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Abstract: Additively manufactured subperiosteal jaw implants (AMSJI) are patient-specific, 3D-
printed, titanium implants that provide an alternative solution for patients with severe maxillary
bone atrophy. The aim of this study was to evaluate the bony remodeling of the maxillary crest
and supporting bone using AMSJI. Fifteen patients with a Cawood–Howell Class V or greater
degree of maxillary atrophy were evaluated using (cone beam) computed tomography scans at set
intervals: one month (T1) and twelve months (T2) after definitive masticatory loading of bilateral
AMSJI implants in the maxilla. The postoperative images were segmented and superimposed on the
preoperative images. Fixed evaluation points were determined in advance, and surface comparison
was carried out to calculate and visualize the effects of AMSJITM on the surrounding bone. A total
mean negative bone remodeling of 0.26 mm (SD 0.65 mm) was seen over six reference points on the
crest. Minor bone loss (mean 0.088 mm resorption, SD 0.29 mm) was seen at the supporting bone at
the wings and basal frame. We conclude that reconstruction of the severely atrophic maxilla with the
AMSJI results in minimal effect on supporting bone. Reduced stress shielding with a biomechanically
tuned subperiosteal implant does not induce radiographically significant crestal bone atrophy.

Keywords: maxilla; implantation; subperiosteal; alveolar bone loss; printing; three-dimensional;
Cawood–Howell
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1. Introduction

Patients suffering from full edentulism have limited options for oral rehabilitation.
Subperiosteal implants were introduced 80 years ago out of the need to improve stability
and retention of full dentures in patients suffering from excessive ridge resorption [1]. At
that time, cast frameworks and analogue radiographical imaging often led to inaccurate
designs. The concepts of oral biology and stress shielding were not well understood at
that time. These factors contributed to patient discomfort and a rather high complication
rate [2]. The clinical use of subperiosteal implants was largely abandoned over time with
the advent of screw-type endosseous titanium implants.

While endosseous implants are known to achieve osseointegration with a high degree
of predictability, their placement and longevity are dependent on sufficient bone quality
and quantity. Availability of an ideal osseous support may be compromised by excessive re-
sorption or loss of the alveolar processes secondary to disuse atrophy, trauma, or neoplasia,
which can render installation of endosseous implants risky or sometimes impossible [3–5].
Progression of alveolar bone resorption may continue following placement of screw-type
implants, both in instances of placement into native alveolar bone and placement into
regenerated bone following grafting procedures [5,6].

With the rise of digital technology, fabrication of patient-specific implants (PSI) has
become possible. Disruptive 3D printing technology has led to the revisitation of earlier
concepts such as subperiosteal implants.

This has resulted in the innovation of the additively manufactured subperiosteal jaw
implant (AMSJI) concept (CADskills BV, Ghent, Belgium). The AMSJI consists of two
subunits (left and right). These are customized to the skeletal anatomy of each patient,
based on a supplied CBCT data set. The subunits consist of two wings and a basal looped
frame connecting the arms and the transmucosal posts. The wings are situated on the
canine and zygomatic buttresses and are fixed in these locations using osteosynthesis
screws (Figure 1). Both subunits are connected intra-orally by a temporary connector, and
latter by a definitive primary matrix structure.
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The AMSJI protocol constitutes a contemporary solution for a select group of patients
with inadequate bone stock for screw-type endosseous implants (Figure 1) [7]. This tailor-
made concept not only allows fixation onto the bone, but it also offers the patient an
immediate functional restoration in a single intervention [8]. Clinical follow-up studies are
necessary to confirm the efficacy of this contemporary concept.
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The aim of this study was to evaluate the effect of reconstruction of the severely
atrophic maxilla with the AMSJI on maxillary bone morphology in 15 patients.

2. Materials and Methods

A multicenter prospective study was designed by the International Workgroup on
AMSJI. Patients were included in the study who were deemed to have Cawood–Howell
maxillary alveolar atrophy of grade V or higher and wished to have maxillary rehabilita-
tion with a fixed prosthesis. All surgeons received training using model surgery before
operating their first AMSJI patient or by having their first case assisted by an experienced
AMSJI surgeon. Patients were excluded from the study if they or the treating surgeon
decided not to undergo a 1-year post loading CT scan, or if the CBCT was not a large
enough dataset to allow full visualization of the AMSJI.

Perioperative antibiotic coverage consisted of amoxicillin–clavulanic acid, generally
continued for five to seven days postoperatively.

Evaluation of the AMSJI position and effect on the surrounding bone was accom-
plished using CBCT imaging at one (T1) and twelve months (T2) after functional reha-
bilitation with the AMSJI. To ensure a consistently high quality of radiographic imaging,
the following parameters were used: (1) conventional matrix: 512 rows × 512 pixels,
(2) 90–120 kVp; (3) slice thickness was maintained between 0.5 and 0.7 mm, for CT, and
0.150 mm slice thickness for CBCT, and the same slice spacing was maintained throughout
the scanning procedure; (4) each slice had the same display field, the same center of recon-
struction, the same direction, and the same table height; (5) feed per rotation: max 1.0 mm;
(6) reconstructed slice increment: maximum 1.0 mm; (7) the reconstruction algorithm
for the bone was set at high resolution; and (8) Gantry tilt: 0◦. All of the images were
anonymized. Patients who were included as subjects in the study were assigned a code.

Postoperative CBCT images were stored as DICOM datasets. Data were imported into
Materialise Medical 22.0 (Materialise, Leuven, Belgium) for segmentation. A threshold was
chosen by the first author based on the suggested predefined threshold sets for “bone”. A
3D model was then generated. Semi-automated segmentation of the 3D model was estab-
lished using a “region grow mode”, which was a feature of the analytical software. Manual
2D multi-slice segmentation was additionally performed to ensure meticulous removal of
all of the titanium allow and scatter. The final files were saved in stereolithographic (STL)
format using a “calculated part”. An “optimal or high quality” was selected.

The STL files were imported into Geomagic Studio 2018 (Geomagic, Morrisville, USA).
Surface-based super-impositioning of the postoperative CT scans was carried out. Image
fusion between the T1 and the T2 scan was obtained using a semiautomated registration
process. Initial approximation was done by a manual overlap of the two images to achieve
the best possible fit. Using the registration tool, images were aligned using the best-fit
surface automatic alignment. With this method the software calculated the least possible
distance between the two scans being compared, resulting in an automatic overlap of the
scans to achieve the best fit based on the closest points.

Data were then again stored in STL format and imported in Gom Inspect Suite (Zeiss,
Oberkochen, Germany). A color-code model was automatically generated for each patient
to visualize the differences over time of bone apposition and resorption. Selected points
on the color-code mask show the discrepancy (mm) between the fused images. On the
crest, six bony reference points (A–F) were chosen in the axis of the posts (Figure 2). Four
more reference points (G, K, L, P) were chosen between the two screws of the AMSJI
wings on both sides (Figure 3). These points were determined based on, respectively, the
perpendicular location of the posts projected on the crest and by determining the middle
between the two screw holes. To assess the bone quantity perpendicularly underneath the
basal looped frame, six more reference points were chosen between the connection of the
neighboring posts and the looped frame (H–J; M–O, Figure 3).
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Figure 3. G, K, L, P: reference points under the wings; H, I, J, M, N, O: reference points under the basal looped frame.

Inter-rater reliability (parameters: single rater, consistency-agreement, two-way mixed-
effects) and intra-rater reliability (two-way mixed-effects model) were calculated. The data
were analyzed using SPSS version 27 (SPSS Inc., Chicago, IL, USA).

Ethical committee approval was obtained on 5 May 2019 (B.U.N 143201939806), and
the principles stated in the Declaration of Helsinki and its later amendments were adapted.
Informed consent was obtained from all individual participants.
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3. Results

Nine males and six females with a mean age of 63.70 (SD 4.85) years were enrolled in
this study. None of the patients complained of any discomfort, and none of the clinicians
involved reported any complications at T1–T2. Surgeons and dentists were acquainted with
implantology and charted results for both subjective and objective parameters. Objective
and subjective parameters for success are the subject of another prospective study of the
same International Study Group.

The status of the opposing mandibular dentition varied amongst subjects: two patients
had a natural full arch dentition, and two had an interrupted arch without oral rehabilita-
tion. Two additional patients had an interrupted natural arch with singular implants to
replace lost molars. A fixed full arch prosthetic rehabilitation was observed in five patients.
One patient had a fixed prosthesis supported by two mandibular AMSJIs and two singular
implants at the canine regions. Three patients had removable frame prostheses.

No infections were reported at the time of recording. A total mean bone resorption of
0.26 mm (SD 0.65 mm) was seen over six reference points on the crest. Almost no bone loss
(mean 0.088 mm resorption, SD 0.29 mm) was seen at the supporting bone at the wings
and basal frame. Neutro-occlusion was established in each case. Tables 1 and 2 report
resorption and apposition of bone at the reference points.

Table 1. Effect on the bony alveolar ridge perpendicular underneath the posts (in mm). A negative
value indicates a mean resorption.

AMSJI Point ∆ Each Point
T1–T2 (SD)

∆ Side
T1–T2 (SD)

∆ AMSJI Total
T1–T2 (SD)

A −0.29 (1.04)
−0.24 (0.85)

−0.26 (0.65)

Right B −0.24 (0.94)
C −0.18 (0.80)

D −0.33 (0.89)
−0.27 (0.53)Left E −0.46 (0.57)

F −0.050 (0.55)

Table 2. Effect of the AMSJI wings and basal frame on the underlying zygomaxillary bone (in mm).
A negative value indicates a mean resorption, and a positive value indicates a mean apposition.

AMSJI Point ∆ Each Point
T1–T2 (SD)

∆ Side
T1–T2 (SD)

∆ AMSJI Total
T1–T2 (SD)

G 0.32 (0.67)

−0.060 (0.40)

−0.088 (0.29)

H −0.040 (1.46)
Right I −0.38 (0.71)

J −0.18 (0.57)
K −0.03 (0.57)

L −0.18 (0.41)

−0.11 (0.26)
M −0.44 (0.47)

Left N 0.010 (0.59)
O 0.060 (0.75)
P −0.030 (0.58)

Intraclass correlation coefficient (test–retest; two-way mixed effects model, type “con-
sistency”) was 0.86, indicative of good reliability. Interclass correlation coefficient (two-way
random, 95% interval, type ”consistency”) had an average value of 0.91 with a 95% confi-
dence interval equal to 0.73–0.97, also showing good reliability between the assessors [9].
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4. Discussion

Long-term survival of conventional subperiosteal implants has been documented [10–12].
Several reviews have, however, also reported on complications such as infections, early and
late implant exposure, bone resorption, fistulation, and implant mobility, leading to consid-
erable patient discomfort and implant failure [10–15]. The endosseous implants overcame
several problems that had been experienced with the initial forms of subperiosteal implants
and showed superior long-term results with minor patient discomfort [13–16]. Due to the
feasibility of manufacturing in large quantities and the ease of installation and removal in the
event of failure, endosseous implants became the first treatment of choice in the 1980s.

Despite their benefits, however, endosseous implants cannot be relied on by the
surgeon to treat every clinical scenario. Adequate bone volume and quality are necessary
to correctly position endosseous implants [17]. If sufficient bone volume and quality are
not present, the endosseous implant is prone to fail, may damage important structures,
or may be impossible to install [18]. The use of narrow and short implants represents an
alternative option, but if significant bone volume is lost in height and width, even these
cannot be used [19].

Various regenerative techniques may be performed to augment the alveolar ridge in
both the vertical and horizontal dimensions if insufficient bone volume precludes implant
placement; however, this option is limited to cases where sufficient native bone exists to
support the grafts. Autologous bone harvesting can be accomplished from a variety of
anatomic sites, allowing for placement of onlay grafts. This approach is often used and is
considered by some authors as the gold standard of regeneration techniques [20–22].

One of the main drawbacks to the utilization of free grafts is that during harvesting
microcirculation is unavoidably severed, impeding reestablishment of graft circulation.
Revascularization of the graft must occur to ensure osteogenesis and graft survival. This
process requires time, during which osteocyte vitality is frequently compromised [23].
Consequently, small areas of dead bone will form, leading to undesirable and unpredictable
graft resorption. The amount of resorption is strongly dependent on the site from which
the bone was harvested. According to the literature, mandibular block grafts utilized for
maxillary ridge augmentation have resorption rates between 5 and 28% [22,24,25]. Onlay
grafts harvested from the iliac crest have been shown to exhibit 50% average volume
decrease 6 months following placement in the atrophied maxilla [26]. Fourcade et al. (2019)
investigated the resorption of calvarial (parietal) and ramic bone grafts for pre-implant
reconstruction of maxillary alveolar ridges and found a mean resorption of 25% for both
types of block grafts [27].

Guided bone regeneration (GBR) is frequently performed with bone graft procedures
to mitigate these high resorption rates. With this approach, bone substitutes and mem-
branes are used in addition to harvested autologous grafts to exclude non-osteogenic cell
populations. As a result, osteoblast cell proliferation is promoted, and connective tissue
and epithelial cells are mechanically excluded, resulting in lower resorption rates and
higher bone volume following ridge augmentation [28,29].

Despite the reported variable rates of bone graft resorption, the success ratios following
implant placement in grafted bone are high. Aghaloo et al. (2016) performed a literature
review evaluating implant outcomes following bone grafting of completely edentulous
maxillae [22]; 2446 implants were placed, with follow-up ranging from 1 to 12 years. The
range of implant survival rate in this review was 73.3–100%. When GBR was performed,
the reported survival rate improved to 96.1–100%. Motamedian et al. (2016) found a success
rate between 72.8% and 100% of 2.647 implants when onlay grafting was performed using
autologous blocks in an atrophied maxilla [30].

In addition to onlay grafting and guided bone regeneration, maxillary sinus floor
elevation remains a popular method for augmenting bone volume; however, this is a
technique-sensitive procedure. A frequent reason for failure is intraoperative rupture of
the Schneiderian membrane. This is a common occurrence, with a reported incidence of
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perforation ranging from 3.6% to 41.8% [31]. If lacerated, the membrane cannot perform
the function of graft containment, which impedes osteogenesis [32].

Augmentation of the maxillary sinus floor limits the anterior extent of maxillary
reconstruction to the premolar level. Atrophied maxillae often present with severe ridge
atrophy at the premaxillary region as well, and this aspect of the deficient ridge is often
not amenable to augmentation. Despite this limitation, several studies have claimed high
implant success rates (>90%) with follow-up periods from 1 to 11 years [22,33].

Bone regenerative techniques give excellent results in the context of long-term implant
success in the atrophied maxilla; however, there remain several disadvantages to this
approach. Bone augmentation relies on osteogenic potential, which varies among patients.
This potential diminishes with age, which could lead to a higher degree of resorption [34].
If substantial resorption occurs, esthetic and functional stability of the implants can be
influenced. This may necessitate repetition of bone augmentation to ensure proper volume
for re-implantation. There is also a relevant morbidity associated with the harvest and
installation of block grafts at both the donor and recipient sites. The risk of dehiscence,
infection, pain, swelling, neurosensory deficits, and graft failure remain pertinent [35]. In
addition, the harvested blocks remain of finite thickness, rendering complete augmentation
of a severely atrophied maxilla difficult. A staged approach may be necessary to increase
the potential for implant survival.

Aghaloo et al. (2016) showed that simultaneous graft-implant placement results in
an implant survival ranging from 73.7 to 91% compared with 88.9–100% when a staged
approach was used [22]. Staging of procedures carries the requirement for, and disadvan-
tages of, multiple surgeries, with twice the risk for post-surgical complications to arise.
Following bone augmentation, patients need to be encouraged to limit usage of dentures
due to increased risk of wound dehiscence, graft displacement, and graft resorption if early
loading is permitted prior to graft incorporation. This encumbers the patient to remain
edentulous between surgical treatments for up to 4 months [22].

The advent of titanium 3D printing and 3D planning software made reconsideration
of the subperiosteal implant concept possible. CBCT imaging depicts a patient’s residual
bone volume with considerable accuracy. CBCT data are used to generate a virtual bone
model using reconstruction software. This facilitates the design of a subperiosteal implant
with a high degree of accuracy for each patient.

Titanium (Ti) and its alloys are known to have excellent biocompatibility and are
therefore widely used in medical and dental devices. This is in contrast with Vitallium
(a cobalt–chromium–molybdenum alloy) used in the earlier lost-wax-technique subpe-
riosteal implants, which has no soft tissue or bone integration properties. Bone resorption
underneath rigidly fixed titanium alloy osteosynthesis plates is barely seen in the cran-
iomaxillofacial skeleton [36]. Over 25% of osteosynthesis material used in both trauma and
orthognathic surgery is overgrown by bone over time [36,37]. Such a phenomenon could
contribute to an increase in stability and osseointegration of the AMSJI at the wings and
basal frame. In our patients, sites of bony overgrowth were observed, predominantly at
the upper parts of the wings. Beam hardening artefacts did not allow quantification.

Physiological alveolar ridge resorption in completely edentulous patients has been
well documented [38–40]. The rate of resorption varies between patients, and strong
variance of resorption has been shown at different times and sites within individual
patients [41].

Initially, rapid bone loss occurs three months after tooth loss. This is followed by a
slow but continuous resorption throughout life [40]. A systematic review and meta-analysis
performed by Koodaryan and Hafezeqoran (2016) reported an average early bone loss
associated with maxillary and mandibular implants of around 1.5 mm during the first
year after the final restoration was installed [42]. A mean annual bone loss of 0.2 mm
thereafter was seen. We anticipate that a similar trend of bone loss can be expected with
AMSJI beyond the first year of function. Patients who received AMSJI-supported prosthetic
rehabilitation showed a mean resorption at the alveolar ridge of 0.33 mm (SD 0.76 mm) and
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0.08 (SD 0.33) mm at the wings and basal frame on the underlying zygo-maxillary bone
one year post loading.

The amount of resorption is dependent on several variables. One of the factors that
can contribute to this loss of bone is the type of oral rehabilitation [19]. Kovacić et al.
(2010) measured the bone resorption at the maxillary alveolar ridge using radiographic
measurements on lateral cephalograms in 31 completely edentulous individuals after five
years of wearing complete dentures [41]. A mean bone loss of 0.79 mm was found over
a period of 5 years. Atwood et al. (1971) found the mean alveolar ridge resorption to be
around 0.010 mm per year; however, the general rate of resorption varied greatly between
different individuals from 0 mm to 0.70 mm [43]. This phenomenon can account for some
of the crest resorption seen in our series.

Another factor that could account for some resorption is the raising of the mucope-
riosteal flap [44–46]. When alveolar bone becomes exposed, the underlying bone is partially
deprived of oxygen, and osteoclastic activity is thereby promoted, resulting in bone re-
sorption and subsequent remodeling [47,48]. For implantation of AMSJI, preparation of a
mucoperiosteal flap is necessary to correctly fixate the system.

Maier FM (2018) studied the effect on crestal bone in the maxilla after implant place-
ment using conventional mucoperiosteal flap elevation versus a flapless procedure [49].
After one year, a mean crestal bone loss of 0.55 ± 0.57 mm was seen in the conventional
mucoperiosteal flap group (100 patients vs. 95 in the control group). Merheb et al. (2014)
came to almost the same conclusions and found a mean resorption of 0.40 mm after full
thickness flap elevation [48].

To accurately perform a fusion of the T1 and T2 images, and to visualize the effect of
AMSJI on the underlying bone, a segmentation of the AMSJI from the underlying bone on
the CBCT images was necessary prior to the fusion.

Several software packages are available, which in turn use different tools for seg-
mentation; however, the principle remains the same. The stored DICOM file is imported
into the chosen program, and the desired anatomical structures are 3D-rendered towards
a 3D model. A threshold is manually chosen initially to segment out any unvoluntary
voxels. Thresholding defines a range of grey values. If voxels fall into this range, they are
included in the segmented object. This is done manually. After determining the threshold
and visualizing the underlying skeleton, further segmentation is done manually to filter
out scatter. If segmentation is inaccurate, an error is already incorporated into the surface
and volume before effective analysis can commence. Machine learning could improve the
segmentation process, and further automation could lower the risk of operator error hereby
improving segmentation and analysis results [50].

The AMSJI remained a challenge for segmentation of the CBCT data due to several
factors: (1) some patients showed low bone quality, which made it difficult to visualize
the bone as a 3D model; (2) the Ti-alloy composition of the AMSJI causes beam hardening
artefacts; (3) the presence of bordering soft tissue; (4) low contrast resolution of several
of the CBCT datasets; and (5) reduced quantity of the underlying bone present in some
cases. This method of semiautomated segmentation, including the factors listed above,
rendered the measuring process potentially prone to operator error. In addition, a surface-
based superimposition uses only the surface of the 3D structure for the overlapping. A
high-quality surface is required for an accurate superimposition [51].

5. Conclusions

In this study, 15 patients were radiographically examined 1 and 12 months after
masticatory rehabilitation based on bilateral AMSJI implantation in the maxilla. The effect
on the supporting bone was evaluated. Minor atrophy was seen at the alveolar ridge, but
minimal atrophy was detected under the fixation wings.
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