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Abstract: This study investigated the effects of structural dimension variation arising from fabrication
imperfections or active structural design on the vibration characteristics of a (100) single crystal silicon
(SCS) ring-based Coriolis vibratory gyroscope. A mathematical model considering the geometrical
irregularities and the anisotropy of Young’s modulus was developed via Lagrange’s equations for
simulating the dynamical behavior of an imperfect ring-based gyroscope. The dynamical analyses are
focused on the effects on the frequency split between two vibration modes of interest as well as the
rotation of the principal axis of the 2θ mode pair, leading to modal coupling and the degradation of
gyroscopic sensitivity. While both anisotropic Young’s modulus and nonideal deep trench verticality
affect the frequency difference between two vibration modes, they have little contribution to deflecting
the principal axis of the 2θ mode pair. However, the 4θ variations in the width of both the ring and
the supporting beams cause modal coupling to occur and the degenerate 2θ mode pair to split in
frequency. To aid the optimal design of MEMS ring-based gyroscopic sensors that has relatively high
robustness to fabrication tolerance, a geometrical compensation based on the developed model is
demonstrated to identify the geometries of the ring and the suspension.

Keywords: ring gyroscopes; gyroscope modeling; fabrication imperfection; frequency split; geometrical
compensation

1. Introduction

Ring-based gyroscopic sensors based on micro-electro-mechanical-system (MEMS)
technology become increasingly attractive because of their high-quality factor (Q factor) and
insensitivity to environmental excitation as a result of inherently symmetric structures [1–3].
Degenerate modes of vibratory axisymmetric ring-based structures are exploited to mea-
sure the angular rate through Coriolis coupling. When applied to external rotations about
the normal axis of the ring resonator, the energy transfer occurs between the degenerate
modes as a result of the Coriolis coupling effect. For a ring-based angular-rate gyroscope,
one of the degenerate modes is excited with controlled amplitude and frequency, while the
Coriolis force-induced vibration of the other mode is utilized to measure the angular-rate
input through capacitive sensing. The ideal ring-based structures are preferred since their
degenerate modes have the same resonant frequencies dictating extremely high-scale factor
of the ring-based gyroscopes operating with a high Q factor [4]. The ring-based gyroscopes
fabricated with isotropic materials, such as polysilicon, (111) SCS, and fused silica, are
advantageous to realize mode-matching between two degenerate modes. However, the
ring-based gyroscopes of isotropic materials require a more complicated and precise fab-
rication process than those fabricated with (100) SCS. On the other hand, the ring-based
gyroscopes fabricated with (100) SCS frequently suffer from a large initial frequency split
and modal coupling arising from the anisotropic Young’s modulus and the fabrication
imperfections. In order to improve the dynamic performance of the imperfect ring-based
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gyroscopes, the post-fabrication trimming or electrostatic tuning techniques are frequently
utilized for the compensation of the initial frequency split and modal coupling [5,6]. How-
ever, these techniques are sometimes not preferred due to less fidelity and efficiency. To
evaluate the effects of the material anisotropy as well as the structural dimension variation,
a detailed mathematical model of an imperfect ring resonator is required.

Previous works have analyzed the effects of the anisotropy of Young’ modulus on
the frequency split of ring-based resonators and gyroscopes based on various numerical
models utilizing the finite element method (FEM) [7,8] and analytical models [9,10], as
demonstrated in Table 1. The effects of anisotropy of crystalline silicon on the vibration
characteristics of ring-based resonators were accounted for in the strain energy formulation
by S. McWilliam et al. [9], allowing analytical expression of the frequency split in terms
of a Fourier representation of the variation in the elastic properties [7,10]. The structural
imperfection of the ring-based resonators is commonly modeled as small attached masses
and springs [11–13], which facilitate the mass trimming [14] or electrostatic tuning [6]
for the reduction in frequency split. To mitigate the initial frequency split caused by
the anisotropic Young’s modulus, active compensation methods based on the variation
of the geometries of the ring and the suspension were proposed and proven to work
effectively to some extent [7,15,16]. As can be seen, a detailed analytical model taking into
account the material and structural asymmetries is still required for the development of
high-performance ring-based rate or rate-integrating gyroscopes, in which circumferential
uniformity and mode-matching are crucial prerequisites [17,18].

Table 1. Models of ring-based gyroscopes.

Model Material
Anisotropy

Mass
Asymmetry

Non-Ideal
Ring

Non-Ideal
Beam

Non-Ideal
Trench Reference

FEM Yes Yes Yes Yes No [7]
FEM Yes Yes Yes No No [8]

Analytical Yes No No No No [9]
Analytical Yes Yes No No No [10]

Analytical Yes Yes Yes Yes Yes This
work

In this paper, we present a mathematical model of an imperfect ring-based gyroscope
that can be utilized for the assessment of the vibration characteristics of the ring-based
gyroscopes when considering the structural and material variations as illustrated in Table 1.
The proposed model allows quantification of the effects of structural dimension variations
and optimizing the geometrical design canceling out the effect of anisotropic Young’s
modulus. Furthermore, in order to simplify the problem, we modeled both the anisotropy
of Young’s modulus and the ring-based structural dimension variation in a 4θ periodic
manner, which dominates the frequency split and modal coupling between the 2θ vibration
modes of interest [10]. Moreover, the undesired material nonlinearity and the residue stress
are not considered in this model. Based on the developed model, the effects of structural
dimension variations were fully investigated and the optimized geometry that has the
robustness to fabrication imperfection was proposed.

2. Mathematical Modeling

The ring-based Coriolis vibratory gyroscopes exploit the degenerate mode pairs of a
resonator consisting of a ring, a mechanical suspension, an anchor, and a series of electrodes.
A perfect ring can be regarded as a curved, continuous elastic beam whose resonance can
be analyzed with the normal mode method [10]. Since the ring-based gyroscopes are
usually designed and fabricated with a high aspect ratio, their out-of-plane resonances are
inherently suppressed, ensuring that the simple assumption of in-plane vibration modes is
still valid [19]. The in-plane resonance modes are described as nθ mode pairs, each pair
of which is degenerate with identical natural frequencies for a perfect ring structure. In
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contrast, an imperfect ring will exhibit distinct but close natural frequencies for each nθ
mode pair. The mechanical and electrostatic nonlinearity that enlarge the frequency split
as the vibration amplitude increases [20–22] are not considered in this paper for simplicity.

The resulting displacement of a ring resonator can be expressed as a weighted sum of
the in-plane modes with generalized coordinates. Herein, we only consider the degenerate
2θ modes as shown in Figure 1, which are mostly utilized as the drive and sense modes of
vibratory ring-based gyroscopes [1,3]. As a result, the displacement of the ring resonator is
represented as Equation (1), where ur and ut are the radial and tangential displacement
of the ring resonator, respectively, and ux and uy are the cartesian components of the
displacement, respectively. Values q1 and q2 are the generalized modal coordinates.
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{
ur = ϕr1q1 + ϕr2q2
ut = ϕt1q1 + ϕt2q2

{
ux = ϕx1q1 + ϕx2q2
uy = ϕy1q1 + ϕy2q2

(1)

The radial (ϕr1, ϕr2) and tangential (ϕt1, ϕt2) components of the 2θ mode shapes are
expressed as: {

ϕr1 = cos(2θ − 2θ0)
ϕt1 = −0.5 sin(2θ − 2θ0)

{
ϕr2 = sin(2θ − 2θ0)
ϕt2 = 0.5 cos(2θ − 2θ0)

(2)

where θ0 is the principal axis of one vibration mode of the 2θ mode pair, and that of the
other mode is oriented 45◦ away from θ0; θ is the angular position of the ring resonator.

The cartesian components of the 2θ mode shapes are given by:[
ϕxi
ϕyi

]
=

[
cos θ − sin θ
sin θ cos θ

][
ϕri
ϕti

]
i = 1, 2 (3)

2.1. Structural Imperfection Consideration

The presence of material anisotropy and fabrication imperfection, which cannot be
completely avoided, severely reduces the degeneracy and the sensitivity of ring-based
gyroscopes [8]. As a result, the frequency between the drive and sense modes splits and
their principal axes deflects from the predefined orientation as a result of the mass and
stiffness asymmetries. This paper considers the anisotropic Young’s modulus of (100)
SCS and the geometrical irregularities existed in the fabricated vibratory ring gyroscopes.
As illustrated in Figure 2, the imperfect ring structure is suspended to an anchor by
a mechanical suspension, composed of eight flexible semi-circular beams. The width
of the ring structure varies in both circumferential and vertical directions. The sixteen
surrounding electrodes are deployed for capacitive actuation, sensing, and tuning. The
X and Y axes correspond to the <110> crystal directions, while the axes at 45◦, 135◦, 225◦,
and 315◦ are aligned to the <100> crystal direction. The ring resonator is excited by the
capacitive electrode at 0◦ (Drive A) and the capacitive electrode at 315◦ (Drive B), and
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sensed by a differential configuration (Sense A1 and A2, Sense B1 and B2) for two vibration
modes.
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The Young’s modulus of the (100) SCS ring can be represented as Fourier series
expansions in terms of θ, whose 4θ component is proven to dominate the frequency split
between two vibration modes [10], given by:

E(θ) = E0 + δE4 cos(4θ − 4θE4)
= E0[1 + eE cos(4θ − 4θE4)]

(4)

where E0, δE4 are the average and 4θ variation component of the Young’s modulus, respec-
tively, eE is the variation coefficient of the Young’s modulus, and θE4 is the orientation of
the modulus variation with respect to the X-axis.

It is assumed that the deep trench is etched with an inclination α and the average ring
width also varies circumferentially in a 4θ variation manner. The variation of the ring width
and the capacitive gap between the ring and the surrounding electrodes are expressed as:

W(θ, h) = Wr − 2αh + w cos(4θ − 4θw) (5)

d(θ, h) = d0 + 2αh− w cos(4θ − 4θw) (6)

where h and Wr are the thickness and the average radial width of the ring, respectively;
w and θw are the variation of the ring width and the variation orientation with respect to
X-axis, respectively.

The supporting beams of the ring-based gyroscopes are frequently modeled as uniform
elastic springs [10,19]. The influence of anisotropic Young’s modulus on the supporting
semicircular beams is confirmed to be ineligible by modal analysis using the finite element
method (FEM). As a result, we considered the irregularity of the fabricated supporting
beams to be the variation of the beam width as well as the variation of the supporting
location. Since the supporting beams are distributed with a pitch of 45◦, they can be
divided into two orthogonal groups, each of which have four beams with a pitch of 90◦.
One beam group has the uniform yet different beam widths with the other beam group.
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All supporting beams are oriented θsp away from the corresponding electrodes. The beam
width of two beam groups is shown as:

Wsp =

{
Wsp0 + wsp
Wsp0 − wsp

at
at

θsp + nπ/2
θsp + nπ/2 + π/4

(7)

where Wsp0 and wsp are the average beam width and the variation of beam width between
two beam groups, respectively.

2.2. Energies of Ring-Based Gyroscope

Lagrange’s equation can be used to derive the equations of motion for the ring-based
gyroscopes [10,19]. Lagrange’s equation is based on the energies of the gyroscope system
including the kinetic energy of the ring, the strain energy of the ring, the potential energy
of the supporting springs, the electrostatic potential energy, and the damping dissipation.

The kinetic energy of the ring is derived from:

T =
1
2

∫
V

ρ
[ .
u2

x +
.
u2

y + 2Ωz
(
ux

.
uy − uy

.
ux
)]

dV (8)

where ρ is the density of the ring material, V is the volume of the ring, and ΩZ is the
angular rate about the axis of the ring.

The kinetic energy of the ring is obtained by substituting Equation (1) into (8):

T =
1
2

M11
.
q2

1 +
1
2

M22
.
q2

2 + M12
.
q1

.
q2 + Ωzγ

(
q1

.
q2 − q2

.
q1
)

(9)

where A is the area of the cross-section of the ring, and,

Mij =
∫
V

ρ
(

ϕxi ϕxj + ϕyi ϕyj
)
· Adθ (i, j = 1, 2) (10)

γ =
∫
V

ρ
(

ϕx1 ϕy2 − ϕx2 ϕy1
)
· Adθ (11)

Taking into account of the asymmetries of the ring, the mass Mij in Equation (10)
becomes:

M11 =
5
4

πρW ′
r HrRr

(
1 +

3
10

ew cos(4φw)

)
(12)

M22 =
5
4

πρW ′
r HrRr

(
1− 3

10
ew cos(4φw)

)
(13)

The modal coupling in terms of inertia can be neglected since the variation of the ring
width is negligibly small when compared to the ring width itself. Therefore, M12 and M21
are considered to be zero in the following discussions. Similarly, the in-plane displacement
of the ring is negligibly small when compared to the radial thickness. As a result, the ring
structure can be considered to be inextensible and linear, ensuring that the bending strain
energy is dominant [19].

The change in curvature of each ring element due to bending can be expressed as:

1
r + ∆r

− 1
r
=

(x′r + u′x)
(
y′′ r + u′′ y

)
(x′r2 + y′r2)

3/2 −
(
y′r + u′y

)
(x′′ r + u′′ x)

(x′r2 + y′r2)
3/2 − (x′ry′′ r − y′rx′′ r)

(x′r2 + y′r2)
3/2 (14)

As a result, the bending strain energy of the entire ring structure is obtained by
integrating the bending energy over the ring elements, given by:

Ur =
∫
V

EI
[

1
r + ∆r

− 1
r

]2
ds (15)
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where E is the Young’s modulus and I = w3t / 12 is the second moment of area. Replacing
the change in curvature of each ring element in Equation (14), the bending energy can be
shown as:

Ur =
1
2

Kr11q2
1 +

1
2

Kr22q2
2 + Kr12q1q2 (16)

where Krij represents the mechanical stiffness of the ring structure, given by:

Krij =

2π∫
0

EI
(

x′r ϕ′′ yi − y′r ϕ′′ xi + y′′ r ϕ′xi − x′′ r ϕ′yi

)
·
(

x′r ϕ′′ yj − y′r ϕ′′ xj + y′′ r ϕ′xj − x′′ r ϕ′yj

)
/
(

x′2r + y′2r
) 5

2 dθ (17)

For simplicity, each semicircular supporting beam is modeled by incorporating one
radial and one tangential spring to the ring structure. Based on static equilibrium analysis,
the radial stiffness (Kbr) and the tangential stiffness (Kbt) of the semicircular beam are given
by [10]:

1
Kbr

=
r3

sp

E0 Isp

(
π

2
− 4

π

)
(18)

1
Kbt

=
r3

sp

E0 Isp

(π

2

)
(19)

The potential energy of the support springs can be derived by summing the potential
energies of eight beams, given by:

Usp = ∑
8

(
1
2

Kbrur
2 +

1
2

Kbtut
2
)

(20)

Replacing the displacement of the ring at the positions where the supporting springs
are attached in Equation (1), it can be shown as:

Usp =
1
2

Ksp11q2
1 +

1
2

Ksp22q2
2 + Ksp12q1q2 (21)

where Kspij (i, j =1, 2) represents the effective stiffness of the supporting springs by the
expression:

Kspij = ∑
8

(
Kbr ϕri ϕrj + Kbt ϕti ϕtj

)
(i, j = 1, 2) (22)

The capacitive electrodes for the drive and sense of the ring gyroscope are shown in
Figure 2. Considering the imperfections of the ring and the capacitive gap, the capacitors
cannot be simply approximated as parallel plate capacitors. For a non-parallel plate
capacitor, the capacitance for an electrode pair at θn is given by:

Cn ∼=
∫ θn+

∆θn
2

θn− ∆θn
2

∫ Hr

0

εRrdhdθ

d0 + 2αh− w cos(4θ − 4θw) + ∆d
(23)

where ∆d represents the radial displacement of the ring element.
By integrating Equation (23) along h, the capacitance is expressed as:

Cn ∼=
∫ θn+

∆θn
2

θn− ∆θn
2

εRr

2α
ln
(

1 +
2αHr

d0 + ∆d′

)
dθ (24)

To facilitate the development of linear analytical expression that takes into account of
all the structural imperfections, the integrated term in Equation (24) is approximated by
the linear terms of its Taylor series expansion:

Cn ∼= Csn + q1 f 1n + q2 f 2n + q2
1g1n + q2

2g2n + 2q1q2hn (25)
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The full expression of each component in Equation (25) is shown in Appendix A. The
total electrostatic potential energies arising from the drive and sense electrodes can be
derived as:

Ue = −∑
1

1
2

Cdn
(
Vd −Vp

)2 −∑
2

1
2

Csn
(
Vb −Vp

)2 (26)

Performing the integration with respect to θ by using Equation (26), the expression of
the electrostatic energies for both the drive and sense electrodes can be determined.

The damping dissipation of the ring gyroscope occurs from the air damping, the
thermoelastic damping, the support loss, and so on [23]. In vacuum condition, the dominant
damping factor comes from the thermoelastic damping that can be approximated via
Rayleigh’s dissipation function [24]. For simplicity, only the linear damping coefficient
is considered in this paper and calculated based on the measured Q factor values. The
coupling terms in the damping matrix are assumed to be zero.

2.3. Governing Equations of Motion

The governing equations of motion are derived by substituting the kinetic and po-
tential energy expressions into the Lagrange’s equation and performing the required
differentiation. T represents the kinetic energy of the ring, U represents the total potential
energies including the strain potential of the ring, the potential energy of the supporting
springs and the electrostatic potential energies of the drive and sense electrodes, and W
represents the dissipation arising from the proportional damping:

d
dt

∂T
∂

.
qj
− ∂T

∂qj
+

∂U
∂

.
qj

=
∂W
∂

.
qj
(j = 1, 2) (27)

mass[
M11 M12
M21 M22

]{ ..
q1..
q2

}
+

damping[
c11 c12
c21 c22

]{ .
q1.
q2

}
+

Coriolis coupling[
0 −2γΩz

2γΩz 0

] { .
q1.
q2

}
+

ring structure[
Kr11 Kr12
Kr21 Kr22

] {
q1
q2

}
+

spring[
Ksp11 Ksp12
Ksp21 Ksp22

]{
q1
q2

}
+

electrostatic sti f f ness[
Ke11 Ke12
Ke21 Ke22

] {
q1
q2

}
=

drive f orce{
f1
f2

} (28)

where Keij represents the negative stiffness arising from the electrostatic spring softening
effects.

The full expressions of mass, damping, stiffness, Coriolis coupling, and force terms of
the vibratory ring gyroscope are shown in the Appendix A.

3. Modal Analysis

To determine the influence of the above-mentioned asymmetries on the response of
the 2θ generalized coordinates, the differential Equation (27) is solved analytically using
MATLAB (2017b, MathWorks, Natick, MA, USA). The physical properties of the vibratory
ring gyroscope and the electronic parameters are shown in Table 2.

The flexural 2θ vibrations can be described in terms of two normal vibration modes.
The mode coupling in terms of stiffness, arising from the structural imperfection, con-
tributes to the rotations of the principal axes of vibration modes. As a result, the angle
of the principal axis (θ0) with respect to the 0◦ pickoff electrode can be determined by
assigning the coupling stiffness terms to be zero [25,26]:

Kr12 + Ksp12 = Kr21 + Ksp21 = 0 (29)

where the electrostatic coupling stiffness term is negligibly small when compared to that of
the elastic stiffness.
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By solving Equation (29), the principal axis angle with respect to the 0◦ pickoff elec-
trode is given by:

θ0 =
1
4

arctan
(

er1Kr0 + esp1(4Kbr − Kbt)

er2Kr0 + esp2(4Kbr − Kbt)

)
(30)

where the full expression of er1, er2, esp1, and esp2 is shown in the Appendix A.

Table 2. Properties of ring-based gyroscopes.

Parameter Value Description

E0 (GPa) 150 Average Young’s modulus of (100) SCS
ρ (kg/m3) 2330 Bulk density
Rr (mm) 1 Ring radius
Wr (µm) 11 Ring width
Hr (µm) 60 Ring thickness
∆θ (◦) 18 Electrode radian

rsp (µm) 472.5 Beam radius
Wsp (µm) 5 Beam width
d0 (µm) 4 Electrode and undeformed ring gap
Cinp (pF) 1 Feedback reference capacitance in CV circuit
Vdn (V) 2.5 Drive voltage
Vp (V) 2.5 Polarization voltage
Vb (V) 0 Bias voltage at the pick-off

In addition to modal coupling, the frequencies of two vibration modes split in response
to the structural asymmetry as well as the material anisotropy. The electrostatic excitation
imposed on the electrodes produces an effect of electrostatic spring softening, which is
commonly utilized to eliminate the frequency split of the overall system. Therefore, the
electrostatic negative stiffness is also included to derive the frequency split between 2θ
resonant modes, shown as:

∆ f =
1

2π

√Kr11 + Ksp11 + Ke11

M11
−

√
Kr22 + Ksp22 + Ke22

M22

 (31)

To verify the validation of the developed analytical model, FEM simulations using
COMSOL Multiphysics (5.6, COMSOL Inc, Burlington, MA, USA) are also used to verify
the analytical results. To verify the reported geometrical compensation methods, modal
analyses using FEM are performed for imperfect rings in which the ring width variation is
derived based on the anisotropic Young’s modulus shown in Equation (4).

4. Results and Discussion
4.1. Frequency Split

The influence of anisotropic Young’s modulus on the frequency split of the ring
gyroscope is first investigated by solving Equation (31), assuming a perfect ring and
suspension with uniform structural dimension. The estimated frequency split between two
vibration modes is around 593 Hz for the ring-based gyroscope, which is in good agreement
with the measured frequency split of about 625 Hz (σ = 18 Hz). The little discrepancy can
be attributed to fabrication imperfection. For comparison, the frequency split arising from
the asymmetry of Young’s modulus is estimated by a reported analytical expression [9] as:

∆ω =
1
2

e4ω0 (32)

where ω0 is the natural frequency of the ring gyroscopes, E0 is the averaged Young’s
modulus, and e4 is the 4θ variation component.

As shown in Table 3, the estimated frequency split of the ring gyroscope by using
Equation (31) and that predicted by FEM exhibit relatively higher values, probably due to
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the negligence of the contribution from the electrostatic forces. As expected, the principal
axis of the 2θ mode pair is not affected by the anisotropic Young’s modulus. It can be
proven that the anisotropy of Young’s modulus plays a dominant role in the frequency split
between two vibration modes of the ring gyroscope, which can be accurately predicted by
the proposed mathematical model.

Table 3. Frequency split considering anisotropic Young’s modulus.

Method Frequency Split (Hz) Description

Analytical 844 Equation (32)
Analytical 593 Equation (31)

FEM 799 COMSOL
Experimental 625 (σ =18 Hz) nine as fabricated samples

Considering the nonvertical deep trench of the fabricated ring gyroscope, the natural
frequencies of two vibration modes reduce as the trench angle variation increases as ex-
pected. Due to the assumption of uniform inclination of the capacitive gap, the principal
axis of the 2θ mode pair remains unaltered with respect to the 0◦ pickoff electrode. The fre-
quency split between two vibration modes reduces by about 79 Hz as the inclination angle
decreases 1◦ from 90◦. As a result of the improvement of the fabrication technology, the
trench verticality of the ring gyroscope can be guaranteed, ensuring a relatively negligible
influence on the frequency split compared to the effect of anisotropic Young’s modulus.

By varying the structural dimensions of the ring and suspension structures individu-
ally, the effects on the frequency split are quantified based on Equation (30). Figure 3a,b
illustrate the frequency split arising from the variation of the ring geometry and the varia-
tion of the suspension geometry, respectively. The 4θ periodic manner of the ring/beam
width variation determines a periodic frequency split when either θw or θsp changes every
90◦. The maximum frequency split occurs when the width ring/beam variation (w or wsp)
in the <110> crystal direction is larger than that in the <100> crystal direction as expected.
The frequency split can be reduced to zero when either the ring structure or the supporting
beams are assigned with specific widths and orientations.
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The effects of the ring/beam width variation of the ring-based gyroscope on the
frequency split are shown in Figure 4. When the variation orientation (θw) of the ring is
less than 3.5◦ or more than 41.5◦, the frequencies of two vibration modes can be exactly
matched with specific width variation of the ring structure. However, the frequency split
in response to the width variation of the ring structure does not exhibit a mode-matched
state without frequency split when the variation orientation (θw) of the ring ranges from 4◦

to 41◦. The mode-matching state is similarly not exhibited for the case of the supporting
beams with their variation orientation (θsp) assigned between 9◦ and 36◦. When both
θw and θsp are located at 22.5◦, the frequency split has a symmetric and relatively flat
response to the width variation of both the ring structure and the supporting beams.
This indicates that the frequencies of both vibration modes are similarly affected by the
ring/beam width variation at this specific variation orientation. When θw and θsp deflect
from 22.5◦, the frequency split as a function of the width variation w or wsp exhibits a
“spoon”-shaped tendency. The bottom of the “spoon” intersects with the mode-matched
line when θw ≤ 3.5◦ or θsp ≥ 41.5◦. In addition, the variation of the beam width has a
relatively larger contribution to the frequency split than the variation of the ring width
because of the distributed property of the ring structure.
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4.2. Modal Coupling

The principal axis of the 2θ mode pair, at the same time, rotates either clockwise or
anti-clockwise in response to the structural variation of the ring structure and supporting
beams. As shown in Figure 5, except for a perfect ring gyroscope, the principal axis of the
2θ mode pair rotates in a clockwise or anti-clockwise direction depending on the width
variation w and wsp. When either w and wsp is larger than zero, the principal axis of the
2θ mode pair deflects in an anti-clockwise direction, and vice versa. When the width
variations w and wsp are larger than 1.5 and 0.3 µm, respectively, the principal axis of the
2θ mode pair is dominated by their variation orientations (θw and θsp). As the black curved
line indicated in Figure 5 two vibration modes are matched with specific variations of
the width and orientation. For example, the mode-matched state occurs when w ranges
from −0.75 to −1.25 µm, and θw ranges from 0◦ to 3.5◦. Accordingly, the principal axis of
the 2θ mode pair with respect to the 0◦ pickoff electrode varies from 0◦ to ±45◦. Modal
coupling arises from the deflection of the principal axis of the 2θ mode pair with respect
to predefined electrode configuration. The principal axis of the mode-matched 2θ mode
pair becomes least insensitive to the width variation when θw and θsp are 3.5◦ and 8.5◦,
respectively.
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4.3. Geometrical Compensation

It requires precise geometrical compensation of the ring structure and the supporting
beams to eliminate the frequency split between two vibration modes arising from material
anisotropy. However, fabrication imperfection cannot be avoided completely even with
precise and sophisticated processes. To reduce the effects of fabrication tolerance, it is
required that the geometrical design of the ring gyroscope is insensitive and robust to
the geometrical variation, ensuring the fabricated sensors having a minimum frequency
split with little variation. As can be derived from the developed model, the vibratory ring
gyroscope with the structural dimension variation of the ring structure, such as θw = 3.5◦

and w = −1.0 µm, has no frequency split between two vibration modes in theory, which
varies less than 13 Hz, given a fabrication tolerance of w within ±0.1 µm. At the same
time, the principal axis of the 2θ mode pair is about −32.5 ± 3.5◦ with the same fabrication
tolerance. On the other hand, the compensation of frequency split through the structural
dimension variation of the supporting beams is much less robust to the fabrication tolerance
and results into much larger deflection of the principal axis of the 2θ mode pair. Two other
reported geometrical compensation methods [15,16] for the ring-based gyroscopes based
on the compensation method through the variation of the ring width were evaluated,
by which the estimated frequency splits are more than 250 Hz and 400 Hz, respectively,
as illustrated in Table 4. Therefore, the proposed geometrical compensation based on
the developed model is advantageous due to its prediction accuracy and robustness to
fabrication tolerance.

Table 4. Geometrical compensation of ring-based gyroscopes.

Structural
Dimension Method Frequency Split

[Hz] Description

Ring Width
W(θ) = W(100)

(
E100
E(θ)

)1/3 414 (FEM) [16]

W(θ) = W(100)

(
E100
E(θ)

)1/2 255 (FEM) [15]

W(θ, h) = Wr − 2αh + w cos(4θ − 4θw) <10 (Analytical) 1 In this paper
1 Given a fabrication tolerance of w within ±0.1 µm.
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5. Conclusions

A mathematical model was presented for a ring-based gyroscope with considering the
structural dimension variation and material anisotropy. The developed model is simplified
with assuming linear material, constant damping, and residual stress-free properties.
Furthermore, investigation about the effects on the vibration response in terms of the
frequency split and modal coupling was performed. The predominant frequency split
between two 2θ modes caused by the anisotropy of Young’s modulus was predicted using
the developed model, in good agreement with measurements. Moreover, the resonance
asymmetry of the ring-based gyroscope was parametrically studied through the structural
dimension variations of both the ring structure and the supporting beams independently,
arising from the fabrication imperfection or active design. The verticality variation of
the deep trench as a result of fabrication imperfection slightly affects the frequency split
of two vibration modes, exhibiting little influence on the principal axis of the 2θ mode
pair. Mode-matching can be realized for the ring-based gyroscope by varying the lateral
dimension of the ring structure, except the orientation of the 4θ variation (θw) locating
between 4◦ and 41◦. This frequency split-canceling effect is similarly exhibited for the
structural dimension variation of the supporting beams, which requires more precise
control of the beam width. At the same time, the lateral dimension variations of both
the ring and the supporting beams induce modal coupling in terms of the rotation of the
principal axis with respect to the predefined electrodes. Based on the above analysis, the
optimal structural dimension of the vibratory ring gyroscope that guarantees a small range
of frequency split and the deflection of the principal axis are obtained, necessitating robust
fabrication and post-fabrication electrostatic tuning.
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Appendix A

The capacitance of an electrode pair at θn is given by:

Cn ∼= εHr Rr
d0

(1− eα)
∫ θn+

∆θn
2

θn− ∆θn
2

dθ−

εHr Rr
d2

0
(1− 2eα)

∫ θn+
∆θn

2

θn− ∆θn
2

∆d′dθ + εHr Rr
d3

0
(1− 3eα)

∫ θn+
∆θn

2

θn− ∆θn
2

∆d′2dθ

∼= Cs + q1 f 1n + q2 f 2n + q2
1g1n + q2

2g2n + 2q1q2hn

(A1)
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The full expression of each component in Equation (25) is shown as:

Cs = (1− eα)
εHr Rr

d0
∆θn

(
1 + 1

2 e2
d∆θn

)
+


(1− eα)

εHr Rr
d0

∆θn

· 12 ed

[
cos(4θ − 4θw) sin(2∆θn)+

1
4 ed cos(8θ − 8θw) sin(4∆θn)

] 
f 1n = a cos(2θ − 2θ0) · 2ed cos(4φw) ·

[
1− 2 sin2(2θ − 2θ0) cos2(∆θn)−

2
3 cos2(2θ − 2θ0) sin2(∆θn)

]
+

a sin(2θ − 2θ0) · 4ed sin(4φw) ·
[

cos2(2θ − 2θ0) cos2(∆θn)+
1
3 sin2(2θ − 2θ0) sin2(∆θn)

]
+ a cos(2θ − 2θ0)

f 2n = −a sin(2θ − 2θ0) · 2ed cos(4φw) ·
[

1− 2 cos2(2θ − 2θ0) cos2(∆θn)−
2
3 sin2(2θ − 2θ0) sin2(∆θn)

]
+

a cos(2θ − 2θ0) · 4ed sin(4φw) ·
[

sin2(2θ − 2θ0) cos2(∆θn)+
1
3 cos2(2θ − 2θ0) sin2(∆θn)

]
+ a sin(2θ − 2θ0)

g1n = (1− 3eα)
εHr Rr

d3
0
·
[

∆θn
2 + 1

4 cos(4θ − 4θ0) sin(2∆θn)
]

g2n = (1− 3eα)
εHr Rr

d3
0
·
[

∆θn
2 −

1
4 cos(4θ − 4θ0) sin(2∆θn)

]
hn = (1− 3eα)

εHr Rr
d3

0

1
4 sin(4θ − 4θ0) sin(2∆θn)

(A2)

where:
a = (1− 2eα)

εHrRr

d2
0

sin(∆θn) (A3)

The off-diagonal and cross-diagonal terms in the mass matrix are shown as follows.
The term M12 and M21 representing in-pair modal coupling in terms of inertia is negligible
when the width variation is small when compared to the width.

M11 = 5
4 πρW ′

r HrRr
(
1 + 3

10 ew cos(4φw)
)

M22 = 5
4 πρW ′

r HrRr
(
1− 3

10 ew cos(4φw)
)

M12 = M21 = − 3
8 ew sin(4φw)πρW ′

r HrRr

(A4)

The term γ arising from Coriolis coupling when the ring rotates about the polar axis is:

γ = πρW ′
r HrRr (A5)

where:
W ′r = Wr − αHr (A6)

The stiffness coefficients of the ring structure are:

Kr11 = Kr0

{
e1 + e1eE sin(4φEw) sin(4φw) +

1
2 e2[eE cos(4φEw) + cos(4φw)]+

1
2 e3eE cos(4φEw + 4φw)

}

Kr22 = Kr0

{
e1 − e1eE sin(4φEw) sin(4φw) +

1
2 e2[eE cos(4φEw)− cos(4φw)]−

1
2 e3eE cos(4φEw + 4φw)

}
Kr12 = Kr21 = Kr0

[
−e1eE sin(4φEw) cos(4φw) +

1
2 e2 sin(4φw) +

1
2 e3eE sin(4φEw + 4φw)

]
(A7)
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where: 

ew = w/W ′
r

et = Wr/W ′
r

ewsp = wsp/Wsp
φEw = θw − θE4
φsp = θsp − θ0
φw = θw − θ0
e1 = e2

t − 2et + 2 + e2
w

e2 =
(
e1 + 1− 0.25e2

w
)
ew

e3 = e1 + 0.5e2
w

e4 = ewsp

(
e2

wsp + 3
)

(A8)

The stiffness coefficients of the support springs are:
Ksp11 =

(
1 + 3e2

wsp

)
(4KHA0 + KVA0) + e4 cos

(
4φsp

)
(4KHA0 − KVA0)

Ksp11 =
(

1 + 3e2
wsp

)
(4KHA0 + KVA0)− e4 cos

(
4φsp

)
(4KHA0 − KVA0)

Ksp12 = Ksp21 = e4 sin
(
4φsp

)
(4KHA0 − KVA0)

(A9)

The linear electrostatic stiffness coefficients are:

Ke11 = −2cV2
p − 4cV2

s + 4ab



{
cos(2θ0)[1 + 2ed cos(4φw)(1− 2β)]−
sin(2θ0)[4ed sin(4φw)µ]

}2

+{
sin(2θ0)[1 + 2ed cos(4φw)(1− 2µ)]

+ cos(2θ0)[4ed sin(4φw)β]

}2

V2
s

Ke22 = −2cV2
p − 4cV2

s + 4ab



{
sin(2θ0)[1− 2ed cos(4φw)(1− 2µ)]−
cos(2θ0)[4ed sin(4φw)β]

}2

+{
cos(2θ0)[1− 2ed cos(4φw)(1− 2β)]+

sin(2θ0)[4ed sin(4φw)µ]

}2

V2
s

Ke12 = Ke21 = −2ab


{cos(2θ0)[1 + 2ed cos(4φw)(1− 2β)]− sin(2θ0)[4ed sin(4φw)µ]}·
{sin(2θ0)[1− 2ed cos(4φw)(1− 2µ)]− cos(2θ0)[4ed sin(4φw)β]}−
{sin(2θ0)[1 + 2ed cos(4φw)(1− 2µ)] + cos(2θ0)[4ed sin(4φw)β]}·
{cos(2θ0)[1− 2ed cos(4φw)(1− 2β)]− sin(2θ0)[4ed sin(4φw)µ]}

V2
s

(A10)

where: 

a = (1− 2eα)
εHr Rr

d2
0

sin(∆θn)

b = a/Cinp

c = (1− 3eα)
1
2

εHr Rr
d3

0
∆θn

µ = cos2(2θ0) cos2(∆θn) +
1
3 sin2(2θ0) sin2(∆θn)

β = sin2(2θ0) cos2(∆θn) +
1
3 cos2(2θ0)

(A11)

Ke12 and Ke21 representing in-pair modal coupling in terms of electrostatic stiffness
are small compared to the mechanical stiffness and thus are neglected.

The f 1, f 2 terms contain the electrostatic actuation terms exciting the 2θ mode, and are
derived from the electrostatic potential energy of the drive electrodes.
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
f1 =

{
cos(2θ0){[1 + 2ed cos(4φw)(1− 2β)]vda − [4ed sin(4φw)β]vdb}−
sin(2θ0){−[4ed sin(4φw)µ]vda − [1 + 2ed cos(4φw)(1− 2µ)]vdb}

}
aVp

f2 =

{
cos(2θ0){[4ed sin(4φw)β]vda − [1− 2ed cos(4φw)(1− 2β)]vdb}−
sin(2θ0){[1− 2ed cos(4φw)(1− 2µ)]vda − [4ed sin(4φw)µ]vdb}

}
aVp

(A12)

The full expression of er1, er2, esp1, and esp2 in Equation (30) is shown as:
esp1 = e4 sin

(
4θsp

)
esp2 = e4 cos

(
4θsp

)
er1 = 8e1eE sin(4θE4) + 4e2 sin(4θw) + 2e2

weE sin(8θw − 4θE4)

er2 = 8e1eE cos(4θE4) + 4e2 cos(4θw) + 2e2
weE cos(8θw − 4θE4)

(A13)
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