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Genome-wide dissection of 
heterosis for yield traits in two-line 
hybrid rice populations
Gang Zhen1, Peng Qin2, Kai Yu Liu2, Dong Yang Nie2, Yuan Zhu Yang2, Xing Wang Deng1 & 
Hang He1

Heterosis has been widely utilized in agriculture and is important for world food safety. Many genetic 
models have been proposed as mechanisms underlying heterosis during the past century, yet more 
evidence is needed to support such models. To investigate heterosis in two-line hybrid rice, we 
generated a partial diallel crossing scheme, which consisted of approximately 500 F1 hybrids derived 
from 14 male sterile lines and 39 restorer lines. In this population, increased panicle number played the 
most important role in yield heterosis of hybrid rice. Genome-wide association studies identified many 
QTLs related to the yield traits of F1 hybrids, better paternal heterosis and special combining ability. 
Relevant genes, including Hd3a, qGL3, OsmiR156h, and LAX2, were identified as candidates within 
these QTLs. Nearly forty percent of the QTLs had only two genotypes in the F1 hybrids, mainly because 
the maternal lines were under intense selective pressure. Further analysis found male sterile lines and 
restorer lines made different superior allele contributions to F1 hybrids, and their contributions varied 
among different traits. These results extend our understanding of the molecular basis of heterosis in 
two-line hybrid rice.

Asia produces more than 90% of rice, which supplies one quarter of the total calories consumed by the world 
population and is the main food for most of the world’s poor1. In China, rice production occupies 18.3% of total 
farmland (corn occupies 24.4%); hybrid rice was sown in approximately 12.8 million ha in 2014, whereas con-
ventional rice was sown in approximately 11.1 million ha (Crop Seed Industry Development Report in China 
(2015)). In 1973, a three-line hybrid rice system composed of one cytoplasmic male sterile line, one maintainer 
line, and one restorer line was successfully developed in China2. Then in the 1980s, a two-line hybrid system, 
composed of one environment-sensitive genic male sterile (EGMS) line and one restorer line, was developed3. The 
two-line system has several advantages over the three-line system, including easy male sterile line multiplication 
(no maintainer line is needed for reproduction of male sterile lines), no restriction with regard to the restorer line 
(theoretically, all cultivars with normal pollen can be used as restorer lines), and easy use of inter-subspecific het-
erosis (easy introduction of a wide range of genes into the EGMS line rather than into the cytoplasmic male sterile 
line)4. While commercial hybrid rice is estimated to outperform conventional inbred rice by >20% in grain yield, 
two-line commercial hybrid rice is estimated to outperform its three-line counterpart by ~10% in grain yield4. 
Therefore, the two-line hybrid rice system has become increasingly important in hybrid rice breeding5.

Although heterosis, or hybrid vigor, has been successfully used in hybrid rice production, as well as in pro-
duction of many other crop species, including corn and sorghum, its genetic mechanism remains unclear6–8. 
Since George H. Shull rediscovered heterosis in 19089, many hypothetical genetic mechanisms, including domi-
nance9–11, overdominance12, 13, epistasis14–16, gene balance17, 18, and protein quality control19, 20 have been proposed 
to explain heterosis. Today, most heterosis studies mainly focus on important agronomic traits in crops such as 
corn and rice. Due to the quantitative nature of these traits, many genetic mechanisms likely function in hetero-
sis; therefore, it is probable that no single genetic mechanism can adequately explain all aspects of the heterosis 
phenomenon7, 21.

In the past twenty years, genetic mapping of the loci underlying rice heterosis using molecular markers 
has been performed22–28. The accuracy of early genetic mapping suffered from the use of low-density markers; 

1State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of 
Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China. 2Ava Seed Academy of 
Sciences, Changsha, Hunan, China. Correspondence and requests for materials should be addressed to Y.Z.Y. (email: 
yzhuyah@163.com) or X.W.D. (email: deng@pku.edu.cn) or H.H. (email: hehang@pku.edu.cn)

Received: 8 February 2017

Accepted: 16 June 2017

Published: xx xx xxxx

OPEN

mailto:yzhuyah@163.com
mailto:deng@pku.edu.cn
mailto:hehang@pku.edu.cn


www.nature.com/scientificreports/

2SCienTifiC REPOrTS | 7: 7635  | DOI:10.1038/s41598-017-06742-7

for example, the mapping resolution was low and did not allow differentiation between overdominance and 
pseudo-overdominance. Most of these studies used parental materials derived from bi-parental mapping popula-
tions, and the genetic diversity among these parental materials was very low. Therefore, the genetic mechanisms 
derived from studies of these populations might be of little relevance to actual hybrid rice production, as many 
genetically diversified male sterile lines and restorer lines are currently used in hybrid rice breeding. With the 
rapid development of genome sequencing, genome-wide association study (GWAS) using high-density genetic 
markers has been widely used to dissect the genetic mechanisms underlying quantitative traits in crop species29. 
In rice, GWAS has proven to be a useful tool for identifying important genes related to agronomic traits30, 31. 
Recently, Huang et al. genotyped 10,074 F2 lines derived from 17 representative varieties from 3 different hybrid 
rice systems, revealing many important genes related to 7 yield-related traits32, 33. These studies indicate that 
genetic mapping in a multi-parental population using high-density markers could be utilized to discover the 
genetic basis of heterosis.

Although middle-parent heterosis (superior performance of the F1 hybrid in comparison with the average of 
both parents) was of great interest in previous heterosis analysis, better-parent heterosis (superior performance 
of the F1 hybrid in comparison with the better parent) is the major goal underlying the wide adoption of hybrid 
techniques in agriculture because of its economic impact34. In hybrid rice, better paternal heterosis (superior 
performance of the F1 hybrid in comparison with the male parent) is most important to breeders because the 
female parent is sterile. Special combining ability (SCA), a very important indicator when selecting for superior 
hybrid cultivars in rice breeding, is mainly affected by non-additive effects such as dominance and epistasis35. 
Identification of the genetic mechanisms underlying better paternal heterosis and SCA is of practical importance 
in hybrid rice production.

In hybrid rice breeding, male sterile lines and restorer lines are under quite different selective pressures. In 
addition to sterility, male sterile lines have to be dwarfed (facilitating pollination), show early-heading (short 
growing period), and have good combining abilities for many agronomic traits. Therefore, the breeding of male 
sterile lines requires much more effort than that of restorer lines. In addition, male sterile lines have a demo-
graphic history quite different from that of restorer lines, as the former are all derived from several main ances-
tors, while the latter have a much broader genetic origin. Therefore, the genetic architectures underlying many 
traits in male sterile lines are probably quite different from those that underlie the same traits in restorer lines, and 
these differences may have distinct impacts on the agronomic performance of F1 hybrids.

In this study, we constructed a partial diallel two-line hybrid rice cross scheme and measured heterosis in nine 
yield-related traits. We performed GWAS and identified genetic loci underlying better paternal heterosis and SCA 
in the hybrid rice lines. We found that the superior allele ratios of many QTLs differed markedly between the male 
sterile lines and restorer lines. Furthermore, we screened for genetic regions under selective pressure in both male 
sterile lines and restorer lines, revealing the role of selective pressure in the heterosis phenomenon in F1 hybrids. 
All the genotype and phenotype data used in this study is provided in Supplementary Data S1 and S2.

Results
Heterosis varied among different traits in two-line hybrid rice lines, and increased panicle num-
ber contributed most to yield.  In this experiment, fourteen photo-thermo-sensitive genic male sterile 
(PTGMS, one type of EGMS) lines that have been widely used in commercial hybrid rice breeding in China were 
used as maternal lines, and three core recombinant inbred lines (RILs) (each consisting of 12–14 lines) were used 
as restorer (paternal) lines. Each restorer line was crossed to all 14 male sterile lines, yielding a partial diallel cross 
panel consisting of 500 F1 hybrids. Field experiments were first performed in Changsha (CS), China, in the sum-
mer of 2014, after which they were performed in Lingshui (LS), China, in the spring of 2015. Nine agronomic traits 
(heading date (HD), plant height (PH), panicle number per plant (PN), seed number per panicle (SNPP), grain 
yield per plant (GYPP), 1000 grain weight (TGW), grain length (GL), grain width (GW), and grain length/width 
ratio (GLWR)) were evaluated. All nine traits showed a continuous distribution (Supplementary Figs. S1–S9),  
indicating the presence of complex underlying genetic mechanisms. In commercial hybrid rice breeding, it is 
impossible to compare the grain yield-related traits of F1 hybrids to their corresponding middle parent values 
(MPVs) because the maternal lines are sterile; thus, in this study, we used better paternal value (BPaV) to measure 
heterosis in F1 hybrids. We found that heterosis in the two-line hybrid system varied among traits (Fig. 1 and 
Supplementary Fig. S10). Most F1 hybrids had an earlier HD (91.1% in the CS dataset, and 99.0% in the LS data-
set) and increased PH (58.5% for CS, and 54.4% for LS) in comparison with those of their paternal parents. For 
PN and GYPP, most F1 hybrids (90.9% for CS and 94.6% for LS for PN, 78.6% in CS and 88.1% in LS for GYPP) 
showed performance better than that of their paternal parents. However, for SNPP and grain shape-related traits 
(TGW, GL, and GW), most F1 hybrids (average: 77.8% for CS and 63.4% for LS) had performance worse than that 
of their male parents. We evaluated some traits of the male sterile lines in the LS dataset, and strong hybrid vigor 
was also observed when maternal effects were taken into account. For example, when compared to MPVs, most 
F1 hybrids showed an earlier HD (95.2%), as well as increased PH (100.0%) and TGW (87.5%) (Supplementary 
Fig. S11).

Grain yield is mainly determined by three components: PN, SNPP, and TGW. Previous phenotype compari-
sons have shown that most F1 hybrids have higher GYPP and PN in comparison with those of their male parents, 
as well as lower SNPP and TGW (Fig. 1 and Supplementary Fig. S10). Phenotype correlation analysis showed 
that the phenotypic correlation between PN and GYPP (r = 0.482 for CS and r = 0.64 for LS) was higher than that 
between SNPP and GYPP (r = 0.476 for CS and r = 0.35 for LS), as well as that between TGW and GYPP (r = 0.31 
for CS and r = −0.02 for LS) (Supplementary Fig. S12). Linear regression analysis showed that the grain yield 
variance explained by PN (0.28 for CS and 0.42 for LS) was much larger than that explained by any of the other 
yield-related traits for CS and LS (Supplementary Fig. S13). These results indicate that increased panicle number 
is more important than the other tested traits with regard to boosting the grain yield production of F1 hybrids.
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Genotypic variation among parental lines and population structure in F1 hybrids.  We genotyped 
all 53 parents using the rice 50 K SNP Chip on the Illumina Infinium platform36. After quality control, 26920 pol-
ymorphic SNPs remained for further analysis. To assess genetic differences among parental lines, phylogenetic 
analysis was performed using filtered SNP genotypes. All parents were separated into two highly divergent clus-
ters: male sterile lines and restorer lines (Fig. 2A). The restorer lines were further separated into three groups in 
accordance with their pedigree information. It should be noted that the male sterile lines were also highly diver-
gent as measured by branch length, and this reflected the complicated breeding history of each PTGMS.

The genotype for each F1 hybrid was obtained by combining the genotypes of its inbred parents. All F1 hybrids 
had high average genome heterozygosity, ranging from 17.5% to 28.4%, with a median of 23.1% (Supplementary 
Fig. S14). By calculating the average heterozygosity in 100-kb windows across the whole genome, high hete-
rozygosity was observed along the whole genome except for the regions around centromeres (Supplementary 
Fig. S14). Principal component analysis (PCA) revealed highly-structured genetic relationships among the F1 
hybrids (Fig. 2B and C). The first and second genomic PCs mainly separated the F1 hybrids into 3 groups con-
sistent with their male parental origins, while the third and fourth PCs separated them into many small groups 
consistent with their female parental origins.

Genome-wide association studies.  To deepen our understanding of the genetic basis of heterosis in 
two-line hybrid rice populations, we conducted GWAS analysis in three categories: F1 GWAS, BPaV GWAS, 
and SCA GWAS. In brief, the original F1 hybrid phenotypes were used in the F1 GWAS, while BPaV and SCA 
were treated as phenotypes in the BPaV GWAS and SCA GWAS. Because the study panel was highly structured, 
familial relationships among F1 hybrids could impair interpretation of association analysis results, as long-range 
correlations among genetic markers might cause false positive signals, which can be located on another chromo-
some37–39. Thus, we adopted the forward-selection resampling GWAS approach first proposed by Valdar et al.40 
and successfully used in association analysis of heterogeneous stock mice38, 41, 42 and maize nested association 
mapping populations43–46.

A brief summary of all GWAS results is shown in Table 1. F1 GWAS identified several quantitative trait loci 
(QTLs, numbers ranging from 0 to 16, with an average of 4.1) for most traits (all except SNPP and TGW) in the 
CS dataset, and most of these traits had <50% of their total phenotype variance explained (Fig. 3a). BPaV GWAS 
identified more association signals (ranging from 1 to 35, with an average of 11.2) than did F1 GWAS, and a high 

Figure 1.  Phenotype distributions of nine agronomic traits in F1 hybrids (F1) and their male parents (Pat).
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proportion (>60%) of BPaV variance was explained by these QTLs for most traits (Fig. 3b). For SCA GWAS, 
dozens of QTLs were identified for PH and grain shape-related traits (TGW, GL, GW, and GLWR, ranging from 
18 to 37, with an average of 24.2), and >50% of the SCA variance for these traits was explained (Fig. 3c). Many 
important genes overlapped these trait-associated regions (Supplementary Data S3). Most QTLs appeared at a 
low frequency (measured as resample model inclusion probability, RMIP) in the GWAS analysis (Supplementary 
Fig. S15). After assessing QTL effects (measured in phenotype variance explained by their lead SNPs), we found 
that a large proportion of QTLs identified fin F1 GWAS (45.7% for CS and 40.7% for LS) were large-effect QTLs 
that explained >10% of the variance of their original phenotypes, while this percentage was much lower in the 
GWAS results for BPaV (23.5% for CS and 20.2% for LS) and SCA (1.7% for CS and 1.4% for LS) (Fig. 3d). These 
results suggest that both better paternal heterosis and SCA are controlled by many loci with small effects.

There were few overlaps between the QTLs identified via F1 GWAS and those found via BPaV and SCA 
GWAS (Fig. 3e–h and Supplementary Figs S16–S22). F1 GWAS revealed 46 association signals in the CS dataset 
and 27 association signals in the LS dataset. Among these regions, 13 of the association signals identified in the 

Figure 2.  Phylogenetic relationships among parental lines (A) and population structure among F1 hybrids 
(B,C).

Dataset Category HD PH PN SNPP YPP TGW GL GW GLWR

Changsha

F1 GWAS 4 1 6 16 1 14 0 3 1

BPaV GWAS 14 6 3 23 8 6 23 3 16

SCA GWAS 4 28 0 7 0 19 18 21 19

Linshui

F1 GWAS 1 1 1 5 7 1 2 2 7

BPaV GWAS 3 2 9 6 24 35 15 1 4

SCA GWAS 6 37 0 5 0 22 23 34 21

MPV GWAS 5 2 NA NA NA 6 6 4 1

Table 1.  Summary of QTLs found in GWAS.
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CS dataset and 11 of those identified in the LS dataset overlapped with the corresponding BPaV GWAS results, 
while only 3 of those identified in the CS dataset and 2 of those identified in the LS dataset overlapped with the 
SCA GWAS results. Among all traits, high overlap rates were only found between the F1 GWAS and BPaV GWAS 
results for HD and SNPP. Many important genes related to relevant biological processes were identified as candi-
dates within these overlapping regions.

For HD, only one QTL (lead SNP: F0921300849AC) was identified by the F1 GWAS in the CS dataset when 
the additive inheritance model was used. This QTL explained 41.8% of the HD variance in the CS dataset. 
Another QTL (lead SNP: R0921365484AG), located approximately 65 kb downstream of F0921300849AC, was 
found in the BPaV GWAS of HD for the CS dataset, and it explained 30.8% of the HD_BPaV (representing the 
BPaV of HD in the F1 hybrids) variance. These two lead SNPs were in strong linkage disequilibrium (r2 = 0.94), 
suggesting the same association signal in the F1 GWAS and BPaV GWAS. F1 GWAS (CS) using other inheritance 
models detected three more QTLs located on chromosomes 3, 4, and 11. A QTL located on chromosome 3 and 
harboring OsETOL1, which encodes a protein that controls ethylene biosynthesis and spikelet fertility47, was also 
discovered via the BPaV, SCA, and MPV GWAS of HD for the LS dataset (Fig. 3f). These three QTLs were also 
found in the BPaV GWAS of HD for the CS dataset. The F1 GWAS of HD for the LS dataset only identified one 
QTL located on chromosome 5 (lead SNP: R0502670171GA, RMIP = 82.3), while this QTL was also discovered 
at a low frequency via the BPaV GWAS (RMIP = 8.7) and MPV GWAS (RMIP = 6.0) (Fig. 3f). PTB1, which 
encodes a RING-type E3 ubiquitin ligase that regulates the panicle seed setting rate of rice by promoting pollen 
tube growth48, was identified as a candidate gene within this region. The SCA and MPV GWAS of HD for the LS 
dataset identified a region located on chromosome 8 that overlapped with Ghd8, which promotes flowering under 
short-day conditions49.

The F1 GWAS of SNPP for the CS dataset identified 16 QTLs. The lead SNP, F0921300849AC was also detected 
in the F1 GWAS of HD for the CS dataset, and explained the largest proportion of SNPP variance (31.7%) 
(Fig. 3g). The F1 GWAS of SNPP for the CS dataset also identified one QTL located on chromosome 6. Hd3a, 
which encodes a protein that controls rice-flowering through interactions with OsFD1 and 14-3-350, was identi-
fied as a candidate gene within this region. The BPaV GWAS of SNPP for the CS dataset identified 23 QTLs. The 
lead SNP, F1225114400AC, explained the largest fraction of SNPP_BPaV variance (16%). Five genomic regions 
(shorter than 250 kb) located on chromosomes 3, 10, 11, and 12 were shared by the F1 GWAS and BPaV GWAS 
results. However, all of these regions had differently located association signals, and only one of them (on chro-
mosome 10) showed high linkage (r2 = 0.87) between the two lead SNPs identified by the F1 GWAS and BPaV 
GWAS. The F1 GWAS and BPaV GWAS of SNPP for the LS dataset each identified 5 and 6 QTLs, among which 

Figure 3.  GWAS results. (a) Total original phenotype variance of F1 hybrids explained by QTLs identified in F1 
GWAS. (b) Total BPaV variance explained by QTLs identified in BPaV GWAS. (c) Total SCA variance explained 
by QTLs identified in SCA GWAS. (d) Frequency distribution of QTLs identified in F1 GWAS, BPaV GWAS, 
and SCA GWAS based on the variance explained by each QTL. The vertical dashed lines represent the average 
variance explained for the three QTL groups. (e,f) Manhattan plots of HD GWAS results for the CS dataset 
(E) and LS dataset (F). (g,h) Manhattan plots of SNPP GWAS results for the CS dataset (g) and LS dataset 
(h). Y-axis, RMIP in resample GWAS; red dashed lines, shared QTLs among different GWAS categories; open 
symbols, GWAS signals disappeared when using corresponding original F1 hybrid phenotypes as covariates.
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2 QTLs (lead SNPs: R0605948297AG and R0626712051CA) were shared by both sets of results (Fig. 3h). Lead 
SNP R0605948297 explained 14.4% of the variance in SNPP and 10.8% of the variance in SNPP_BPaV. Lead SNP 
R0626712051CA explained 21.7% of the variance in SNPP and 11.7% of the variance in SNPP_BPaV. This region 
was also identified by the F1 GWAS of SNPP for the CS dataset. OsmiR156h, which affects rice tillering51, was 
identified as a candidate gene.

The GWAS results (QTL numbers, QTL effects, and overlapping rates) suggest that the genetic architectures 
underlying BPaV and SCA might be quite different from those underlying the original F1 hybrid phenotypes, 
and the QTLs identified in the BPaV and SCA GWAS might not directly affect the original F1 hybrid phenotypes. 
We re-ran the BPaV and SCA GWAS with the original F1 hybrid phenotypes added as covariates. This pleiotropy 
analysis aimed to remove the impact of QTLs directly influencing the original F1 hybrid phenotypes and to iden-
tify QTLs independently affecting BPaV or SCA52. For HD, the previous BPaV GWAS for the CS dataset identified 
14 QTLs, of which 4 were shared by the F1 GWAS results. After using HD_F1 as a covariate, only 5 of the 14 QTLs 
remained in the new BPaV GWAS results, including 3 of the 4 overlapping QTLs, but not the QTL located on 
chromosome 4 (Fig. 3e). This finding confirms that these three QTLs directly influence the HD performance of 
the F1 hybrids and contribute to the better paternal heterosis of HD. However, among the 7 co-localized regions 
(5 in the CS dataset and 2 in the LS dataset) shared by the F1 GWAS and BPaV GWAS of SNPP, 4 regions were 
not present in the new BPaV GWAS results, including the region with high linkage in the CS dataset and two 
overlapping QTLs in the LS dataset (Fig. 3g and h). This finding indicates that these 3 shared regions affect SNPP 
heterosis by directly influencing the SNPP phenotypes of the F1 hybrids in a case of mediated pleiotropy52. When 
the original F1 hybrid phenotypes were used as covariates, 60.1% of the CS QTLs and 60.3% of the LS QTLs iden-
tified in the previous BPaV and SCA GWAS were present in the new sets of results. Larger proportions of QTLs 
were removed from the SCA GWAS results (46.6% for CS and 43.9% for LS) in comparison with those removed 
from the BPaV GWAS results (32.4% for CS and 33.3% for LS). The QTLs that were removed from the new GWAS 
analysis occurred at low frequencies in the previous BPaV and SCA GWAS (Supplementary Fig. S23). These 
results suggest that BPaV and SCA shared different genetic architectures with the original F1 hybrid phenotypes.

Non-additive effects played more important roles than additive effects in three-genotype 
QTLs.  Many genetic models, including dominance and overdominance, have been proposed to explain the 
genetic basis of heterosis. To assess such effects for each QTL requires phenotype comparisons among all three 
genotypes (AA, Aa, and aa) in F1 hybrids. However, not all QTLs had all three genotypes in the F1 hybrids 
assessed in this study. For the F1 GWAS results, most of the QTLs (76.1% for CS and 85.2% for LS) had all three 
genotypes in the F1 hybrids, while the others had only two genotypes (Aa and either AA or aa). For the BPaV 
GWAS results, approximately half of the QTLs (44.1% for CS and 55.6% for LS) had all three genotypes. For the 
QTLs underlying SCA, 61.2% of CS QTLs and 52.7% of LS QTLs had all three genotypes. Therefore, we sepa-
rated all QTLs into two groups, a three-genotype group and a two-genotype group, according to their genotype 
varieties in the F1 hybrids. For QTLs in the three-genotype group, a linear regression model was used to assess 
the relative contributions of dominance and additive effects for each QTL, revealing that most three-genotype 
QTLs (70.1% for CS and 82.5% for LS) showed non-additive effects, indicating the predominant roles of 
non-additive effects in heterosis (Fig. 4A and B). Many QTLs, especially those related to grain shape-related 
traits, showed over-dominance effects (28.6% for CS and 29.2% for LS, Supplementary Fig. 24). Many QTLs 
harboring important genes related to relevant biological processes showed non-additive effects. For example, 
the large effect QTL located on chromosome 9 (Fig. 3e) showed negative partial-dominance effects for both HD 
and HD_BPaV (Fig. 4C–E), which is in concordance with the reduced heading date of F1 hybrids compared 
to their mid-parent values (Supplementary Fig. S11). Another large effect QTL, located on chromosome 6 and 
harboring OsmiR156h (Fig. 3g and h), showed a positive dominance effect for SNPP, while it showed a positive 
over-dominance effect for SNPP_BPaV (Fig. 4F–H). The other large effect QTL, located on chromosome 1 and 
harboring MSP1 (Supplementary Fig. S19), showed a positive dominance effect for GYPP, while it showed a pos-
itive partial-dominance effect for GYPP_BPaV (Fig. 4I–K).

Two-genotype QTLs were further separated into two groups according to the relative performance of het-
erozygotes and homozygotes. When the average phenotype value of heterozygotes (Aa) outperformed that of 
homozygotes (AA or aa), the two-genotype QTL was placed into the hetero-superior group; otherwise, the QTL 
was placed into the homo-superior group. The hetero-superior and homo-superior groups had nearly equal num-
bers of two-genotype QTLs for the BPaV GWAS results (27/30 for CS and 22/22 for LS). However, for the SCA 
GWAS results, the hetero-superior group outnumbered the homo-superior group by 32/13 in the CS dataset and 
40/30 in the LS dataset.

Male sterile lines and restorer lines made different superior allele contributions to F1 hybrids 
that varied among different traits.  In our crossing design, we can easily trace the parental origin of 
superior alleles for each QTL and measure the superior allele contributions from both parents. For large pro-
portions of QTLs (ranging from 14.2% to 18.6%, Fig. 5a–d), superior alleles were contributed solely by restorer 
lines, indicating that restorer lines play an important role in heterosis by introducing new superior alleles. Next, 
the superior allele ratios in both parental groups and F1 hybrids were measured. Interestingly, we found that 
the two-genotype QTLs in the homo-superior group had much higher superior allele ratios in both male sterile 
lines and restorer lines (87.6% and 73.2% for CS, respectively; 84.2% and 72.3% for LS, respectively; Fig. 5e and 
f) in comparison with those of the two-genotype QTLs in the hetero-superior group (8.8% and 22.8% for CS, 
respectively; 8.0% and 22.7% for LS, respectively; Fig. 5g and h). The difference in the male sterile lines was much 
clearer than that in the restorer lines; more than half of the QTLs reached fixation in the male sterile lines. In the 
F1 hybrids, the male sterile lines provided large proportions of superior alleles for homo-superior QTLs (54.2% 

http://S23
http://24
http://S11
http://S19


www.nature.com/scientificreports/

7SCienTifiC REPOrTS | 7: 7635  | DOI:10.1038/s41598-017-06742-7

for CS and 53.1% for LS) (Fig. 5e and f), while the restorer lines provided most superior alleles for hetero-superior 
QTLs (72.7% for CS and 69.7% for LS) (Fig. 5g and h).

To validate our results, we genotyped another 36 male sterile lines and 48 restorer lines (Supplementary 
Fig. S25) that have been widely used in commercial hybrid rice breeding in China, after which superior allele 
ratios between the two QTL groups were measured. Contrasting superior allele ratios between the hetero-superior 
and homo-superior groups were also found in the new dataset (Supplementary Fig. S26). Among 81 (CS, repre-
senting 104 QTLs) and 85 (LS, representing 108 QTLs) two-genotype associated signals, 53 and 60 has low MAF 
(<0.05) in either male sterile lines or restorer lines in the previous parental dataset, while 59 and 58 has low MAF 
in the new parental dataset. Besides, among the 53 (CS) and 60 (LS) associated signals with low MAF in the pre-
vious parental dataset, 41 and 47 also has low MAF in the same parental lines in the new dataset. These results 
indicate that this phenomenon is common in hybrid rice parental lines.

Figure 4.  Non-additive effects played important roles in rice heterosis. (A,B) Dominance/additive (d/a) effects 
for all three-genotype QTLs identified in the CS (A) and LS (B) datasets. (C) Allele ratios of the QTL (lead SNP: 
F0921300849AC) in both parental groups (A: major allele; a: minor allele). (D,E) HD (D) and HD_BPaV  
(E) distributions for the QTL F0921300849AC. (F) Allele ratios of the QTL harboring OsmiR156h in both 
parental groups. (G,H) SNPP (G) and SNPP_BPaV (h) distributions for the QTL harboring OsmiR156h. 
(i) Allele ratios of the QTL harboring MSP1 in both parental groups. (J,K) GYPP (j) and GYPP_BPaV (k) 
distributions for the QTL harboring MSP1. The red dashed lines in d, e, g, and h represent the mean values for 
the averages of the two homozygotes.
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The roles played by hetero-superior and homo-superior two-genotype QTLs in heterosis differed among traits. 
For example, the BPaV GWAS of PH for the CS dataset found 6 QTLs, among which 5 QTLs had only two gen-
otypes in the F1 hybrids. Among these 5 two-genotype QTLs, four were hetero-superior, while the restorer lines 

Figure 5.  Male sterile lines and restorer lines made different superior allele contributions to F1 hybrids.  
(a–d) Superior allele contributions from either parental group for QTLs identified in the BPaV GWAS (a for 
CS, b for LS) and SCA GWAS (c for CS, d for LS). Two-genotype QTLs were separated into three groups: those 
with superior alleles contributed only by the restorer lines (male), only by the male sterile lines (female), and 
by both parental groups (both). (e–h) Superior allele ratios of male sterile lines, restorer lines, and F1 hybrids 
in homo-superior QTLs (e for BPaV GWAS results, f for SCA GWAS results) and hetero-superior QTLs (g for 
BPaV GWAS results, h for SCA GWAS results). (i) Allele ratios of the QTL harboring OsGLU1 in both parental 
groups. (j) PH_BPaV distributions of the QTL harboring OsGLU1. (k) Allele ratios of the QTL harboring 
OsPDK1 in both parental groups. (l) PH_BPaV distributions of the QTL harboring OsPDK1. (m) Allele ratios 
of the QTL harboring qGL3 in both parental groups. (n-q) GYPP_BPaV (n), SNPP_BPaV (o), TGW_BPaV (p), 
and GL_BPaV (q) distributions of the QTL harboring qGL3.
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contributed most of their superior alleles (average: 78.8%). This result is in concordance with the fact that the 
male sterile lines are all dwarfs due to strong artificial selection. Genes controlling rice height, including OsGLU1 
(Fig. 5i and j) and OsPDK1 (Fig. 5k and l), were identified as candidates within these QTLs. The BPaV GWAS of 
SNPP and GYPP for the CS dataset identified 20 and 8 QTLs, respectively, among which 13 QTLs and 6 QTLs, 
respectively, were two-genotype QTLs. Among the two-genotype QTLs for SNPP and GYPP, many large-effect 
QTLs (4 related to SNPP_BPaV, each of which explained >7% variance, and 2 related to GYPP_BPaV, each of 
which explained >3.5% variance) were homo-superior. The superior alleles in these QTLs had reached fixation 
in the male sterile lines, and 64.4% of the superior alleles in the F1 hybrids were contributed by the male sterile 
lines. qGL3, which encodes OsPPKL1, a protein that controls grain length, grain weight, and grain yield53, was 
identified as a candidate gene within one of these QTLs (lead SNP: F0325216735GA; located on chromosome 
3). In addition to SNPP_BPaV and GYPP_BPaV, we also found this QTL to be associated with TGW_BPaV 
(Supplementary Fig. S19) and GL_BPaV (Supplementary Fig. S20). This QTL had reached fixation in the male 
sterile lines, while a small proportion of restorer lines (7.7%) had a different genotype (Fig. 5m). Interestingly, 
we found that this QTL had different effects on heterosis of associated traits in F1 hybrids. Being heterozygous at 
this locus decreased heterosis of the F1 hybrids in GYPP (average AA: 6.082 g, and average Aa: 0.890 g, Fig. 5n) 
and SNPP (average AA: −8.585, and average Aa: −60.920, Fig. 5o), while at the same time increasing F1 hybrid 
heterosis in TGW (average AA: −2.306 g, and average Aa: −1.561 g, Fig. 5p) and GL (average AA: −0.316 mm, 
and average Aa: −0.058 mm, Fig. 5q). These results indicate that the male sterile lines and restorer lines made 
different superior allele contributions to the F1 hybrids that differed among the traits.

For three-genotype QTLs, non-additive QTLs with negative effects identified in the SCA GWAS had much 
lower superior allele ratios (29.0% for CS and 23.4% for LS) in the male sterile lines in comparison with those of 
positive non-additive QTLs (44.3% for CS and 56.4% for LS) (p = 0.037 (CS) and p = 2.52 × 10−5 (LS), two-sided 
Student’s t-test, Supplementary Fig. S27). Therefore, positive non-additive QTLs (44.4% for CS and 47.4% for LS) 
had more female-derived superior alleles in F1 hybrids in comparison with negative non-additive QTLs (30.3% 
for CS and 29.0% for LS) (Supplementary Fig. S27).

Differences in the selective pressure on male sterile lines and restorer lines contributed to dif-
ferences in their QTL superior allele ratios.  Previous analysis showed that male sterile lines and restorer 
lines had different superior allele frequencies for two-genotype QTLs (Fig. 5e–h). Further analysis showed that 
three-genotype QTLs had much higher minor allele frequencies (MAFs) in restorer lines that those in male ster-
ile lines (Fig. 6a and b, and Supplementary Fig. S28), while two-genotype QTLs had much lower MAFs in male 
sterile lines than those in restorer lines (Fig. 6c and d, and Supplementary Fig. S28). These results indicate that the 
selective pressure on three-genotype QTLs and two-genotype QTLs differed between the male sterile lines and 
restorer lines. We used Tajima’s D to measure nucleotide diversity in 240-kb sliding windows across the whole 
genome, and searched for overlaps between QTLs and low Tajima’s D regions (bottom 10th percentile) in the 
male sterile lines or restorer lines. Sixty-five (27.4%, CS) and 65 (26.1%, LS) QTLs overlapped with such regions 
in male sterile lines, while only 17 (7.2%, CS) and 20 (8.0%, LS) QTLs overlapped with such regions in restorer 
lines. Many important genes, such as DIF, OsLG1, OsASR1, Ghd8, and OsCESA9, were found within these regions 
(Fig. 6e and f). Among these QTLs, many had only two genotypes in F1 hybrids (33 (CS) and 37 (LS) for those 
overlapped in male sterile lines, and 12 (CS) and 16 (LS) for those overlapped in restorer lines). In addition, we 
found that three-genotype QTLs were located in regions with increased nucleotide diversity (high Tajima’s D) in 
restorer lines (Supplementary Fig. S29). These results indicate that differences in the selective pressure on male 
sterile lines and restorer lines contributed to differences in their superior allele frequencies.

Discussion
Heterosis usually refers to the superior performance of F1 hybrids, such as increased growth rate and increased 
biomass, in comparison with their parents. However, when investigating heterosis in crop species, heterosis can 
vary among traits, probably because of artificial selection. For example, increased height in rice will cause lodging 
and thus reduce grain yield, so hybrid rice breeders favor hybrid offspring with low stature. For traits related to 
yield, there is no doubt that high performance in F1 hybrids is favored. In this study, we showed that F1 hybrids 
usually had an earlier HD, decreased SNPP and TGW, and increased PN and GYPP in comparison with their 
paternal parents. This variation of better paternal heterosis among traits is of practical importance as it indicates 
that the genetic mechanisms involved in heterosis differ among traits.

Inheritance of quantitative characteristics plays a crucial role in heterosis12. In this study, we showed that the 
original phenotypes of F1 hybrids, better paternal heterosis, and SCA, were quantitative traits (Supplementary 
Figs. S1–S9). These findings indicate that both better paternal heterosis and SCA are controlled by many genetic 
loci, consistent with the large number of QTLs identified in the BPaV GWAS and SCA GWAS (Table 1). Moreover, 
most loci contributing to heterosis produce minor effects on important agronomic traits in crop species subjected 
to intense selection21. For crops like corn and rice, loci with large effects on agronomic traits have been either 
fixed or purged during long-term artificial selection, so it is highly probable that most loci contributing to het-
erosis have only minor effects. This idea is consistent with our finding that large proportions of QTLs identified 
in the BPaV GWAS and SCA GWAS had effects much smaller than those identified in the F1 GWAS (Fig. 3d).

The BPaV and SCA GWAS results overlapped little with the F1 GWAS results, indicating that better paternal 
heterosis and SCA shared different genetic architectures with the original phenotypes of F1 hybrids. It is highly 
probable that some loci underlying better paternal heterosis and SCA do not have a significant influence on the 
original phenotypes of F1 hybrids. In this study, we re-ran BPaV GWAS and SCA GWAS with the addition of the 
original phenotypes of F1 hybrids to remove those QTLs underlying them. The results of this analysis showed 
that most QTLs identified in previous BPaV GWAS and SCA GWAS remained, indicating that these QTLs do not 
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directly affect the original phenotypes of F1 hybrids. Thus, we demonstrated that both better paternal heterosis 
and SCA shared quite different genetic architectures with the original phenotypes of F1 hybrids. This finding was 
very important as it indicated that we should focus on those loci influencing heterosis directly in similar studies.

In this study, GWAS identified many QTLs related to heterosis in hybrid rice. However, the marker density 
was very low (approximately 0.11 SNP/kb); therefore, many important variations, including rare SNPs, copy 
number variation, and indels, were not identifiable. Future studies using resequencing techniques will allow most 
genome variations to be captured, thus revealing their relationships with heterosis. Moreover, the relatively low 
number of parental lines used in this study resulted in low-resolution GWAS signals. The use of many genetically 
diversified parental lines can greatly improve GWAS resolution and allow pseudo-overdominance and overdom-
inance to be distinguished. Although resampling GWAS using a mixed linear model can greatly reduce false 
positive signals, many real associated genetic loci can be eliminated due to their relationship with population 
structure (see, for example, HD in rice54, 55). These methodological shortcomings should be remedied in future 
studies of rice heterosis.

Male sterile lines and restorer lines were under different levels of selective pressure and had differing demo-
graphic histories. Therefore, the genetic architectures underlying many agronomic traits could differ significantly 
between the male sterile lines and restorer lines. In this study, we showed that male sterile lines and restorer lines 
made different superior allele contributions to F1 hybrids for many QTLs due to their different superior allele 
ratios (Fig. 5e–h). More QTLs identified in GWAS analyses overlapped with genomic regions under selective 
pressure in the male sterile lines than overlapped with regions under selective pressure in the restorer lines, 

Figure 6.  QTLs were under different selective pressure in male sterile lines and restorer lines. (a–d) Average MAF 
distributions around lead SNPs for three-genotype QTLs (a for CS, b for LS) and two-genotype QTLs (c for CS, d 
for LS). (e,f) Tajima’s D distribution across the whole genome of male sterile lines (e) and restorer lines (f). The blue 
dashed lines represent the 10th percentile of Tajima’s D in male sterile lines (e) and restorer lines (f).
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indicating that the male sterile lines were under much stronger selective pressure than that on the restorer lines 
for these agronomic traits.

Two-genotype QTLs with superior homozygotes in the F1 hybrids generally had high superior allele ratios in 
both parental groups (Fig. 5e and f), which indicated that these superior alleles had been under positive selection 
in both parental groups. In contrast, two-genotype QTLs with superior heterozygotes in the F1 hybrids usually 
had very low superior allele ratios in both parental groups (Fig. 5g and h). Two mechanisms might explain this 
phenomenon. First, these superior alleles are in strong linkage with other harmful alleles, so they are kept at low 
frequencies by strong negative selection pressure on the linked harmful alleles. In this situation, superior allele 
ratios could be increased by breaking the tight linkage between the two loci, yet this might require a large cross 
panel and many rounds of cross-selection. Second, these superior alleles might have been newly introduced into 
the hybrid rice genetic pool. In this situation, superior allele ratios could be increased though many rounds of 
artificial selection. These hetero-superior two-genotype QTLs might play important roles in improving agro-
nomic traits in future hybrid rice breeding by increasing their superior allele ratios.

Materials and Methods
Plant materials and phenotyping.  For the field experiments, we used 14 PTGMS as female parents and 3 
RILs as male parents. RIL G2293 (12 lines) was derived from elite cultivars Chenghui-448 and Minghui-86. RIL 
G3509 (13 lines) was derived from elite cultivars Huahui-451 and 2837. RIL G4363 (14 lines) was derived from 
elite cultivars 2293–622 and 2464. All parental lines were used in commercial hybrid rice breeding and showed 
good combining ability. Each paternal line was crossed to all 14 female lines by hand pollination to derive a partial 
diallel cross scheme. F1 hybrids and their male parents were planted in Changsha, China, in the summer of 2014. 
F1 hybrids and both of their parents were planted in Lingshui, China, in the spring of 2015. All female parents 
were completely sterile in the high temperature summer environment of Changsha. In the low temperature spring 
environment of Lingshui, the female parents were partially sterile, so some panicles could be fertile depending on 
the temperature (threshold temperature: approximately 23.5 °C). All planting followed a randomized complete 
block design. Three replicates of each variety were evaluated in Changsha. Two replicates of each variety were 
evaluated in Linshui because of a shortage of F1 hybrid seeds. Each plot consisted of two rows with six plants per 
row. The distance between plants in each plot was 18.33 cm. The distance between plots was 36.66 cm. The field 
was managed according to normal agricultural practice. True F1 hybrids were determined by careful examination 
of morphological traits, including heading date, plant architecture, and grain shape. F1 hybrids with ambiguous 
identities were abandoned. Finally, 458 F1 hybrids from the CS dataset qualified for further phenotype evaluation, 
whereas 471 F1 hybrids from the LS dataset qualified for further phenotype evaluation.

Heading date was recorded per plot as the time from sowing to the day that half of all plants in that plot had 
emerged panicle flowers. The other traits were evaluated after harvesting, and only the middle 8 plants in each 
plot were harvested for further measurements. Plant height was evaluated as the length from the soil surface to 
the end of the main panicle. A panicle was counted if it had more than 10 full-filled grains. All grains were dried 
(moisture between 13% and 14%) before further evaluation of traits related to gain yield and grain shape. 
Approximately 600 grains were used to measure grain shape-related traits (TGW, GL, GW, and GLWR). SNPP 
was measured using the following formula: = ∗SNPP GYPP/(PN TGW).

Genotyping and imputation.  All 53 parental lines were genotyped using the rice 50 K SNP chip on the 
Illumina Infinium platform. This SNP array contains 51478 SNPs that are evenly distributed on all 12 chromo-
somes. First, we filtered the genotypes of the parental lines by the following criteria: missing rate <= 0.2 (4466 
SNPs removed) and heterozygous rate <= 0.15 (another 1596 SNPs removed). The filtering process left 45416 
high quality SNPs, among which 26920 SNPs showed polymorphism and were used for further analysis. We 
used the KNNcatimpute function (R package ‘scrime’) to perform genotype imputation. To increase imputation 
accuracy, we added the high-quality genotypes of 337 closely related rice cultivars to form an imputation panel 
consisting of 390 samples. We evaluated the imputation accuracy by random sub-sampling validation, and the 
accuracy rate was ~98.5%. After imputation, we obtained F1 hybrid genotypes by combining their corresponding 
parental genotypes. The F1 hybrid genotypes were filtered to leave only those with MAF >= 0.05, leaving 26736 
SNPs for further analysis.

Phylogenetic analysis and population structure.  We performed phylogenetic analysis for all parental 
lines using a neighbor-joining statistical method, whereas a bootstrap method was used to test for phylogeny (200 
bootstraps). Phylogenetic analysis was carried out using MEGA software (version: 6.06)56. Population structure 
analysis was carried out for F1 hybrid genotypes using smartpca software (EIGENSOFT software package, ver-
sion: 6.0.1)57.

Phenotype normalization and resample GWAS.  Mixed linear models have been used in GWAS to con-
trol for population structure and familial relationships. One important assumption for mixed linear models is that 
the phenotype residues have a Gaussian distribution; any deviation from this assumption may cause spurious sig-
nals and reduce power58. We found that the phenotype distributions of some traits in our phenotype datasets were 
highly skewed or bimodal. Therefore, python package WarpedLMM (version: 0.21)59 was used to perform phe-
notype normalization to ensure a Gaussian distribution of the phenotype residues before further GWAS analysis.

To obtain a deep understanding of heterosis in hybrid rice, we separated each trait into three categories, F1, BPaV, 
and SCA, and identified genetic mechanisms underlying these trait categories by GWAS analysis. F1 represents the 
original phenotype values of the F1 hybrids. BPaV represents the better paternal values of the F1 hybrids 
( = −BPaV F1 Pat). SCA represents the special combining abilities of the F1 hybrids ( = − − −..y y GCASCA ij mat
GCApat, and = −. ..y yGCA ii ; yij represents the average phenotype of F1 hybrids that derived from parents i and j, ..y  
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represents the overall mean of all crosses, .yi  represents the average value of all F1’s that derived from parent i, and 
GCA represents general combining ability). We also performed MPV GWAS for some traits in the LS dataset, with 
MPV defined as the non-additive performance of the F1 hybrid compared to the mean of both parents 
( = − +MPV F1 (Pat Mat)/2). Our study panel was highly structured, and many F1 hybrids had close familial 
relationships, leading to two problems: spurious association signals and long range correlations among genetic 
markers that made it difficult to interpret the association analysis results38, 40. To solve the first problem, we used a 
mixed linear model to control for population structure and close relationships among F1 hybrids. To solve the sec-
ond problem, we used the forward-selection resampling GWAS method (based on a multiple loci model) instead of 
the single locus model used in traditional GWAS38, 40, 41. First, we randomly selected 80% of all samples from the total 
dataset without replacement to form a new sub-dataset. This selection procedure was repeated 300 times to form 300 
sub-datasets. GWAS using a mixed linear model was performed iteratively for each sub-dataset, after which the SNP 
with the lowest P-value, provided that it passed the significance threshold, was added as a covariate for the next 
round of GWAS. This forward-selection GWAS procedure was repeated until no additional SNP passed the signifi-
cance threshold. After finishing the GWAS analysis for all sub-datasets and averaging the results across all identified 
genetic models, a resample model inclusion probability (RMIP, ranging from 1 to 100), representing the model 
inclusion probability in 100 forward-selection resampling GWAS analyses, was assigned to each identified SNP. 
Those SNPs meeting the empirical RMIP threshold of 5 were identified as significantly correlated SNPs. GWAS 
analysis was performed using all 4 inheritance models: additive, dominance, recessive, and over-dominance. The 
additive inheritance model was utilized as in traditional GWAS (AA, Aa, and aa were coded as 0, 1, and 2, respec-
tively). For dominance and recessive inheritance models, heterozygotes (Aa) were coded the same as either the 
homozygous genotypes of major alleles (AA) or homozygous genotypes of minor alleles (aa). The over-dominance 
model was utilized by recoding the heterozygote to 1 and both homozygotes to 0. Among the four RMIPs derived 
from these inheritance models, the biggest one was used for further analysis. To reduce the redundancy of associa-
tion signals, we merged SNPs located less than 800 kb apart and showed correlations by linear regression analysis. 
GWAS was performed using R package ‘GenABEL’ (mmscore function)60, 61. The genome-wide significance thresh-
old for each GWAS analysis was determined by 300 permutation tests at a false discovery rate (FDR) lower than 0.05 
using the Benjamini and Hochberg method62.

To define the QTL range, we first split the parent genomes into hapblocks using the software HAPLOVIEW63 
and the recombinant confidence interval method devised by Gabriel et al.64. Then the QTL regions were deter-
mined by the range of the corresponding hapblocks. All genomic positions provided in this manuscript are based 
the rice reference genome IRGSP-Build4.

Variance explained.  The variance explained by each QTL was estimated as the sum of squares by a linear 
regression model using the “lm” function in R. For the variance explained by multiple QTLs, we first filtered the 
QTLs using a forward-backward selection method based on the Akaike information criterion (AIC), after which 
the total variance explained was estimated as the residual sum of squares by fitting all filtered QTLs after removal 
of family effects (variance explained by the top 10 genomic PCs).

Assessment of QTL effects in F1 hybrids.  For each QTL identified in the GWAS analysis, we separated 
all F1 hybrids into three groups according to their genotypes (one heterozygote (Aa) or two homozygotes (AA, 
and aa)). If any of these three groups had less than 15 samples, the QTL was placed into the two-genotype group; 
otherwise, it was placed into the three-genotype group. For two-genotype QTLs, we directly compared the aver-
age phenotype values of both two genotype classes. A two-genotype QTL was defined as hetero-superior if the 
average performance of its heterozygotes outperformed that of its homozygotes in the F1 hybrids; otherwise, it 
was defined as homo-superior. For three-genotype QTLs, we used a linear regression model to assess dominance/
additive (d/a) effects by Plink software (–linear, –genotypic, version: 1.9)65. Dominance effects were assessed by 
recoding the three genotypes (AA, Aa, and aa as 0, 1, and 0, respectively), whereas additive effects were assessed 
by recoding the three genotypes as 0, 1, and 2. Dominance and additive effects were fitted simultaneously in the 
linear regression model, and the top 10 genomic PCs were added as covariates to control for population structure. 
We used the following d/a criteria judged by Stuber et al.66 to define the QTL effects: additive = [0, 0.2); partial 
dominance = [0.2, 0.8]; dominance = (0.8, 1.2]; overdominance >1.2.

Selective scan in parental lines.  We used Tajima’s D to find genomic regions under selective pressure in 
the 14 male sterile lines and 39 restorer lines, respectively. To include enough polymorphic sites for robust anal-
ysis results, we used a 240-kb sliding window size (containing approximately 15 polymorphic sites) with a 20-kb 
step size. A QTL was defined to be under selective pressure if it overlapped with any genomic region below the 
10th percentile of Tajima’s D in either male sterile lines or restorer lines. Calculation of Tajima’s D was performed 
using Variscan software (version 2.0)67.
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