
INTRODUCTION
 
Generally, neuroprotection is defined as a mechanism to 

maintain homeostasis and the functional integrity of the cen-
tral nervous system (CNS) against any neurodegenerative and 
neurotoxic insults.1 Practically, neuroprotection can also refer 
to an intervention that helps to restore the functional integrity 
of the brain in response to neurobiological stress.1 Neuropro-
tection can be facilitated by intrinsic compensatory mecha-
nisms and external treatment approaches. The failure of com-
pensatory neuroprotective processes results in various anato-
mical and functional impairments in the CNS, including 
schizophrenia. 

Schizophrenia is a debilitating and severe mental illness that 
affects approximately 1% of the general population worldwide.2 
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Schizophrenia is characterized by positive, negative, and cog-
nitive symptoms with poor insight and impaired psychosocial 
function.3 Although acute psychosis is controlled with phar-
macotherapy, negative and cognitive symptoms tend to be un-
responsive to pharmacotherapy.4-6 In addition, most second-
generation antipsychotics (SGA) except clozapine have been 
shown to have no significant advantages over first-generation 
antipsychotics (FGA) even in the domain of negative and cog-
nitive symptoms.7 The chronicity and deterioration of the ill-
ness raise the possibility that schizophrenia may have neuro-
degenerative aspects. 

Etiological associations with prenatal exposure to infection,8,9 
obstetric complications,10 and genetic vulnerabilities11,12 support 
the notion that schizophrenia has a neurodegenerative etiolo-
gy. In addition, cortical gray matter loss has been shown to 
be associated with childhood-onset schizophrenia.13 Gray mat-
ter loss appears to be slowly progressive, and findings support 
the underlying neuroanatomical basis of a deteriorating course 
of the disease. Moreover, functional hypofrontality during wo-
rking memory-related tasks has been found in the dorsolateral 
prefrontal cortical region in schizophrenia.14 

The above considerations suggest that neurobiological vul-
nerability and impaired neuroprotection greatly contribute 
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to the etiopathology of schizophrenia. In this article, we re-
viewed current evidences suggesting the association between 
neuroprotection and schizophrenia in the etiological and ther-
apeutic perspectives.

 
NEUROINFLAMMATION AND 
NEUROGENESIS OF SCHIZOPHRENIA 

 
Inflammation has been considered to be a causative factor 

in schizophrenia, which has been shown to involve a dysregu-
lated cytokine system. Cytokines are pleiotropic glycoproteins 
produced by both peripheral immune cells and glial cells in 
the brain.15,16 Cytokines usually have an important role in me-
diating immune signals and inflammatory processes in the 
peripheral system and in the brain; cytokines also are involved 
in various neural interactions such as neurogenesis and synap-
tic plasticity.17,18 In this regard, neuroinflammation is distin-
guished from systematic inflammation. Particularly, pro-in-
flammatory cytokines such as interleukin-1β (IL-1β), interleu-
kin-6 (IL-6), and tumor necrosis factor-α (TNF-α) primarily 
mediate and facilitate neural activities as well as inflammatory 
processes. In particular, during the early period of disease de-
velopment, activated pro-inflammatory cytokines may exert 
detrimental effects on the brain. There is mounting evidence 
that prenatal exposure to pro-inflammatory cytokines induces 
impaired spatial memory, neuronal loss, and gliosis in the hip-
pocampus.19 Moreover, neurodevelopmental injuries due to 
excessive pro-inflammatory cytokines increase susceptibility 
to schizophrenia.20-22

Neurogenesis is defined as a coordinating process of gen-
erating new neurons from neural stem cells.23 Since the first 
report from animal studies24 and human postmortem studies 
of the hippocampal region,25 numerous studies have focused 
on adult neurogenesis. Neurogenesis consists of many steps 
including stem cell proliferation, neuronal differentiation, mi-
gration, and ultimately, integration of newly generated neu-
rons into functional neuronal circuitry.26 Adult neurogenesis 
occurs in specific regions including the subventricular zone 
(SVZ) in the lateral ventricle and the subgranular zone (SGZ) 
in the dentate gyrus of the hippocampus. Generally, adult hip-
pocampal neurogenesis is significantly and positively associ-
ated with cognitive function such as learning and memory 
function, which are mainly processed in the hippocampus.27-31 
Several studies have shown that newly-generated neurons in 
adulthood have a role in synaptic plasticity and cognitive func-
tions in psychiatric diseases including depression and schizo-
phrenia.26,30,32 To date, the most widely investigated psychiatric 
illness in terms of neurogenesis is probably major depressive 
disorder, although the pathophysiological link is still uncer-
tain.33-35 Importantly, pervasive cognitive dysfunction that 

does not adequately respond to antipsychotics is a distinguish-
ing clinical characteristic of schizophrenia.36-38 In fact, there is 
a possibility that specific molecular and cellular dysfunction 
in the hippocampus contributes to the development of schizo-
phrenia.39 Additionally, decreased hippocampal volume and 
activity are the most consistent findings of neuroimaging stud-
ies of schizophrenia.40,41 One previous study has revealed that 
impaired prefrontal-hippocampal connectivity is associated 
with impaired spatial working memory in schizophrenia.42 
In addition, in a postmortem study of human psychiatric pa-
tients, neural stem cell proliferation in the dentate gyrus was 
only impaired in patients with schizophrenia, but not in those 
with depression.43 Another postmortem study revealed that 
the number of dividing cells is decreased in the SGZ of pa-
tients with schizophrenia.44 Collectively, molecular and neu-
roanatomical evidence supports the notion that hippocampal 
adult neurogenesis is closely associated with schizophrenia.

Interestingly, neurogenesis is closely associated with pro-in-
flammatory cytokines and neuroinflammation. Pro-inflam-
matory cytokine receptors are highly aggregated in regions as-
sociated with cognitive functioning such as the hippocam-
pus.45,46 Pro-inflammatory cytokines and their receptors may 
inhibit neurogenesis and impair cognitive function.47,48 Nu-
merous reports have supported the idea that several pro-in-
flammatory cytokines affect neurogenesis.

IL-1β has been consistently shown to be associated with 
neurogenesis in brain, especially in the hippocampal region.49,50 
It is of note that the inhibition of IL-1β blocks the decrease in 
neurogenesis caused by acute stress, as well as the anhedonic 
and antineurogenic effects of chronic stress.49 A previous study 
revealed that sustained hippocampal IL-1β expression has a 
detrimental effect on adult neurogenesis.51 IL-1β is also known 
to be involved in the IFN-γ-induced suppression of neuro-
genesis.52 Leukemia inhibitory factor (LIF) is also an impor-
tant cytokine involved in schizophrenia. LIF shares glycopro-
tein 130 (gp130) with other IL-6 cytokine family members.53 
LIF mainly modulates neuronal activity such as glial cell activ-
ity, the inflammatory process, transcription pathways, and 
neurogenesis.54-56 An appropriate amount of LIF is essential for 
normal neuronal function. In an animal study, LIF knock-out 
mice showed decreased astrocyte and microglial cell activities 
compared to wild type mice.54 Various insults to the CNS may 
induce over-expression of LIF, which may lead to neurobe-
havioral abnormalities similar to schizophrenia.56 Addition-
ally, LIF gene polymorphism is associated with susceptibility 
to schizophrenia and working memory deficit.57 

Another cytokine, TNF-α, has an important role in neuro-
nal activity in the CNS.58,59 TNF-α is usually maintained at 
low level under normal physiological conditions.60 However, 
when the microenvironment in the CNS is altered by injuries 
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such as physical head trauma, infection, and ischemic attack, 
TNF-α is activated by glial cells.61,62 Interestingly, TNF-α has 
a pivotal role in mediating neurogenesis via its receptors, tu-
mor necrosis factor receptor (TNFR)-1 and TNFR-2. Those 
two receptors are different in several aspects. First, TNFR-1 
contains an intracellular ‘death domain’ and is involved in 
detrimental effects such as neuronal apoptosis and neurode-
generation, whereas TNFR-2 is usually involved in neuro-
protection.63,64 Thus, TNFR-1 and TNFR-2 are differentially 
involved in proliferation and differentiation of hippocampal 
neural stem cells. TNFR-1 exerts a negative influence on hip-
pocampal adult neurogenesis,65-67 whereas TNFR-2 is involved 
in promoting neurogenesis.68,69 TNF-α is also closely associ-
ated with synaptic plasticity by inducing α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors that 
mediate glutamatergic activity.70 Because human neural stem 
cells have both TNFR-1 and TNFR-2, whether neurogenesis 
is enhanced or inhibited depends on the microenvironment in 
the CNS and the context of insults. 

 
OXIDATIVE STRESS AND 
MITOCHONDRIAL DYSFUNCTION IN 
SCHIZOPHRENIA 

Neuroinflammation is closely associated with excessive 
oxidative stress.71,72 The CNS is more vulnerable to oxidative 
stress than are other organs. The brain consumes large am-
ounts of oxygen, lacks anti-oxidative compounds, has a high 
ratio of membrane surface area to cytoplasmic volume, has a 
high concentration of polyunsaturated fatty uric acids, and 
contains a large amount of metals.73-76 There have been many 
evidences suggesting that neuroinflammation and oxidative 
stress have close interactions and play an important role in the 
pathophysiology of schizophrenia.77-79 Reactive oxygen spe-
cies (ROS), which include superoxide, nitric oxide, and hydro-
gen peroxide, are highly reactive molecules, and free radicals 
are naturally created as byproducts of electron transport and 
energy metabolism. Appropriate duration and amount of ROS 
activity contribute to enhanced cellular functioning.80 How-
ever, an imbalance between amounts of ROS and antioxidant 
system products can result in oxidative damage.81 An imbal-
ance between oxidative stress and antioxidants is also dem-
onstrated in schizophrenia.82,83 Several studies have reported 
excessive activity of oxidants84 and decreased antioxidants in 
patients with schizophrenia.85

Antioxidants consist of enzymatic and non-enzymatic ma-
terials. Enzymatic antioxidants include superoxide dismutase 
(SOD), catalase, and glutathione dismutase. Non-enzymatic 
antioxidants are albumin, uric acid, bilirubin, vitamin C, vita-
min E, and β-carotene. In particular, glutathione plays a major 

role in the redox process.86 Glutathione exerts various effects 
in the CNS including directly detoxifying drugs, ROS, and 
electrophilic xenobiotics; storing cysteine; promoting neuro-
development; and enhancing excitatory glutamatergic neuro-
transmission.87-89 

The possible actions by which a deficit of glutathione con-
tributes to the development of schizophrenia may be through 
NMDA receptors. Dysregulation of dopaminergic neurotrans-
mission and hypofunction of NMDA receptor activity are re-
garded as the core mechanisms of schizophrenia.90 Under 
normal physiological conditions, glutathione enhances NMDA 
receptor-mediated glutamatergic neurotransmission. Many 
animal studies have reported that glutathione exerts an ago-
nistic effect on NMDA receptors.87,91 However, in the presence 
of uncontrolled and persistent chronic oxidative stress, gluta-
thione level is decreased and leads to NMDA receptor dys-
function.92,93 Deficits in glutathione level are associated with 
neurological deficits in various neuropsychiatric diseases.94 
Glutathione regulates redox-sensitive sites such as the NMDA 
receptor. Further, a key glutathione-synthesizing enzyme, glu-
tathione cysteine ligase modifier (GCLM), is decreased under 
oxidative stress.95 GCL dysregulation and deficit glutathione 
inhibit the detoxification of oxidative stress that results from 
dopamine metabolism and consequently lead to neural injury, 
especially in dopamine neuron-rich regions.96,97 Glutathione 
is reduced in the prefrontal cortex and striatum,94,98-100 which 
are closely associated with the psychopathology of schizophre-
nia. Many studies have shown that a deficit in glutathione is 
associated with psychopathology and clinical variables in schi-
zophrenia.100-102 

Mitochondrial dysfunction, which is closely associated with 
oxidative stress, is also associated with neurodegenerative 
change in schizophrenia. Mitochondria are mainly involved 
in producing energy via the electron transport chain during 
the process of oxidative phosphorylation. Mitochondria also 
regulate intracellular calcium homeostasis and apoptosis. Neu-
rons require the large amount of energy that is mainly pro-
duced by the mitochondrial respiratory system in order to 
maintain the ion gradient between the extracellular and in-
tracellular membranes. Several studies have reported that ge-
netic and structural abnormalities of mitochondria are asso-
ciated with various psychiatric diseases.103,104 In particular, 
psychosis and cognitive deterioration are common features of 
mitochondrial diseases such as mitochondrial myopathy, en-
cephalopathy, lactic acidosis, and stroke-like episodes (ME-
LAS) syndrome.105

Mitochondrial metabolism is also important for produc-
ing ROS. In particular, mitochondrial DNA is vulnerable to 
oxidative stress because it is located in the mitochondrial inner 
membrane, where a substantial amount of ROS is produced.106 
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Mitochondrial injury and oxidative stress form a vicious cycle. 
Mitochondria injured by excessive oxidants produce a great-
er amount of ROS, which leads them to be more vulnerable 
to oxidative stress.107 For example, an overload of oxidative 
stress causes lipid peroxidation. Lipid peroxidation of the 
mitochondrial membrane produces toxic molecules such as 
4-hydroxynonenal and malondialdehyde, which in turn dis-
turb mitochondrial membrane fluidity.108,109 The impaired mi-
tochondrial membrane leads to dysregulation in ionic bal-
ances and excessive intracellular calcium influx, which con-
sequently causes neuronal death and impairs synaptic plas-
ticity.110-112

NEUROPROTECTIVE AND  
ANTI-INFLAMMATORY THERAPY IN 
SCHIZOPHRENIA

Randomized controlled trials have investigated the efficacy 
of adjuvant COX-2 inhibitor on antipsychotics treatment in 
schizophrenia. Of the four extant studies, three have reported 
significant improvement in psychopathology,113-115 whereas 
one study showed no significant efficacy of COX-2.116 An im-
provement in psychiatric symptoms with anti-inflammatory 
treatment may be associated with the duration of illness. Wh-
ereas the three studies finding a significant therapeutic efficacy 
of the COX-2 inhibitor were based on patients with a short ill-
ness period,113-115 the one study with a negative result was con-
ducted with patients with relatively chronic schizophrenia.116 

Table 1. Evidences supporting relationship between oxidative stress and schizophrenia

Study Measurements Main findings
Alterations in the antioxidants and oxidants in schizophrenia

Yao et al. 
  (2006)

Brain (Postmortem) Glutathione, glutathione peroxidase, and glutathione reductase were significantly 
  lower in the caudate regions of postmortem brains from schizophrenia than controls.

Matsuzawa 
  (2008)

Brain (1H-magnetic 
  resonance spectroscopy)

Glutathione levels in the posterior medial frontal cortex had significant negative 
  correlation with the severity of negative symptoms in schizophrenia.

Study Measures/intervention Main findings
Antioxidative effects of antipsychotics

Dakhale et al. 
  (2004)

Non-comparative, 
  one sample

Atypical antipsychotics (clozapine, risperidone, olanzapine, quetiapine, ziprasidone) 
  treatment significantly reduced serum malondialdehyde and superoxide dismutase 
  levels in schizophrenia after 8 weeks.

Wang et al. 
  (2005)

In vitro (PC12 cells) Olanzapine and quetiapine reduced intracellular reactive oxygen species caused by 
  β-amyloid.
Olanzapine and quetiapine completely prevented β-amyloid-induced reduction 
  of glutathione peroxidase.

Padurariu et al. 
  (2010)

Cross-sectional, 
  case-control

Glutathione peroxidase specific activity and malondialdehyde levels were significantly 
  higher in all antipsychotics (haloperidol, olanzapine, quetiapine, risperidone) groups 
  than healthy controls.
Superoxide dismutase specific activity was significantly higher in haloperidol and 
  quetiapine than healthy controls.

Park et al. 
  (2011)

In vitro (PC12 cells) Aripiprazole significantly reduced 1-methyl-4-phenylpyridinium-induced cell death.
Olanzapine, aripiprazole, and ziprasidone significantly increased superoxide 
  dismutase activity, whereas haloperidol had no significant effects.

Study Intervention Main findings
Therapeutic effects of antioxidants in schizophrenia

Beck et al. 
  (2008)

NAC
  2 g/day

NAC significantly improved negative symptoms, but not positive symptoms than 
  placebo.
NAC significantly improved akathisia.

Lavoie et al. 
  (2008)

NAC 2 g/day NAC significantly improved mismatch negativity of the encephalograph than placebo.

Carmeli et al. 
  (2012)

NAC 2 g/day NAC significantly increased multivariate phase synchronization in the left 
  parieto-occipital, right temporalm bilateral prefrontal regions than placebo.

NAC: N-acetyl cysteine
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A meta-analysis showed that augmentation of anti-inflamma-
tory drugs to the antipsychotics would be a potential thera-
peutic options in patients with schizophrenia, although more 
evidences should be accumulated.117 

Several antioxidant treatment approaches have reported 
that antioxidants are effective for improving psychopathology 
in schizophrenia. Because glutathione is not bioavailable, it is 
not possible to able to be directly used. Instead, N-acetyl cys-
teine (NAC), which is a glutathione precursor, has been used 
for schizophrenic patients. A double-blind, placebo-controlled 
study demonstrated that NAC (2 g/day) ameliorated negative 
symptoms, but not positive symptoms in patients with chronic 
schizophrenia.118 Another double-blind, placebo-controlled 
study revealed that NAC improved mismatch negativity, which 
is associated with NMDA receptor function, in patients with 
schizophrenia.119 

Several studies have consistently reported that ginkgo biloba 
augmented with haloperidol improves negative symptoms 
and increases SOD level in patients who experience chronic 
hospitalizations and treatment resistance due to schizophre-
nia.120-122 A meta-analysis revealed that ginkgo as an add-on 
treatment to antipsychotics significantly improved total and 
negative symptoms in patients with chronic schizophrenia.123

Several studies have reported that schizophrenia is associ-
ated with low serum vitamin C levels.124-126 A previous double-
blind, placebo-controlled study showed that a vitamin C (500 
mg/day) supplement with atypical antipsychotics (olanzapine 
10 mg/day, quetiapine 200 mg/day, or ziprasidone 40 mg/day) 
significantly decreased serum malondialdehyde (MDA) level 
and psychopathology compared to a placebo add-on group.127

Antipsychotics have been thought to have anti-inflamma-
tory properties. In a meta-analysis of patients with acute re-
lapse or first onset schizophrenia, levels of peripheral pro-in-

flammatory cytokines including IL-6, IL-1β, and IFN-γ were 
significantly decreased after antipsychotic treatment com-
pared to baseline.128 Those results are in line with previous 
studies reporting that both typical and atypical antipsychot-
ics suppress microglial activation, thus inhibiting inflamma-
tory mediators.129-133 

Antipsychotics also enhance neurogenesis. In one study, 
chronic treatment with a low dose of clozapine (0.5 mg/kg) 
increased the number of bromodeoxyuridine (BrdU)-posi-
tive cells in the dentate gyrus 24 hours after BrdU adminis-
tration, whereas haloperidol (0.05 or 2 mg/kg) or a high dose 
of clozapine (20 mg/kg) had no significant effect.134 Interest-
ingly, the increased BrdU-positive cells with a low dose of clo-
zapine could not survive or integrate into existing hippocam-
pal circuitry. These intriguing results suggest that antipsy-
chotics influence neuronal proliferation, but not survival. It 
has been speculated that the limitations of the effect of anti-
psychotics on neurogenesis may be associated with an insuf-
ficient treatment response in terms of negative and cognitive 
symptoms, as well as a deteriorating course of schizophrenia. 
At the same time, antipsychotics demonstrate antioxidant ef-
fects.135-138 One study group has consistently reported that ini-
tial SOD level in schizophrenia was lower than that in con-
trols, and both typical and atypical antipsychotics significantly 
increase SOD level.72,139-141 The improvement in the psycho-
pathology of patients with schizophrenia has been correlated 
with the degree of change in SOD level. Although the mech-
anisms by which antipsychotics exert antioxidant effects still 
have not been clearly identified, differences between typical 
and atypical antipsychotics appear insignificant.135,141 The afore-
mentioned evidences supporting the relationships between 
oxidative stress and schizophrenia were summarized in Table 1.

Neuroinflammation
(microglial activation,

pro-inflammatory cytokines ↑)

Mitochondrial dysfunction

Neurodegeneration

Anti-oxidants

Anti-inflammatory 

Neurogenesis

Oxidative stress 
(reactive oxygen species, ↑

antioxidant ↓)

Figure 1. Relationships among neuro-
inflammation, oxidative stress, and mi-
tochondrial dysfunction for neurodegen-
eration and impaired neurogenesis in 
schizophrenia. The round shape arrow 
indicates inhibiting role, whereas the tri-
angle shape arrow indicates facilitating 
role.
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CONCLUSION
 
Current evidence clearly supports a close link between neu-

roprotection and the onset and symptoms of schizophrenia. 
Several factors affecting neuroprotection, which include neu-
roinflammation, neurogenesis, and oxidative stress, appear 
to increase vulnerability to schizophrenia (Figure 1). However, 
there are several issues in the field of neuroprotection in 
schizophrenia. First, the measurements of pro-inflammatory 
cytokines, oxidative stress markers, and neural cell prolifera-
tions may not suitable for distinguishing schizophrenia from 
other neuropsychiatric diseases. Second, despite several clini-
cal findings supporting the effectiveness of adjuvant antioxi-
dant and anti-inflammatory agents, further longitudinal stud-
ies and studies with a large sample are needed. Third, the he-
terogeneous subtypes of schizophrenia should also be con-
sidered limiting factors of schizophrenia-specific findings. 
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