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The recent characterization of stem cells in mammary epithe-
lium has opened the door for understanding how mammary epi-
thelial stem cells are regulated during tissue development, 
homeostasis, and tumorigenesis (Shackleton et al., 2006; Stingl 
et al., 2006). Fully functional mammary gland formation occurs 
in three stages: embryonic development, puberty, and pregnancy. 
During embryogenesis, cells of the multipotent ventral ecto-
derm condense to form placodes that migrate into the dense 
mammary mesenchyme to form a rudimentary ductal tree.  
In response to hormonal changes during puberty, the ductal tree 
matures into a complex, branched network of growing ducts 
that terminate into terminal end buds (TEBs), each containing 
stem cells with the capacity to form either ductal or luminal  
alveolar cell types. Pregnancy activates rapid growth and prolif-
eration of TEB stem cell populations to form expansive ductal 
networks and to differentiate into secretory alveoli, which pro-
duce milk that is secreted into the ductal lumens during lacta-
tion. At the end of lactation, ductal and alveoli structures regress, 
and stem cells of the TEB await another round of growth and 
differentiation during subsequent pregnancies. It is thought that 
stem cells in the mammary epithelium are involved in tumor  
development (Molyneux et al., 2007).

Multiple stages of mammary development and tumori-
genesis are regulated by Wnt/-catenin signaling (Boras-Granic 
and Wysolmerski, 2008). Wnt ligands signal by increasing cyto-
plasmic pools of -catenin. In unstimulated cells, -catenin  
is phosphorylated and targeted to ubiquitin-mediated degrada-
tion through its interaction with the multiprotein axin complex 

Stem cells use both transcriptional and epigenetic mecha-
nisms to control gene expression and regulate tissue de-
velopment and homeostasis. In this issue, Gu et al. (Gu, 
B., P. Sun, Y. Yuan, R.C. Moraes, A. Li, A. Teng, A. Agrawal, 
C. Rhéaume, V. Bilanchone, J.M. Veltmaat, et al. 2009. 
J. Cell Biol. 185:811–826) reveal an important link be-
tween these two mechanisms in mammary epithelial stem 
cells by showing that transcriptional activation of -catenin 
downstream of Wnt signaling can be regulated epigeneti-
cally through a chromatin remodeling factor, Pygo2.
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containing adenomatous polyposis coli protein and GSK3. 
When secreted Wnt proteins bind to Frizzled receptors, formation 
of the axin complex is inhibited, leading to cytoplasmic accumu-
lation and nuclear translocation of -catenin. In coordination 
with Tcf (T cell factor)/lymphoid enhancer factor (Lef) DNA–
binding proteins, -catenin regulates the transcription of several 
gene targets and is crucial for mammary development. Deletion 
of Lef1 (van Genderen et al., 1994) or overexpression of Dkk1, 
a soluble inhibitor of Wnt ligands, halts mammary gland devel-
opment (Andl et al., 2002; Chu et al., 2004). In addition, Wnts 
can promote tumorigenesis in mammary epithelium (Nusse and 
Varmus, 1982) and can increase mammary stem cell number 
four- to sixfold (Shackleton et al., 2006).

Pygopus (Pygo) genes were first identified in Drosophila 
melanogaster as one mechanism that controls Wnt/-catenin 
signaling. In Drosophila, Pygo proteins control -catenin–Lef–Tcf 
transcriptional complexes through regulation of either -catenin 
nuclear translocation or by binding to -catenin via the adapter 
protein BCL9 (Belenkaya et al., 2002; Kramps et al., 2002; 
Parker et al., 2002; Thompson, 2004). Pygo proteins also con-
tain a plant homeo domain (PHD; Fiedler et al., 2008) that binds 
to methylated residues on lysine 4 of histone H3 (H3K4me), an 
epigenetic mark linked to active transcription (Santos-Rosa et al., 
2002). However, the biological relevance of Pygo’s binding to 
methylated histone residues or how these interactions function 
to regulate Wnt signaling was unclear.

Now, Gu et al. (see p. 811 of this issue) make the first 
link between Pygo expression and regulation of Wnt signaling in 
a mammalian tissue. Two pygo genes exist in mammals, mPygo1 
and mPygo2, with the latter having a broader expression pattern 
(Li et al., 2004). Examination of the phenotype of Pygo2 dele-
tion in mammary epithelium revealed reduced formation of 
mammary placodes during embryogenesis caused by decreased 
progenitor proliferation. In epithelial-specific Pygo2-null mice, 
postnatal mammary development that does progress to form 
ductal networks exhibits reduced ductal elongation and a lack of 
TEB structures (Fig. 1). Analysis of the number and function of 
mammary stem cells (LinCD24+/CD29High) in these mutant 
ductal structures revealed reductions in both stem cell number 
and the ability to form mammary structures in transplantation 
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osteoblast formation (Wysocka et al., 2005; Gori et al., 2006) 
and can have specificity by regulating Wnt signaling (Zhu et al., 
2008). Additional chromatin regulators have been shown to link 
epigenetic and transcriptional control of gene expression, as 
shown for MLL1 at Hox genes (Guenther et al., 2005). How-
ever, the regulatory mechanisms that link these epigenetic reg-
ulatory factors to transcription are not clear. Future insights 
into how proteins that recognize activating or repressive epi-
genetic histone marks through their recruitment of specific 
transcription factors will further extend our knowledge of the 
important link between epigenetic and transcriptional regula-
tion of gene expression.

Beyond its function in regulating gene expression, Pygo’s 
role in the proliferation of mammary progenitors reveals several 
interesting aspects of mammary biology. First, common mecha-
nisms that regulate embryonic mammary progenitors and adult 
mammary stem cells have not been identified. The data presented 
by Gu et al. (2009) suggest that Pygo2 regulates proliferation of 
both embryonic mammary progenitors and postnatal mammary 
stem cells of the TEB, revealing the first mechanism of shared 
regulation by these pools of mammary progenitor populations. 
Furthermore, the control of proliferation by Pygo2 suggests that 
blocking Pygo2 may serve as a potential therapeutic target given 
its striking ability to block mammary overgrowth with Wnt hyper-
activation (Fig. 1). Future studies identifying molecules or pro-
teins that regulate the activity or the interactions of Pygo2 may 
serve as potent mammary tumor inhibitors.
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cells in TEBs (purple circles). Pygo2-null mammary glands rescue mammary 
overgrowth phenotypes when Wnt signaling is hyperactivated.
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