-related genetic variations could
influence cancer immune response thereby affecting prog-
nosis (19). The evaluation of common genetic variation af-
fecting immune infiltration which refers to leading different
fractions of infiltrating immune cells between individuals,
is defined as immunity quantitative trait loci (immunQTLs)
analysis. Thus, identification of immunQTLs might provide
a resource linking immunology with genomics in human
cancer and contribute to understanding the importance of
genetic variants in tumor development.

Considering the significance of immunQTLs, emerging
studies about the influence of genetic variation on im-
mune infiltration have been conducted both in solid tumors
and hematological malignancies (6,20–22). These studies
revealed widespread impact of genetic variants on immune
landscape in various cancer type, which could serve as
potential prognostic and treatment markers. However, no
database has been developed to systematically analyze the
immunQTLs across multiple cancer types. To bridge this
gap, we developed a computational pipeline to systemat-
ically perform immunQTL analysis by integrating geno-
type data and immune cell proportions profiled by RNA-
seq data from The Cancer Genome Atlas (TCGA). We
further associated the identified immunQTLs with patient
overall survival time and loci in GWAS linkage disequilib-
rium (LD) regions. We identified hundreds of immunQTLs
reached significant level across different cancer types, and
constructed a user-friendly database, CancerImmunityQTL
(http://www.cancerimmunityqtl-hust.com/), for users to
conveniently browse, search and download data of inter-
est. This comprehensive immunQTL resource helps to ef-
fectively evaluate the impact of germline SNPs on cancer-
immune phenotypes, and support a path toward personal-
ized cancer immunotherapy.

DATA COLLECTION AND PROCESSING

Estimate of immune cell fractions and processing

Using bioinformatics approaches based on immune-specific
marker genes or expression signature, tumor-infiltrating im-
mune cells can be quantified from microarray or RNA se-
quencing (RNA-seq) data of human tumors. Deconvolu-
tion algorithms consider gene expression profiles of a het-
erogeneous sample as the convolution of the gene expres-

sion levels of the different cells, and estimate the unknown
cell fractions leveraging on a signature matrix describing the
cell-type-specific expression profiles (23). Through this ap-
proach, the relative fractions of interested cell types can be
estimated quantitatively (Figure 1A). CIBERSORT is one
of the methods based on deconvolution algorithms to char-
acterize leukocyte composition with LM22 (24), which is
a signature matrix file consisting of 547 genes that accu-
rately distinguish 22 mature human hematopoietic popula-
tions (Table 1). With the application of CIBERSORT algo-
rithm, we quantified relative percent of 22 immune cell sub-
sets based on RNA-seq data downloaded from the TCGA
data portal (https://portal.gdc.cancer.gov/), and an empiri-
cally defined global P-value for the deconvolution was also
calculated for each sample. For each cancer type, tumor
samples were filtered using the following criterion: samples
with P-value ≥ 0.05. Besides, immune cell subsets were fil-
tered by the following criterion: phenotypes with more than
10% zero values which represent negative estimates. Finally,
17 immune cell subsets were included for analysis. To mini-
mize the effects of outliers on the regression scores (25,26),
the relative percent for each immune cell subset across sam-
ples per cancer type were transformed into a standard nor-
mal distribution based on rank (Figure 1D).

Genotype data collection, imputation and processing

Genotype data (level 2) of 10 944 samples across 33 can-
cer types were obtained from the TCGA data portal (https:
//portal.gdc.cancer.gov/), which detected the genotypes us-
ing Affymetrix SNP Array 6.0 containing 898 620 SNPs. To
increase the power for immunQTL discovery, we conducted
imputation for autosomal variants in all samples across all
cancer type, with 1000 Genomes Phase 3 as the reference
panel as described in our previous study (27). To improve
computation efficiency, we adopted the two-step procedure:
first to produce haplotype estimates with SHAPEIT, and
then used IMPUTE2 to impute untyped genotypes (28).
Following criteria were used to exclude SNPs: (i) imputa-
tion confidence score, INFO < 0.4, (ii) minor allele fre-
quency (MAF) < 5%, (iii) SNP missing rate ≥ 5% for
best-guessed genotypes at posterior probability ≥ 0.9 and
(iv) Hardy–Weinberg Equilibrium P-value < 1 × 10−7 es-
timated by Hardy–Weinberg R package (Figure 1B). After
imputation and quality filtering, an average of 4 414 871
SNPs per cancer type were remained in immunQTL analy-
sis.

Covariates

To increase the sensitivity in QTL analyses, covariates are
often included to correct for known and unknown con-
founders (29). We performed principal components analysis
(PCA) by PLINK (30) and considered the top five princi-
pal components as covariates to control for ethnicity dif-
ferences. Furthermore, to remove confounding factors such
as batch effects from expression data, we included first 15
PEER factors that captured the global variance in gene ex-
pression using PEER software (31). Since the PEER factors
were highly correlated with estimated cell fractions, which
would decrease detection sensitivity in immunQTL analy-
sis. Therefore, we regressed estimated cell fractions from all

http://www.cancerimmunityqtl-hust.com/
https://portal.gdc.cancer.gov/
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Figure 1. Identification of immunQTLs in the CancerImmunityQTL database. (A) Deconvolution method to estimate the relative fractions of cell types.
In the mixture M, the expression of a gene is considered as a linear combination of the expression of that gene in different cell types weighted by the
relative fractions F of the cell types in mixture. Signature matrix S represents a summary of average expression profiles. (B) The procedure for collecting
and processing genotype data. (C) Covariates included in immunQTL mapping. (D) The procedure of estimate on immune cell fractions and processing.
(E) Identification of immunQTLs, survival-associated immunQTLs and GWAS-related immunQTLs.
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Table 1. Overview of 22 immune cell types

LM22 cells Cell type description

B cells B cells naive
B cells memory

PCs Plasma cells
CD8 T cells T cells CD8
CD4 T cells T cells CD4 naive

T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)

Gamma delta T cells T cells gamma delta
NK cells NK cells resting

NK cells activated
Monocytes and macrophages Monocytes

Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells Dendritic cells resting
Dendritic cells activated

Mast cells Mast cells resting
Mast cells activated

Eos Eosinophils
PMNs Neutrophils

gene within RNA-seq data for all tissues, and the resulting
residual gene expression matrix could be used to generate
a new group of 15 PEER factors. Besides, other common
confounders such as age, sex and tumor stage were also in-
cluded as covariates to remove the potential effects of clin-
ical status (26,32,33) (Figure 1C).

Identification of immunQTLs

For each cancer type, the effects of genetic variation on im-
mune infiltration were evaluated by linear regression using
MatrixEQTL (34) with the adjustment of covariates men-
tioned above (Figure 1E). SNPs with false discovery rate
(FDR) < 0.1 calculated by MatrixEQTL were defined as
immunQTLs.

Identification of survival-associated immunQTLs

Since the levels of infiltrating immune cells are associated
with patient outcome (35), immunQTLs may influence the
prognosis by affecting infiltrating immune cells. To priori-
tize promising immunQTLs, we further explored the associ-
ation between immunQTLs and patient survival times. For
each immunQTL, samples were classified into three groups:
homozygous genotype AA, heterozygous genotype Aa and
homozygous genotype aa (A and a respectively represent
major and minor allele of one SNP). We compared the dif-
ferences of survival time between three groups by using log-
rank test, and Kaplan–Meier (KM) curves were constructed
to display the results. immunQTL with FDR < 0.05 based
on Benjamini & Hochberg method were defined as survival-
associated immunQTLs (36).

Identification of GWAS-associated immunQTLs

Although GWAS have identified an unprecedented num-
ber of genetic variants, these approaches do not necessarily
pinpoint the causal variants (11). Thus, we integrated the

immunQTLs with existing GWAS risk loci to facilitate in-
terpretation of GWAS results. Risk tag SNPs identified in
GWAS studies were downloaded from the National Human
Genome Research Institute (NHGRI) GWAS catalog (http:
//www.ebi.ac.uk/gwas/, accessed by June 2020) (37). Then
we obtained GWAS linkage disequilibrium (LD) regions of
these risk tag SNPs from SNAP database (https://personal.
broadinstitute.org/plin/snap/ldsearch.php) (38) with pa-
rameters (SNP data set: 1000 Genomes; r2 (the square of
the Pearson correlation coefficient of linkage disequilib-
rium) threshold: 0.5; population panel: CEU (Utah Resi-
dents with Northern and Western European Ancestry), and
distance limit: 100 kb). immunQTLs that overlapped with
GWAS tag SNPs and LD SNPs (r2 ≥ 0.5) were defined as
GWAS-related immunQTLs.

Variants annotation

All the genetic variants identified in immunQTL analysis
have been annotated using SnpEff software, which enables
rapid analyses of whole-genome sequencing data (39). The
process of annotation is based on variants genomic loca-
tions, the annotated genomic locations include intronic, un-
translated region, upstream, downstream, splice site, or in-
tergenic regions. In addition to the effects of variants in
genome sequences, their located or nearby genes were also
available.

Enrichment analysis

To assess the enrichment of immunQTLs in GWAS link-
age disequilibrium regions (r2 ≥ 0.8), we generated a con-
trol data set of non-immunQTL SNPs with minor allele fre-
quency (MAF) matched to immunQTL SNPs among each
cancer type (40). Two-tailed Pearson’s � 2 test or Fisher’s
exact test were applied to perform enrichment analysis for
the following 2 × 2 tables: columns; immunQTL SNPs and
non-immunQTL SNPs, rows; SNPs within and not within
GWAS loci.

DATABASE CONTENT

Samples in CancerImmunityQTL

Before sample filter, 8514 tumor samples with both geno-
type data and phenotype data available for 33 cancer types
were included. After quality control for samples based on
P-value calculated in CIBERSORT, a total of 5084 tumor
samples with both genotype data and credible estimated im-
mune cell fractions were used for immunQTL analysis (Fig-
ure 2A). The sample size for each cancer type ranged from
10 in adrenocortical carcinoma (ACC) or pheochromocy-
toma and paraganglioma (PCPG) to 823 in invasive breast
carcinoma (BRCA) (Supplementary Table S1). After geno-
type imputation and quality control, an average of 4 414 871
SNPs per cancer type were used for analyses, ranging from
2 944 254 for ACC to 5 120 270 for acute myeloid leukemia
(LAML). After removing estimated cell fractions with more
than 10% zero values, 17 types of immune cells were used for
analyses.

http://www.ebi.ac.uk/gwas/
https://personal.broadinstitute.org/plin/snap/ldsearch.php
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Figure 2. immunQTLs statistics across 33 cancer types. (A) The included cancer types in our study and sample size for each cancer type. (B) Bar plot
indicates relative percent of 22 immune cells estimated by CIBERSORT, the sum up of all cell types fractions is equal to one.

immunQTLs in CancerImmunityQTL

The CancerImmunityQTL mainly consists of three datasets
which are immunQTLs, survival-immunQTLs and GWAS-
immunQTLs. We have listed SNPs with P-value <1 × 10−3

on the website and SNPs with P-value < 0.05 could be ac-
quired in download page, the summary of these parts could
be found in Supplementary Tables S1 and S2, respectively.
In the immunQTL analysis, a total of 913 immunQTL-
immune cell pairs across 11 cancer types were identified at
the level of FDR < 0.1, with a median of 83 immunQTLs
per cancer type, ranging from 1 in BRCA or liver hepato-
cellular carcinoma (LIHC) to 253 in stomach adenocarci-
noma (STAD) (Table 2). The detected number hierarchy of
immunQTLs was consistent with previous study (6). Since
the limited number of immunQTLs, the association between
number of immunQTLs and number of samples did not
attain statistical significance, but presented a tendency of
positively correlated (Spearman correlation Rs = 0.032, P-
value = 0.621, Supplementary Figure S1). Macrophages
M2 are the most frequent infiltrating immune cells across
all cancer types, which is widely considered to favor tumor
growth and spreading (41). Macrophages M0, T cells CD4
memory resting and T cells CD8 are also the common im-
mune cell types in tumor microenvironment (Figure 2B).
The germline variants derived from genotype imputation
accounted for an average of 78.14% of immunQTLs in 11
cancer types (Supplementary Table S3).

We further linked immunQTLs to patient survival
data and known GWAS loci to prioritize promising im-

munQTLs. A total of five immunQTLs associated with pa-
tient overall survival at FDR < 0.05. Based on the GWAS
studies gathered in NHGRI GWAS Catalog, we identified
527 immunQTLs that overlapped with GWAS linkage dis-
equilibrium (LD) regions of one or multiple traits at an
LD threshold of 0.5. The number of GWAS-immunQTLs
ranged from one in LIHC or uterine corpus endometrial
carcinoma (UCEC) to 210 in STAD. Enrichment analysis
also showed that immunQTL are significantly enriched in
GWAS loci compared to non-immunQTL (Supplementary
Table S4).

DATABASE CONSTRUCTION AND WEB INTERFACE

CancerImmunityQTL was built based on the NodeJS
8.10.0 (https://nodejs.org/en/) framework, all results men-
tioned above were stored in MongoDB 3.6.5 (https://
www.mongodb.com/) database. As a database with user-
friendly web interface for browsing, searching and down-
loading, CancerImmunityQTL runs on a Linux-based Ng-
inx Web server, combined with ReactJS (https://reactjs.org/)
as the JavaScript library. We have tested it on various
web browsers, including Google Chrome (preferred), Fire-
fox, Internet Explorer and Safari of macOS. The Can-
cerImmunityQTL website is available online (http://www.
CancerImmunityQTL-hust.com/) and requires no registra-
tion.

CancerImmunityQTL provides data browsing and
querying of three modules. On the ‘home’ page, by clicking
on the corresponding button in the browser bar (Figure

https://nodejs.org/en/
https://www.mongodb.com/
https://reactjs.org/
http://www.CancerImmunityQTL-hust.com/
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3A) or the corresponding images in the ‘Modules’ section
at the bottom of this page (Figure 3C), users can enter the
‘immunQTL/survival-immunQTL/GWAS-immunQTL’
pages. Both ‘Single Search’ and ‘Batch Search’ are available
for comprehensive queries across all three datasets (Figure
3B). In the ‘Single Search’ section, users can select a specific
cancer type or immune cell type and input an SNP ID or
genomic region to search immunQTLs across all datasets.
After inputting the search terms, the results would be
presented as three dynamic tables containing that three
datasets. If users do not select specific cancer type, it will re-
turn results for all cancer types. The ‘Batch Search’ section
allows users to input multiple cancer types, SNPs, immune
cells or genomic regions of interest. We also displayed a
summary of the sample size, immunQTL pairs number and
relative percent of immune cell on the ‘home’ page. Putting
the cursor over a cancer name on the-hand side of human
anatomy diagram, the matched results will be displayed on
the right figures. If users click certain cancer name, the web
interface will turn to the search result of this cancer type.
All three datasets for each cancer type can be downloaded
from the ‘Download’ page. A detailed tutorial showing
how the data were collected and processed is available
on the ‘Help’ page. CancerImmunityQTL welcomes any
feedback by email to the address provided in the ‘Contact’
page.

On the ‘immunQTLs’ page, users can search by select-
ing a specific cancer type, immune cell type from a pull-
down menu or by entering a SNP ID. We also set sample
size, imputation score of SNP and P-value or FDR of im-
munQTL as search criteria for users to filter. After com-
pleting filter and click the ‘Search’ button, the query re-
sults will be displayed in a table containing sample size, SNP
ID, SNP genomic position, SNP alleles, SNP INFO, SNP
annotation, located or nearby gene symbol, immune cell
type, beta value (effect size of SNP on immune cell frac-
tion), P-value and FDR of immunQTL (Figure 3D). Be-
sides, a vector diagram of a boxplot was embedded to dis-
play the association between SNP genotypes and immune
cell fraction for each record. This boxplot could not only
be browsed by clicking the hyperlink ‘Box Plot’ on the right
side of table, but also available for downloading. For exam-
ple, our analysis showed that individuals carrying the ho-
mozygote rs2442556 aa has significantly higher percent of
macrophages M0 than that of individuals carrying the ho-
mozygote rs2442556 AA and heterozygous rs2442556 Aa in
BRCA (P-value = 2.20 × 10−10, Figure 3F).

On the ‘survival-immunQTLs’ page, search boxes are de-
signed to retrieve specific cancer type, SNP ID, sample size,
imputation score of SNP, P-value or FDR of immunQTL.
A table with SNP ID, immune cell type, beta value (effect
size of SNP on immune cell fraction), P-value and FDR
of immunQTL, SNP genomic position, SNP alleles, SNP
INFO, SNP annotation, located or nearby gene symbol, P-
value and FDR for log-rank test and median survival time
for each genotype group will be displayed after submitting
search terms (Figure 3E). For each record, a vector diagram
of KM Plot will reveal the association between SNP geno-
types and overall survival times. For example, our analysis
showed that colon adenocarcinoma (COAD) patients with
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Figure 3. Overview of the CancerImmunityQTL database. (A) Browser bar in CancerImmunityQTL. (B) The single and batch search boxes in Cancer-
ImmunityQTL. (C) Three modules in CancerImmunityQTL, including immunQTLs, survival-associated immunQTLs, and GWAS-related immunQTLs.
(D, F) An example of immunQTL results on the ‘immunQTL’ page and the corresponding boxplot. (E, G) An example of survival-immunQTL results in
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rs250137 AA allele have a better prognosis than patients
with rs250137 aa allele (P-value = 8.06 × 10−5, Figure 3G).

On the ‘GWAS-immunQTLs’ page, in addition to search
by cancer type, phenotype or SNP ID, various LD thresh-
olds, sample size, imputation score of SNP, P-value or
FDR of immunQTL are designed in the dropdown box
to restrict SNPs. The information of SNP, sample size, lo-
cated or nearby gene, regulated immune cell and related
GWAS-traits are listed on the search result. For example,
rs78239497, as a tag SNP of metabolite levels, was found to
be significantly associated with relative fraction of B cells
naive in STAD.

SUMMARY AND FUTURE DIRECTIONS

We comprehensively evaluated the effects of genetic vari-
ants on immune infiltration in large cancer samples across
33 cancer type, and provided a user-friendly database, Can-
cerImmunityQTL, for users to query, browse, and down-
load immunQTLs. We also presented massive vector dia-
grams of immunQTL box plots and KM plots for scientific
usage. The immunQTLs we identified were further analyzed
their association with patient survival times or linkage dise-
quilibrium with known GWAS loci, which will facilitate the
interpretation of identified genetic variants. Biologists can
download entire datasets for further integrative studies.

With the rapid development of immunogenomic in can-
cer, we expect the number of cancer samples with genotype
and infiltrating immune cell profiles to increase dramati-
cally. We also anticipate the development of single-cell stud-
ies characterizing simultaneously transcriptional, genomic
and epigenetic states, which will enable the elucidation of
immune cell-cancer crosstalk. In the future, we will continue
to update CancerImmunityQTL to include more genetic
and immune landscape in cancer samples and maintain it
as a useful resource for the research community. We believe
that CancerImmunityQTL will provide important resource
for understanding the germline determinants of immune in-
filtration in human cancer, which could enable more precise
development of immune intervention approaches.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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