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Augmented reality (AR) enhances the user’s environment by projecting virtual objects
into the real world in real-time. Brain-computer interfaces (BCIs) are systems that enable
users to control external devices with their brain signals. BCIs can exploit AR technology
to interact with the physical and virtual world and to explore new ways of displaying
feedback. This is important for users to perceive and regulate their brain activity or
shape their communication intentions while operating in the physical world. In this study,
twelve healthy participants were introduced to and asked to choose between two motor-
imagery tasks: mental drawing and interacting with a virtual cube. Participants first
performed a functional localizer run, which was used to select a single fNIRS channel
for decoding their intentions in eight subsequent choice-encoding runs. In each run
participants were asked to select one choice of a six-item list. A rotating AR cube
was displayed on a computer screen as the main stimulus, where each face of the
cube was presented for 6 s and represented one choice of the six-item list. For five
consecutive trials, participants were instructed to perform the motor-imagery task when
the face of the cube that represented their choice was facing them (therewith temporally
encoding the selected choice). In the end of each run, participants were provided with
the decoded choice based on a joint analysis of all five trials. If the decoded choice
was incorrect, an active error-correction procedure was applied by the participant. The
choice list provided in each run was based on the decoded choice of the previous run.
The experimental design allowed participants to navigate twice through a virtual menu
that consisted of four levels if all choices were correctly decoded. Here we demonstrate
for the first time that by using AR feedback and flexible choice encoding in form of
search trees, we can increase the degrees of freedom of a BCI system. We also show
that participants can successfully navigate through a nested menu and achieve a mean
accuracy of 74% using a single motor-imagery task and a single fNIRS channel.

Keywords: hemodynamic brain-computer interface, augmented reality, motor imagery, real-time analysis,
temporal information encoding, user-centered approach
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INTRODUCTION

A brain-computer interface (BCI) is a system that enables users
to send commands to the external world through brain signals
in the absence of motor output (Wolpaw et al., 2002). BCI
research has mainly focused on developing applications for (1)
changing brain activation and associated behavior voluntarily
through neurofeedback (Subramanian et al., 2011; Scharnowski
et al., 2012; Shereena et al., 2018) and for (2) replacing (lost)
motor functions through communication BCIs (Birbaumer et al.,
1999; Nijboer et al., 2008; Sellers et al., 2010) and (e.g.,
wheelchair/robotic body-part) control systems (Galan et al.,
2008; Muller-Putz and Pfurtscheller, 2008; Iturrate et al., 2009;
Rebsamen et al., 2011; Murphy et al., 2017). Independent of the
application, information is fed back to users about the success or
failure of the intended act (Leeb et al., 2007). In communication
and control BCIs, feedback may allow the BCI user to adapt
the communication content (of a next encoding trial) in a
sense of “back-and-forth communication,” which enables users
to communicate with or control a specific component of
the external world.

The most common approach to provide feedback to users is
through simplified unimodal (visual or auditory) representations
of brain activation, such as bars or single tones (Sulzer et al.,
2013). Alternative ways have emerged in the past years due to
new technological developments in the areas of multimedia and
entertainment, such as virtual reality (VR). VR is an immersive
system that provides users with a sense of presence through
potential interactions with a simulated virtual world rendered
in real-time (Lécuyer et al., 2008). It has been suggested that
VR environments can improve the BCI experience as it offers
a richer and potentially more motivating feedback (Chin et al.,
2010; Allison et al., 2012). Recent advances in VR research
enabled the development of augmented reality (AR) systems.
Unlike VR systems, AR enhances the environment the user is
in by projecting virtual objects as overlays into the real world.
This projection is called registration and it can be carried out
using a camera that detects a number of fiducial markers placed
in the real environment (Si-Mohammed et al., 2017). AR can
be displayed using systems worn on the head (also known as
head mounted displays, HMD) or visualized through a dedicated
screen that the participant is not wearing (phone, computer
screen, etc.). Depending on the augmentation type, AR systems
can be divided into visual see-through (VST) and optical see-
through (OST) systems. In VST-AR, real images are recorded
in real-time by the camera of a device (tablet, phone, etc.)
before being visualized through a screen, augmented with virtual
information. In OST-AR, the virtual content is directly displayed
in front of the user’s eyes onto a semi-transparent screen.

The number of studies exploring the use of BCIs in AR
applications remains relatively small (Si-Mohammed et al.,
2017). Up until now, the majority of the AR-BCI literature
has focused on electroencephalography (EEG)-based evoked
potentials applied to a wide range of fields, namely robotics
(Lenhardt and Ritter, 2010), medicine (Blum et al., 2012), home
automation (Takano et al., 2011; Park et al., 2019), navigation
(Faller et al., 2010), and neurofeedback (Chin et al., 2010;

Mercier-Ganady et al., 2014). Importantly, some of these studies
have assessed the impact of AR feedback in mental workload
and engagement compared to traditional forms of feedback.
For example, Chin et al. (2010) compared 3D-AR displays vs.
traditional 2D feedback (both displayed on a computer screen)
and found that despite the higher mental load experienced by the
participants during the 3D-AR feedback, participants reported
the 3D-AR feedback being more engaging and motivating.

AR-BCIs based on hemodynamic signals have also been
explored, but to a smaller extent (Si-Mohammed et al., 2017). One
way of measuring hemodynamic signals is using functional near-
infrared spectroscopy (fNIRS), a portable, silent, and affordable
counterpart to functional magnetic resonance imaging (fMRI)
(Scarapicchia et al., 2017). Both EEG and fNIRS make use of
sensors [electrodes and optode pairs (sources and detectors),
respectively] placed on the scalp to measure signals which
correlate with neural activity (Allison et al., 2012). While EEG
measures the postsynaptic potentials of ensembles of neurons,
fNIRS is based on the optical measurement of the hemodynamic
response of both oxy- and deoxyhemoglobin (HbO and HbR,
respectively) to neural activity (Lloyd-Fox et al., 2010). Although
EEG offers a higher temporal resolution than fNIRS, the
latter represents an interesting option as it provides higher
spatial resolution and is less vulnerable to motion artifacts
(Lloyd-Fox et al., 2010).

To our knowledge, only three fNIRS-based AR-BCIs have
been reported. Hu et al. (2019) used an fNIRS-based AR-BCI
in a simulated real-time environment aimed at clinicians to
measure and visualize in real-time the ongoing cortical activity
to determine when and where the patients were suffering from
pain. For that, they placed fNIRS optodes over the patients’
bilateral prefrontal cortex and primary somatosensory area and
monitored brain activity while volunteers with hypersensitive
teeth underwent a thermal stimulation session. The cortical
activity was superimposed onto a participant’s head in the real
world in real-time through an OST-HMD (HoloLens) device the
clinician was wearing. Afergan et al. (2015) developed an fNIRS-
based BCI using OST-HMD called Phylter. They developed a
control system connected to Google Glass that helped preventing
the user from getting flooded by notifications. By monitoring
users’ mental workload in real-time with an fNIRS device, their
system would only show notifications to the user if the mental
workload was low enough. In the context of mental workload
monitoring, McKendrick et al. (2016) assessed the cognitive
differences between an AR wearable display (Google Glass) and
a handheld display (smartphone) using a mobile fNIRS system
covering the lateral PFC during an outdoor navigation task.
They complimented it with two separate secondary tasks to
assess differences in mental workload and situation awareness
during navigation. They concluded that navigating with an AR
wearable display produced the least workload during one of
the working-memory task, and a trend for improved situational
awareness in their measures of prefrontal hemodynamics. In this
proof-of-concept study we tested whether healthy participants
can use an AR fNIRS-based BCI paradigm motivated by the
successful implementation in fNIRS-based BCIs, the increased
engagement associated to the use of AR reported in previous
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studies (Chin et al., 2010) and its ability to preserve the real world
while blending digital components to it.

Generally speaking, the hemodynamic response to a given task
execution/stimulus shows a specific and reproducible temporal
behavior (Menon and Kim, 1999). Previous fMRI-based BCI
work exploited this property and demonstrated that up to
four distinctive BCI commands could be encoded/decoded by
varying the temporal aspects (onset, offset and/or duration)
of a (set of) mental task(s) (Sorger et al., 2009, 2012; Bardin
et al., 2011). Despite its simplicity, so far no fNIRS-based BCI
has implemented this temporal information encoding approach.
This is probably because the temporal encoding approach is
serial in its nature, which can make the encoding process
lengthy depending on the experimental design. In addition,
it has been used in combination with univariate information
decoding approaches, while the hemodynamic BCI community
has mostly adopted multivariate classification techniques such
as Linear Discriminant Analysis, Support Vector Machines or
Artificial Neural Networks that have been used to exploit the
spatial features of fNIRS signals evoked by performing different
mental-imagery tasks (Naseer and Hong, 2015b; Hong et al.,
2018). However, with appropriate experimental designs, the
temporal encoding approach offers a way to increase the degrees
of freedom of a BCI using a single mental task. With this in
mind, the present study aimed at transferring the fMRI-based
temporal encoding approach mentioned above to fNIRS. For
that, we used a selection paradigm where participants had to
sift through a multi-leveled menu using a motor-imagery task.
This menu consisted of four levels, in such a way that the choice
options provided in each level (always six) were based on the
decoded choice of the previous level. Thus, here we expanded the
traditional four-choice temporal information encoding approach
to include six options for choice selection in each of the
levels comprising the menu, where an AR object guided
the temporal encoding approach. We then used a univariate
procedure for decoding participants’ intention and used the
same AR object to back-communicate the decoded answer of
the participants’ intention. Additionally, to account for potential
mistakes during the decoding process, we implemented an active
error-correction procedure to be applied by the participants.
Importantly, this specific combination of temporal encoding and
univariate decoding approaches allows participants’ intentions
to be decoded based on the information recorded from even
a single fNIRS channel provided that this channel has enough
signal quality. With this in mind, in the present study we used
a single channel for decoding participants’ choices.

Although the application of BCIs has been limited primarily
to a laboratory setting, some of the studies mentioned above have
examined the possibility of using BCI in everyday-life settings
in different contexts (Takano et al., 2011; Blum et al., 2012;
Afergan et al., 2015; Hu et al., 2019; Park et al., 2019). However,
ecologically valid approaches are challenging to develop as,
among other reasons, they should be as efficient, accurate and
reliable as possible, but also easy to use, intuitive, and simple
to (dis)assemble. This is probably the reason why most BCI
research has focused predominantly on improving the technology
(Liberati et al., 2015). There is a relevant body of work addressing

that BCI design and development should become more user-
centered in order to achieve successful everyday-life applications
(Kübler et al., 2014; Liberati et al., 2015; Nijboer, 2015). Effort has
been made to incorporate this aspect into various applications
(Weyand and Chau, 2015, 2017; Weyand et al., 2015; Nagels-
Coune et al., 2017; Si-Mohammed et al., 2018). While still in a
laboratory setting, in the present study we worked toward a user-
centered communication system by letting participants choose
their preferred motor-imagery task and by selecting participant-
specific (single) most-informative fNIRS channel for decoding
their choices. Using a single channel constitutes the simplest
setup to (dis)assemble. In addition, it should make the setup
comfortable and thus prevent participants from withdrawing
from fNIRS recordings due to setup-related discomfort (Suzuki
et al., 2010; Cui et al., 2011; Rezazadeh Sereshkeh et al., 2018).

It is important to note that fNIRS measurements are
contaminated by systemic interference of especially (but not
limited to) extracerebral regions, which is mainly caused by
cardiac pulsations, respiration, and blood-pressure variations
(Boas et al., 2004; Tachtsidis and Scholkmann, 2016). Several
approaches have been reported in the literature to reduce these
noises: conventional band-pass filtering (Hocke et al., 2018; Pinti
et al., 2019); modeling physiological noises as a sum of sinusoidal
functions with known frequencies where their amplitudes are
estimated by using the extended Kalman filter and regressed out
using a general linear model (Prince et al., 2003); global signal-
covariance removal by either principal/independent component
analysis (Zhang et al., 2005; Aarabi and Huppert, 2016) or global
average procedures (Batula et al., 2017); adaptive filters that
use recursive least-squares estimation methods (Nguyen et al.,
2018) or short-distance channel (SDC) regression (Saager and
Berger, 2005; Saager et al., 2011; Goodwin et al., 2014). In
fNIRS measurements these SDCs are channels that have reduced
inter-optode separations such that the interrogated volume is
confined primarily to extracerebral regions (Goodwin et al.,
2014). The main assumption underlying their usability is that
the same systemic physiological noise present in the normal-
distance channels (NDCs) dominates the signal acquired with
SDCs (Gagnon et al., 2012). Intuitively, SDCs can then be used to
minimize/reduce unwanted physiological noise from the normal-
distance channels. So far, not many fNIRS-based BCIs have
employed them (but see Shin et al., 2017). This is partially
because fNIRS equipment that allows such measurements has
only recently become widely available. Here, SDC correction was
used for the selection of the most-informative fNIRS channel as
well as during the decoding process.

In this preliminary study participants achieved mean accuracy
level of 74% (with a chance-level of 37.5% for six answer options),
which shows that the temporal features of the fNIRS signal
can be exploited in a temporal encoding paradigm to increase
the degrees of freedom of a BCI using a single mental task.
These accuracies also indicate that the proposed fNIRS-based
AR-BCI setup can be successfully controlled, on average, by
participants. Importantly, this work conveys the fundamental
steps toward developing the first fNIRS-based AR-BCI system to
be used as a communication device for bedside applications in a
clinical setting.
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MATERIALS AND METHODS

Participants
Twelve healthy volunteers [five males; mean age (SD) = 27.1 years
(3.2 years)] with varying previous BCI/fNIRS/task experience
participated in this study (see Table 1). Participants did not have a
history of neurological disease and had a normal or corrected-to-
normal vision. The experiment conformed to the Declaration of
Helsinki and was approved by the ethics committee of the Faculty
of Psychology and Neuroscience, Maastricht University. Informed
consent was obtained from each participant before starting
the measurements. Participants received financial compensation
after the session.

Experimental Design and Stimulus
Display
General Structure
The experiment consisted of a training session and an
immediately following experimental fNIRS session. The training
session was self-paced and ranged between 15 and 35 min across
participants: we only switched to the experimental fNIRS session
when participants felt comfortable with the stimuli and the
motor-task performance.

In an attempt to follow a user-centered approach, participants
were introduced to two motor imagery tasks during the training
session and asked to choose between them: (option 1) mental
drawing [of small geometrical figures (a square, circle, etc.)
or contour drawings (a star, flower, boat, etc.) and (option 2)
imagine to interact with the virtually presented AR cube (by, e.g.,
to imagine to hit/squeeze it)]. Participants were asked to choose
the mental task (mental drawing or imagining interacting with
the cube), the specific strategy (drawing a square or imagining
hitting the cube) they expected would work best and would
interfere the least with the stimuli and to perform the motor-
imagery task with their right hands. They were instructed to keep
their eyes open throughout the experiment and to look at the
computer screen while staying as still as possible during the runs.

The experimental fNIRS session lasted around 1.5 h.
Participants first performed a functional localizer run, during
which the participants were presented with a gray AR cube that
contained specific symbols (5/6 = crosses, 1/6 = checkmark).
For twelve consecutive times, they performed the selected motor
imagery task when the checkmark was facing them (for 6 s)
and had to rest for the remaining faces (for 30 s, see Figure 1).
There was an initial baseline period of 36 s indicated by a blue
rotating cube, in which participants rested. We chose a baseline
period of 36 s to guarantee a stable baseline measure for real-
time conversion of raw data into hemoglobin (Hb) concentration
changes. After the twelve trials, the cube stopped rotating and
became blue again, indicating the end of the run. This run was
used to select a user-specific most-informative (“best”) fNIRS
channel to decode participants’ choices in the eight subsequent
choice-encoding runs (here on referred to as choice runs).

Each choice run aimed at selecting one option from a six-item
list (menu). These runs differed from the functional localizer run
in (1) the number of active motor imagery trials [five trials (choice
runs) vs. twelve (functional localizer run)] and (2) the fact that
the AR cube was color-coded and numbered (choice runs) vs. the
AR cube was gray and contained geometrical shapes (functional
localizer run). Importantly, the task duration remained at 6 s
during the choice runs. During each choice run, participants
selected one choice from a six-item list provided before the start
of the run and performed the motor imagery task only when the
number corresponding to their choice was facing them (temporal
information encoding), for five consecutive times. There was an
additional baseline period of 18 s after the last trial to ensure that
the hemodynamic response goes back to baseline. After the run,
the cube unfolded and the decoded choice (based on real-time
analysis of the fNIRS data) was highlighted in red (see Figure 1).

AR Stimulus Display
In this experiment, we used a variation of a VST-AR system,
where a rotating AR cube displayed on a computer screen
embodied the menu and each face of the cube represented one

TABLE 1 | Participant characteristics.

Previous experience

Age range fNIRS Cap Size (cm) BCI fNIRS Task

Mental drawing Interacting with cube

P01 20–25 56 First time <5 times < 5times First time

P02 20–25 56 <5 times 5–10 times 5–10 times First time

P03 20–25 56 <5 times < 5times <5 times First time

P04 25–30 56 >10 times > 10 times >10 times First time

P05 35–40 58 First time First time First time First time

P06 25–30 56 <5 times <5times 5–10 times First time

P07 25–30 58 <5 times 5–10 times <5 times First time

P08 25–30 58 First time First time First time First time

P09 25–30 56 <5 times < 5times <5 times First time

P10 25–30 56 5–10 times 5–10 times 5–10 times First time

P11 25–30 56 >10 times >10 times >10 times First time

P12 25–30 58 First time <5 times <5times First time
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FIGURE 1 | Experimental design. During the training session participants chose between two motor imagery tasks. Then, during the functional localizer run,
participants performed the chosen task for twelve consecutive trials when the checkmark was facing them (indicated in yellow, below the face showing a checkmark)
and had to rest for the remaining faces. There was an initial baseline (BL) period indicated by a blue rotating cube, in which participants rested. After the twelve trials
the cube stopped rotating and became blue again, indicating signaling the end of the run (indicated with the word stop in the figure). The user-specific
most-informative channel from this run was used to decode participants’ choices during the choice runs. Participants were asked to perform the mental task when
the number corresponding to their choice was facing them (temporal information encoding), for five consecutive trials (in this example it corresponded to choice
number 6, again underlined in yellow). After each run the feedback period started (indicated by the red square), where the cube unfolded and the decoded choice
was highlighted in red (for visualization purposes, we added a black thick square in this schematic representation). After the choice runs, participants were asked to
fill in several questionnaires.

choice of the list (see Figure 2A for an example of a user’s
view). In the presented AR system, a white A4 cardboard was
used to represent the real-world stimulus that also served as a
spatial point of reference necessary for the visualization of the
AR cube. The A4 cardboard was placed on the desk, between
the computer screen and the participants. The left half of the
board was wrapped in transparent wrapping paper and served
as a whiteboard, where choice options were handwritten (and
modified after each run). The right half of the board contained
a marker (a 2D-image, see hand-icon in top-left image of
Figure 2A) that, when detected by the HD webcam (Logitech
C270 HD, which was fixated on the participant’s forehead using
an elastic band and recording the cardboard), triggered the
visualization of the AR cube on a standard computer screen.
The AR cube was placed relative to the marker as seen in the
camera image (see top-left image in Figure 2A) with the help
of Vuforia (v7.1.34), an AR software development kit (SDK) that
was running in Unity3D. This SDK makes it possible to detect the
marker and to place the virtual cube on it, creating the effect of
augmented reality. The marker was motor imagery task-specific
and reminded participants of the task to be performed (mental
drawing or virtual interaction with the cube). After each run,
an unfolded AR cube was displayed on the computer screen
highlighting the decoded choice of the participant (see top-right
image, Figure 2A).

Nested Menu and Error-Correction Approach
The menu presented during choice runs consisted of four levels
that were interconnected in such a way that the choice options
provided in each level were based on the decoded choice of the
previous run. The provided answer options became more specific
throughout the levels. An example transition of provided options
from level one to level four would be: listen to music > choose
a genre > choose a band/artist > choose a song. Displaying the

selected choice of the fourth level (a song, a picture, a movie, etc.,
depending on the choice in the first level) indicated the end of
the navigation round, and participants were directed back to the
first level of the menu (see Figure 2A). This structure allowed
participants to go through a four-level nested menu twice if all
choices were correctly decoded.

Importantly, it could be that the decoded choice of any given
level of the nested menu did not match the encoded option by
the participant. To account for such decoding mistakes and in
a first attempt to correct for it, participants were instructed to
choose the “Error” option in the next run. This “Error” option
was part of the choice list in levels > 1 and the position this option
appeared on the menu list was balanced across the different levels.
If “Error” was decoded, they were provided with the same option
lists they saw before the decoding mistake was made (see first
Level 2 trial in Figure 2B).

fNIRS Data Acquisition
fNIRS data was recorded using a continuous-wave system
(NIRScout-816, NIRx, Medizintechnik GmbH, Berlin,
Germany). The optode setup consisted of nine sources and
eight detectors which were placed on the left hemisphere that
cover areas commonly associated with motor imagery, i.e.,
premotor cortex and part of the supplementary motor area,
primary motor cortex, somatosensory motor cortex and part
of the parietal cortex following the extended 10/10 EEG system
(see Figure 3; Sorger et al., 2012; Abdalmalak et al., 2016; Batula
et al., 2017; Klein and Kranczioch, 2019; Erdogan et al., 2019).
An in-house SDC was created by placing source S9 as close as the
optodes would allow (∼13 mm away) to detector D5 on the same
sagittal plane that connects D5 and source S6 (see Figure 3).
The signal measured by the SDC should be influenced by the
mid-sagittal sinus and other large vascular structures commonly
found in this region (Duvernoy et al., 1981), which have been
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FIGURE 2 | AR display and example of a full cycle of the nested menu. (A) A task-specific marker in the right-side of the A4 cardboard served as the spatial point of
reference necessary for the visualization of the AR cube. This cube was used to navigate through a four-level nested menu with six options in each level. The choice
options encoded by the participant are written in blue, while the decoded answers are written in black and highlighted in red with a black thick square in the
schematic representation of the unfolded cube. The choice options provided in each level were based on the decoded choice of the previous run. (B)

(Continued)
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FIGURE 2 | Continued
If the decoded choice was incorrect, they were asked to choose the “Error” option in the next run. If “Error” was decoded, they were provided with the same option
list they saw before the error occurred. In this example, the participant chose to perform a mental drawing task, as indicated by the markers under “Navigating
through the nested menu”. In the first level, we provided participants with keywords that responded to the question “What would you like to do?” Since the decoded
choice [Listen to] Music (highlighted in red only in the actual run; highlighted in red and with a black thick square in the schematic view) was correct, the next run
summarized music-genre options (Level 2). Here, the participant chose “Rock” [music] but the decoded choice was “Jazz”. Thus, the participant was provided with
Jazz-band options in the next run (Level 3), where (s)he encoded the “Error” option. Since the “Error” option was correctly decoded (see displayed choice after Run
3), the participant was provided again with Level 2 choice options. The procedure went on until the participant reached the last level of the nested menu. At the end
of the run, we played the decoded song (“Under pressure” in this example) to the participant and (s)he was directed back to the first level of the menu.

FIGURE 3 | 3D view of the fNIRS-optode arrangement. The setup consisted of nine sources (in red), eight detectors (in blue) placed over the left-hemipsheric motor
and premotor regions. In total the setup contained one SDC (S9-D5) and 24 NDC. For the 3D representation we used NIRSite v1.0 software (NIRx Medizitechnik
GmbH, Berlin, Germany; RRID: SCR_002491).

shown to be affected by low frequency oscillations and cardiac
signals (Tong and Frederick, 2012). We used this information as
a proxy to account for physiological noise in the region covered
by the optode setup.

In total, the setup contained 24 NDCs and one SDC. The
mean inter-optode distance of the standard channels spanned
from 26.1 to 36.5 mm. Sources emitted light at wavelengths 760
and 850 nm, and the light intensity acquired at the detector side
was sampled at 6.94 Hz. Besides the standard cap fixation (using
the chin band), the fNIRS cap (EasyCap 128Ch ActiCap, EasyCap
GmbH, Herrsching, Germany) was fixated onto the participants’
head with three medical tape stripes (connecting the cap and
the participant’s forehead) to assure the cap would not shift
during the measurements. In addition, a black, plastic overcap
was placed on top of the fNIRS cap to additionally prevent the
light in the room from reaching the optodes.

Apparatus
The session took place in a lab that consisted of two rooms,
i.e., an inner and an outer room, where the hardware and
materials comprising the setup were distributed (see Figure 4).
We used NIRStar 15.2 (NIRx, Medizintechnik GmbH, Berlin,

Germany) for recording the data and Turbo-Satori (TSI) 1.4.2
(BrainInnovation B.V., Maastricht, the Netherlands; Lührs and
Goebel, 2017) and Matlab 2017a (The MathWorks Inc., Natick,
Massachusetts, United States) for real-time preprocessing and
decoding the participants’ choices, respectively (see Data Analysis
section). The three programs ran on the data-recording and -
analysis laptop (depicted with number 6 in Figure 4). NIRStar
15.2 was connected to the NIRScout system via USB and to
TSI via Lab Streaming Layer (LSL). TSI and Matlab were
connected via the TSI-Matlab interface, a self-designed network
interface enabling real-time access to raw and preprocessed
fNIRS data as well as protocol and statistical information
(Lührs and Goebel, 2017; BrainInnovationSupport, 2019). In
addition, Matlab was used to log the different experimental
conditions by sending triggers to the fNIRS system via LSL and
to control the stimulus display in that was running in Unity
3D software (v2018.3.2.f1, Unity Technologies, San Francisco,
California, United States), which was running in the stimulus
laptop (number 5 in Figure 4). During choice-encoding runs
Matlab sent to Unity3D the following commands via TCP/IP:
(“a”) start of the run, which initiated the rotation of the
inactive (blue) AR cube; (“b”), start of the encoding period,
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FIGURE 4 | Summary of the technical setup and connections between its different components. (A) Setup. The inner room, where participants were measured while
seated (see (3) and enlarged picture), contained the fNIRS system (4), a computer screen (1), an HD webcam (3), the A4 cardboard (2) and a desk (7). The outer
room, where the experimenter was located, hosted the two laptops, i.e., the data-recording and -analysis laptop (6) and the stimulus laptop (5). Physical connections
(wires) are depicted with continuous lines, while non-physical connections [Lab Stream Layer (LSL), TCP/IP] connections are depicted with dashed lines.
(B) Information flow. NIRStar 15.2 was connected to the NIRScout system via USB and to Turbo-Satori (TSI) viaLSL. TSI and Matlab were connected via the
TSI-Matlab interface. Matlab was used to send triggers back to the fNIRS system via LSL and to control the stimulus display in Unity3D software (via TCP/IP).

FIGURE 5 | Temporal-decoding approach. A GLM was fitted to the HbX data (from five repeated trials) to decode the participants’ intentions. In this example, the
participant encoded option #6 (represented by the black, thick line) and HbO signal was used for decoding. Each colored area represents the encoding time (the
period where participants were instructed to perform the mental task) for each of the cube faces. Each colored HRF represents the expected fNIRS response for
each of the options. After the run the cube unfolded and feedback was provided by highlighting in red the decoded intention (which was the condition that led to the
highest t-statistic [option 6, t-value = 8.21]). For visualization purposes, we added a black thick square in this schematic representation).

which turned the inactive cube into an active one by changing
the blue-colored faces into color-coded faces; (“c”) last rest
period, which turned the face of the AR cube back to blue,
indicating the last rest period of the run; (“1–6”) decoded
choice, which unfolded the cube and highlighted in red the
decoded choice. All commands except for those pertaining to
the decoded choice were used for the functional localizer run.
The computer screen in the inner room was connected to the
stimulus laptop through an HDMI cable. The HD webcam in

the inner room (number 3 in Figure 4) was connected to the
stimulus laptop via USB.

Subjective Ratings and Previous
Experience Report
After the completion of the experiment, participants first rated
how comfortable the setup (optodes and webcam) felt throughout
the session according to a Likert-scale ranging from 0 (extremely
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uncomfortable) to 10 (extremely comfortable). We predicted
that comfortability ratings would decrease over time due to the
presence of local pressure on the head surface caused by optodes
(Nagels-Coune et al., 2017) and the webcam. Then participants
rated the general easiness, pleasantness and vividness of the two
motor imagery tasks they were trained on using another Likert-
scale ranging from 0 (extremely difficult/unpleasant/not vivid
at all) to 10 (extremely easy/pleasant/very vivid). In addition,
participants were asked to report on their previous motor
imagery task, fNIRS and BCI experience (first time, less than five,
five to ten times or more than ten experiments).

Data Analysis
Real-Time Analysis
Data preprocessing
Raw fNIRS data were first converted into optical-density data
and then into changes in Hb concentration through the modified
Beer-Lambert law in real-time, using differential path-length
factors of λ760 = 6.40 and λ850 = 5.85 (Essenpreis et al., 1993)
and a baseline calculation period of 15 s (10–25 s after run onset).
Data were filtered using a first-order moving-average high-pass
filter with a cutoff of 0.01 Hz and a second-order moving-average
low-pass filter with a cutoff of 0.25 Hz. No motion correction
was applied.

Channel selection
The channel and Hb-type selection per participant was based on
the result of the general linear model (GLM) analysis. Specifically,
the selection was based on the chromophore and channel that
led to the highest t-statistic of the task vs. rest contrast in the
functional localizer run. The design matrix included one task
predictor convolved with a standard hemodynamic response
function (HRF). The default HRF from SPM12 was used (two
Gamma HRF, the onset of response and undershoot 6 and 16 s,
respectively, dispersion 1 s, response to undershot ratio 6) and the
same amplitudes were used for the HbO and HbR task predictors.
In addition, a constant term and the SDC time course were used
as confound predictors should the latter satisfy the coefficient
of variation criterion (CV < 7.5%, which was the case for all
participants). The pre-whitening approach implemented in TSI
was used to remove serial correlations (Lührs and Goebel, 2017).

Temporal decoding
During choice runs the time course of the selected channel
was read in real-time in Matlab using the TSI-Matlab interface.
Participants’ choices were decoded by fitting a GLM in Matlab
using glmfit to all five trials in each choice run (see Figure 5).
The design matrix differed from the functional localizer run
in that it included six task predictors (one for each choice
option, i.e., choice period) instead of one convolved with the
HRF. Importantly, the SDC time course was used as a confound
predictor during choice runs only if it was used as a confound
predictor during the channel selection process. No pre-whitening
was applied. The condition that led to the highest t-estimate of
the task vs. rest contrast was considered the selected choice (see
Figure 5). It should be noted that this analysis was re-computed

offline using a simulated real-time approach for participants
P01–P07 due to a technical mistake during these sessions.

Offline Analysis
Channel-selection assessment
We evaluated the effect (on choice-decoding accuracies) of using
a predefined Hb type for the channel selection vs. selecting the
most informative HbX channel (where HbX ε {HbO, HbR}).
Importantly, and despite following a single-channel decoding
approach, we kept all channels in place to carry out this
assessment.

Besides, we evaluated the effect (on choice-decoding
accuracies) of using the SDC as confound predictor in the
channel-selection process. Differences across Hb-type and usage
of SDC were tested for significance using a two-way ANOVA
with factors SDC (with SDC, without SDC) × Hb-type (HbX,
HbO, HbR), followed by paired t-tests.

Effect of the number of trials in the decoding process
We used the same univariate choice-decoding approach as
described in section Temporal decoding to evaluate the effect of
the number of trials in a given run on decoding accuracies (based
on the most informative HbX channel). For that, we computed
the accuracies of all consecutive trial combinations for every
trial number (1:n trials, where n = {1,2,3,4,5}). For example, to
compute the decoding accuracy of three trials, trial combinations
1-2-3, 2-3-4, and 3-4-5 were used. We then quantified the effect of
the number of repetitions in the decoding accuracy at the group
level using Spearman’s rho correlation coefficient. The effect of
number of trials was additionally evaluated using information
transfer rate (ITR), defined as in Allison et al. (2012):

ITR = (log2N + P∗log2P + (1− P)∗log2(
1− P
N − 1

))∗
60
τ

(1)

where N is the number of classes, P is the classification accuracy
and τ is the duration of task and rest period, in seconds.

Decoding accuracy of error-correction trials
We incorporated an error-correction mechanism in our decoding
process by including an “Error” option in levels > 1 of the menu.
We assessed the accuracy of the error-correction approach with
a confusion matrix. For that, we pooled all encoded answers
across participants and divided them into “Error” and “Non-
Error” instances, depending on whether the participant intended
to encode “Error” or not, respectively. The encoded choices
were then compared to the decoded ones. Four measures were
extracted from the confusion matrix, namely accuracy, recall,
precision and specificity, which were calculated as follows:

• Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN)
• Recall = TP/(TP+ FN)
• Precision = TP/(TP+ FP)
• Specificity = TN/(TN+ FP)

where TP = True positive or correctly detected “Error” trials;
TN = True negative or correctly detected “Non-Error” trials;
FP = False Positive or incorrectly detected “Error” trials;
FN = False negative or incorrectly undetected “Error” trial.
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Chance-level definition
A quantile function of a multinomial distribution was used to
define the upper bound of the chance-level (37.5% for N = eight
runs, c = six classes and a p < 0.05).

Subjective ratings
Mean and SE of normalized subjective comfortability ratings
was computed by calculating the mean (of eight runs) for each
subject and subtracting the subject’s mean to each item. The
effect of the duration of the experiment (number of runs) on the
comfortability score was quantified using Pearson’s correlation.
In addition, the relation between previous BCI/fNIRS/task
experience on task accuracies reached by each participant was
assessed using Spearman’s correlation coefficient. Finally, to
evaluate the perceptual differences the mental tasks elicit on
each participant, normalized absolute mean differences between
the preferred and non-preferred mental task ratings were
assessed. First, each item was normalized following the same
approach as for the comfortability ratings. Next, the three scores
(easiness, pleasantness and vividness) were averaged for each
mental task and participant. Then, absolute differences between
mental tasks were computed and a right-tailed t-test was used
in Matlab.

RESULTS

Choice-Decoding Results Obtained in
(Simulated) Real-Time
Figure 6 shows the individual and group accuracies achieved
in the experiment. In addition, it shows that half of the
participants chose to perform the mental-drawing task and
that HbR was selected for seven out of twelve participants.
All participants but P04 exceeded the upper bound of
the chance-level (37.50%, orange dashed line). It should
be noted that accuracies from participants P01-P07 were
computed offline using a simulated real-time approach due
to a technical mistake during these sessions, while accuracies
from participants P08-P12 were calculated online based on
real-time results. On average, participants reached an accuracy
of 73.96% (SD = 20.96), as depicted by the left-most
gray bar of the group plots. Mean decoding accuracies
with different grouping factors were also computed and
descriptively did not differ substantially within each group
(see Figure 6).

Evaluation of Error-Correction Procedure
In total, participants had to encode the “Error” option 22 times
(see Figures 7A,B). Out of the 22 instances, the error option was
correctly detected 14 times, missed eight times, and incorrectly
labeled once, as indicated in the confusion matrix (Figure 7A).
Overall, the accuracy of the error-correction trials was 90.6%
(upper bound of the chance level was 58.88%, assessed by the
quantile function of a multinomial distribution with n = 96 trials,
c = 2 classes and alpha = 0.05).

Assessment of the Effect of Number of
Trial Repetitions
To assess how the number of trial repetitions affects the decoding
process, we sequentially reduced the number of trial repetitions
we used for decoding. Table 2 summarizes the individual and
group decoding accuracies for a decreasing number of repetitions
and Figure 8A shows that the number of repetitions used to
decode each run influences the decoding process. Specifically, we
observed a significant negative correlation between the accuracies
and the number of repetitions, as assessed by Spearman’s rho
correlation coefficient (ρ = −0.639, p < 0.0001). Importantly,
mean- and several single-subject accuracies (7 out of 12
participants) remain above chance level even when using a single
trial. As for the ITR computation, Figure 8B indicates that
slightly higher ITR values can be reached, on average, when using
four trials (0.34 bits/min) instead of five (0.29 bits/min).

Assessment of Channel Selection
Although our channel selection approach was based on selecting
the most informative HbX channel for each participant, it is
not uncommon to have a predefined Hb-type before the data
acquisition (Naseer and Hong, 2015b). In this context, we looked
at whether the selected channel would change had we decided
to focus on only one chromophore. In addition, since we used
the SDC time course as a confound predictor, we assessed
whether applying SDC correction (or not) influences the channel
selection. Table 3 shows that for some participants, the channel
selection approach does not affect the selected channel (see
P01, P02, P07 and P11 across all columns), while for other
participants it does. Descriptively speaking, SDC correction
slightly reduced the mean accuracy for the most-informative
HbX-channel approach. The reason behind this observation is
that the increased accuracy for some participants (P03, P06, P09,
P11, and P12) was smaller than the decrease in accuracies for
other participants (P04, P05, P08, and P10). The mean decoding
accuracy increased for the most-informative HbO and HbR
channel approaches (although to a considerably lesser extent
for the latter).

A repeated measures 2-way ANOVA with factors SDC (with
SDC, without SDC) × Hb-type (HbX, HbO, HbR) showed that
the mean accuracies were different across Hb-types [main effect
of Hb-types; F(2, 66) = 3.494, p = 0.036; no significant interaction],
but not across SDC. Subsequent paired t-tests showed that HbX
and HbR performed better than HbO [t(23) = 3.83; p(FDR
[q = 0.05]) = 0.001, and t(23) = 2.736; p(FDR [q = 0.05]) = 0.008].

Previous Experience and Subjective
Reports
Due to the (novel) AR component, the participants were
enthusiastic about the research study. Independent of the
achieved accuracies participants rated the setup positively and
considered the experiment as “fun,” “engaging,” and “motivating.”
The setup became uncomfortable over the runs as indicated
by a significant negative correlation (r = -0.991, p < 0.0001).
Participants reported the main source of discomfort to be the
pressure caused by the webcam on their foreheads and to a lesser
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FIGURE 6 | Choice-decoding accuracies obtained in (simulated) real-time (individual and group results) using HbX channel selection and SDC correction. All
participants but P04 reached accuracies higher than chance-level (orange, dashed line). The face colors and line pattern of the bar plots of each subject (left-half of
the figure) represent the selected Hb-type and strategy participants chose to perform, respectively. Mean decoding accuracies and standard deviation of all
participants and with different grouping factors can be found on the right-half of the figure. Groupings were based on the analysis type (simulated real-time vs.
real-time), the motor imagery participants chose [interacting with the cube (cube) vs. mental drawing (MD)], the selected chromophore (HbO vs. HbR) and previous
BCI experience (novices, average and experts). Participants with no previous BCI/fNIRS/task experience were considered novices; expert participants were those
who had participated in more than five BCI experiments; the remaining participants were considered average (see Table 2). The integer after “N = ” indicates the
number of participants employed in each computation.

FIGURE 7 | Evaluation of error-correction procedure. (A) Confusion matrix. We reached an accuracy of 90.62% (72/96 trials were correctly labeled as “Error” or
“NoError”) and a recall level of 65.22% (out of 22 error trials, 8 trials were missed). (B) Summary matrix of when participants encoded the “Error” option (marked in
dark gray). Green (red) cells represent trials where the “Error” option was correctly (incorrectly) detected. Beige cells indicate a false positive trial.

extent the optodes on the head surface. We observed that the
preferred motor imagery task was rated significantly higher than
the non-preferred task [t(11) = 5.240, p < 0.001]. In addition,
we observed that previous BCI/fNIRS/task experience correlated
positively with individual accuracies, but none of them reached
significance (ρtask = 0.429, ρBCI = 0.360, ρfNIRS = 0.566, p > 0.05).

DISCUSSION

The present proof-of-concept study combined AR technology
and an fNIRS-based BCI to apply it in a communication context,
where twelve healthy participants were asked to navigate in
real-time through a nested six-choice menu while following a
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FIGURE 8 | Effect of the number of trial repetitions on obtained decoding accuracy (individual and group results). (A) The box-plot shading depicts the number of
repetitions used for decoding: from five trials (black) to a single trial (light gray). Median values are represented by the white circles, while the mean values are
indicated with the horizontal lines. The y-axis represents the accuracy (%) achieved by the participant. The red, dashed line shows the chance-level defined by the
cumulative multinomial distribution. The number of trials used to decode each run influences the decoding process, but mean- and several single-subject accuracies
remain above chance level even with a single trial. (B) Average (gray-scale markers) and single-subject (red markers) ITR values (bits/min) for different number of trials
as a function of achieved classification accuracies. Lines represent the theoretical values the ITR can take as a function of the number of classes, trial duration and
accuracy.

TABLE 2 | Individual and group decoding accuracies over decreasing number of repetitions (for HbX with SDC regression analysis).

Accuracies (%)

5 trials 4 trials 3 trials 2 trials 1 trials

P01 87.50 81.25 70.83 65.63 47.50

P02 100.00 81.25 70.83 59.38 57.50

P03 62.50 75.00 54.17 56.25 45.00

P04 37.50 50.00 54.17 43.75 37.50

P05 75.00 50.00 50.00 50.00 42.50

P06 62.50 68.75 41.67 46.88 27.50

P07 87.50 87.50 79.17 65.63 57.50

P08 50.00 56.25 45.83 40.63 32.50

P09 87.50 81.25 75.00 43.75 35.00

P10 87.50 87.50 83.33 62.50 52.50

P11 100.00 87.50 62.50 46.88 42.50

P12 50.00 68.75 70.83 40.63 25.00

Group (SD) 73.96 (20.96) 72.92 (14.19) 63.19 (13.74) 51.82 (9.56) 41.88 (11.83)

temporal information encoding approach. The decoded choice
was defined for each participant based on the time course of
the most-informative channel in the setup. In case the decoded
choice was incorrect, an active error correction procedure was
used. We achieved mean accuracy levels of 73.96% (with a
chance-level of 37.5% for six answer options) and error detection
accuracies of 90.6%. The following sections discuss the general
implications of this study, together with its limitations and
prospects for the future.

The Temporal Information Encoding
Approach – A Powerful Paradigm for
fNIRS-Based BCIs
In this experiment, we applied for the first time a temporal
information encoding approach and a GLM-based decoding
scheme previously reported in fMRI-based BCIs (Sorger et al.,
2009, 2012; Bardin et al., 2011) to an fNIRS-based BCI system
to distinguish between six options using a single channel and
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TABLE 3 | Most informative channel for different channel selection approaches and (individual and mean) accuracies reached with each approach.

Accuracies (%)

Best HbX Best HbO Best HbR

SDC No SDC SDC No SDC SDC No SDC

P01 [S3-D2] 87.50 (= ) [S3-D2] 87.50 [S3-D2] 75.00 (↑) [S3-D2] 25.00 [S3-D2] 87.50 (= ) [S3-D2] 87.50

P02 [S9-D6] 100.00 (= ) [S9-D6] 100.00 [S9-D6] 100.00 (= ) [S9-D6] 100.00 [S9-D6] 87.50 (= ) [S9-D6] 87.50

P03 [S6-D5] 62.50 (↑) [S2-D6] 37.50 [S6-D5] 62.50 (↑) [S9-D6] 25.00 [S2-D6] 62.50 (↑) [S2-D6] 37.50

P04 [S1-D3] 37.50 (↓) [S9-D6] 100.00 [S1-D3] 25.00 (↓) [S9-D6] 100.00 [S1-D3] 37.50 (↓) [S5-D6] 75.00

P05 [S2-D4] 75.00 (↓) [S2-D4] 87.50 [S7-D8] 25.00 (↑) [S6-D7] 12.50 [S2-D4] 75.00 (↓) [S2-D4] 87.50

P06 [S2-D6] 62.50 (↑) [S3-D2] 25.00 [S2-D6] 62.50 (↑) [S2-D6] 12.50 [S2-D6] 62.50 (↑) [S3-D2] 25.00

P07 [S2-D4] 87.50 (= ) [S2-D4] 87.50 [S2-D4] 75.00 (↑) [S2-D4] 37.50 [S2-D4] 87.50 (= ) [S2-D4] 87.50

P08 [S1-D2] 50.00 (↓) [S2-D2] 100.00 [S1-D2] 50.00 (↓) [S1-D2] 62.50 [S2-D2] 100.00 (= ) [S2-D2] 100.00

P09 [S2-D3] 87.50 (↑) [S2-D3] 75.00 [S2-D3] 87.50 (↑) [S2-D3] 75.00 [S1-D3] 75.00 (= ) [S5-D6] 75.00

P10 [S1-D2] 87.50 (↓) [S1-D2] 100.00 [S1-D2] 87.50 (↑) [S3-D2] 75.00 [S1-D2] 87.50 (↓) [S1-D2] 100.00

P11 [S1-D3] 100.00 (↑) [S1-D3] 62.50 [S1-D3] 50.00 (↑) [S1-D3] 37.50 [S1-D3] 100.00 (↑) [S1-D3] 62.50

P12 [S5-D5] 50.00 (↑) [S2-D4] 37.50 [S5-D5] 50.00 (↑) [S2-D4] 37.50 [S2-D3] 12.50 (↓) [S2-D4] 37.50

Group (SD) 73.96 (20.96) (↓) 75.00 (27.70) 62.50 (23.84) (↑) 50.00 (31.53) 72.92 (26.02) (↑) 71.88 (25.63)

Note 1: Red (blue) cells indicate that the selected chromophore was HbO (HbR) Note 2: The different symbols summarize the effect in decoding accuracy (↑ [increased],
↓ [decreased], = [maintained]) when SDC was used as a confound predictor vs. when it was not.

mental task. An advantage of using this procedure is that
a single channel may be sufficient for decoding participants’
intentions without hampering our decoding ability. Intuitively,
using a single channel should also make the setup more
comfortable. It should be mentioned that although we assessed
the feasibility of the single-channel approach and recorded
participants’ comfortability scores over time, we kept all channels
in place for post hoc analyses. Another advantage is that,
theoretically, this approach could allow including a considerably
high number of conditions. In the present work we have
further advanced previous applications by going from four
(Sorger et al., 2009; Bardin et al., 2011) to now six temporally
different but still differentiable encoding phases. Importantly,
future work should explore the upper limit of the included
number of conditions that would yield a sufficiently high
decoding accuracy. In any case, increasing the number of
conditions would inevitably rise the duration of the run, but
this could be solved by reducing the task duration to a
certain extent. Until now the biggest body of hemodynamic
BCI applications has used a task duration of 10 s (Naseer
and Hong, 2013; Herff et al., 2013; Hong and Santosa, 2016;
Nagels-Coune et al., 2017; Shin et al., 2017; Snipes et al.,
2017) or longer (Bardin et al., 2011; Bauernfeind et al.,
2011; Batula et al., 2017), and very few studies have used
task durations under 10 s: for example, Sorger et al. (2009)
and Shin and Jeong (2014) used variable task durations of
5/10/15 s and 6/8/10/15 s, respectively. To maintain the
single-trial duration as low as possible without hindering the
ability to distinguish between conditions, we opted to use 6
s task duration per condition for our experiment. However,
the considerable inter-subject variability in accuracies suggests
that user-tailored task durations should be considered in
future studies.

Using a Single fNIRS Channel – A
Promising Approach in the Context of
Temporal Information Encoding
Selected Feature
Feature selection varies across studies, but in general, previous
work has focused on either using only HbO signal (Stangl
et al., 2013; Erdoğan et al., 2014; Hong et al., 2015; Koo
et al., 2015; Hong and Santosa, 2016; Lapborisuth et al., 2017;
Noori et al., 2017; Liu et al., 2018) or the combination of
different chromophores (computing the mean or the difference
of HbO and HbR, Naseer and Hong, 2015b). A few fNIRS-BCI
applications have used/explored HbR on its own (Cui et al.,
2010; Naseer and Hong, 2015a; Hwang et al., 2016). The main
reason is that HbO is considered to exhibit larger and more
pronounced concentration changes than HbR in response to
mental tasks (Stangl et al., 2013; Sato et al., 2016). Besides, it
has been reported that HbO signals are more discriminative
and perform more robustly than HbR signals (Mihara et al.,
2012; Naseer and Hong, 2015a). However, Cui et al. (2010)
and Hwang et al. (2016) found that HbO and HbR performed
similarly in terms of accuracy. In the present work the channel
selection approach led to selecting HbR for 7/12 participants. In
addition, our post hoc analysis revealed that at the group level
channel selection using either HbX approach or HbR performed
better than only HbO channel selection. Despite having lower
SNR, these results point at the usefulness of the HbR signal for
the classification of motor imagery (at least) in a GLM-based
decoding approach.

SDC Correction
SDCs are used to minimize/reduce unwanted physiological noise
contained in NDCs (Goodwin et al., 2014). In the current work,
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a custom-built SDC was used as a GLM confound predictor
during both, the selection of the most informative channel and
the decoding process. Offline, we evaluated the effect of using
SDC for channel selection and choice decoding. As derivable
from Table 3, when using the HbX approach, SDC correction
did not affect the channel selection in seven out of twelve
participants (P01, P02, P05, P07, P09, P10, and P11). The selected
channels for the remaining participants differed either in location
only (P06) or in location and Hb-type (P03, P04, P08, and
P12). This suggests that the former group of participants had a
relatively stable signal compared to the latter ones. Interestingly,
the mean accuracies were higher for the former group, too
[89.29% (SD = 8.63) vs. 58.33% (17.08)]. Although the accuracy
did not significantly change on average when SDC correction
was used vs. when it was not, a clear divergence between both
approaches was observed in some participants. For example,
the accuracy reached by P04 and P08 was considerably reduced
after SDC correction (100–37.5% and 100–50%, respectively),
while it improved for P06 and P11 (25–62.5% and 62.5–100%,
respectively). It is not straightforward to attribute this opposing
and seemingly irregular effect across participants to an isolated
cause. Instead, it may be the result of an interaction between
the spatial relation of the SDC and the selected channel, which
suggests that the location of the SDC matters even in a relatively
small setup. In addition, the selected chromophore (whether it
is HbO or HbR) may influence the effect of SDC correction.
Indeed, unlike for the HbX (and the HbR) approach, we observed
a clear improvement before/after SDC correction when selecting
channels based on HbO (see Table 3, “Best HbO”). Specifically,
the mean decoded accuracy increased from 50 to 62.5% after SDC
correction. This is expected, as HbO signal is more affected by
global systemic artifacts in both extracerebral and intracerebral
compartments than HbR (Kirilina et al., 2012).

T-Statistic for Channel Selection and Decoding
Different approaches for channel selection have been reported in
the literature. Hu et al. (2013) compared the difference between
the maximum value during the task and rest periods, and
considered the channel to be active if the difference was positive.
Hong and Naseer (2016) and Khan and Hong (2017) suggested
selecting channels where the initial dip could be reliably detected.
For that, a vector-based phase analysis with a threshold circle as
a decision criterion was employed. Previous fNIRS studies have
also followed a t-value (Hong and Santosa, 2016; Nagels-Coune
et al., 2017) or beta-value criterion (Klein and Kranczioch, 2019)
between the measured and expected hemodynamic response by
the given stimulation for channel selection.

In the present study we selected the most informative channel
and Hb-type combination based on the highest t-statistic of the
task vs. rest contrast of the functional localizer data. We ensured
correct t-value estimation during channel selection by removing
serial correlations generally present in the fNIRS data (Huppert,
2016). The decoded answer option was based on the choice that
led to the highest t-statistic of the choicei vs. rest contrasts, where
i = {1,2,3,4,5,6}. No pre-whitening was used during decoding
since the ranking of the t-estimate should not change across
choices. The reason for this is that, as a single channel was used

for decoding, each t-estimate was affected by the same amount of
serial correlations (Lührs et al., 2019).

Necessity of Trial Repetition
Sorger et al. (2009) and Bardin et al. (2011) used an fMRI-based
temporal-encoding and decoding approach to carry out five and
two communication runs (respectively) with four answer options;
while Sorger et al. (2012) used it in a letter speller context with
27 letter options to encode words between 7 and 13 characters.
They reached single-trial mean accuracies of 94.9% (Sorger et al.,
2009), 100% (Bardin et al., 2011), and 82% (Sorger et al., 2012) in
healthy participants. As for fNIRS-based BCIs, previous work has
addressed classification problems using multivariate approaches
that maximally distinguished between five mental tasks with an
average single-trial accuracy of 37.2% (Weyand and Chau, 2015),
or four commands involving motor-execution (Shin and Jeong,
2014) and motor imagery tasks (Batula et al., 2014; Naseer and
Hong, 2015a; Weyand and Chau, 2015) that reached mean single-
trial accuracies of 82.46, 45.6, 73.3, and 46.7%, respectively. In
the present work, participants encoded the same choice five
consecutive times in each of the eight choice runs, and we
achieved mean (multi-trial/repetition) accuracy levels of 74%.

To assess whether five consecutive trials were actually
necessary to successfully decode their choice, the effect of
reducing the repetitions on the decoding accuracy was evaluated
post hoc. We observed a significant negative correlation between
the accuracies and decreasing the number of repetitions
(ρ =−0.639, p < 0.0001). Interestingly, encoding the same choice
only once maintained the mean group accuracies above chance
level although with considerably lower values than with five trials
(73.96% vs. 41.88%). In line with the observed accuracies, the
mean ITR value was considerably reduced when a single trial
is used (ITRl = 0.17 bits/min) compared to when five trials
were used (ITR5 = 0.30 bits/min). In addition, we observed that
reducing the number of repetitions to four slightly improves the
mean ITR, with 0.34 bits/min. To put these values in a broader
context, the average ITR of the studies mentioned above were
calculated and can be compared to the present study in Figure 9.
This figure shows that the ITR1 is closely related to the ITR values
from Batula et al. (2014) and Weyand and Chau (2015) and that
with the approach employed in this study (ITR5) considerably
higher accuracies are reached, while maintaining the ITR value.
This figure also depicts that ITR5 is considerably lower than in
Shin and Jeong (2014) and Naseer and Hong (2015a).

Lower decoding accuracies compared to fMRI studies are
expected since fMRI has a higher spatial resolution (Valente
et al., 2019), fMRI signals have stronger signal-to-noise ratio
(Cui et al., 2011) and because unlike fMRI, the brain signal
measured with fNIRS also contains (unwanted) superficial scalp
information (Erdoğan et al., 2014). This is because light traveling
from a source to a detector to reach the brain must pass
through scalp and skull tissues twice (Brigadoi and Cooper,
2015). Lower decoding accuracies compared to fNIRS-BCI
studies employing multivariate approaches may require further
explanation. Multivariate approaches are pattern-classification
algorithms used to decode the information that is represented
in a given pattern of activity (Norman et al., 2006). They
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FIGURE 9 | Average ITR values from relevant hemodynamic-BCI literature. Square markers represent fMRI-based BCIs, while circular markers represent
fNIRS-based BCIs. Lines depict the theoretical values the ITR (bits/min) can take as a function of the number of classes (c), trial duration and accuracy.

integrate information of multiple voxels/electrodes/channels by
optimizing their weights and theoretically should provide higher
sensitivity to disentangle overlapping distributed activation
patterns than univariate approaches (Valente et al., 2019).
The fundamental steps comprising multivariate approaches
are, generally speaking, feature extraction, feature selection,
model learning and validation (Norman et al., 2006). The
available number of trials/examples for model learning and
feature extraction influences the performance of multivariate
approaches, as estimating a model based on few examples may
not be sufficiently reliable or may not capture the differences
between classes in a relatively high-dimensional space (Valente
et al., 2019). Thus, it is expected that a model trained on a
sufficient number of examples should be able to accurately classify
examples never seen by the model. Naseer and Hong (2015a)
and Shin and Jeong (2014) employed multivariate approaches
and both used > 100 trials to train their models, collected
over four separate sessions and a single session, respectively.
In addition, their classification problem aimed at distinguishing
between different task patterns, which we suspect may elicit
more discernible patterns than classification problems aimed at
detecting the presence or absence of a task-related information
(i.e., task vs. rest scenario). It should be noted that Batula et al.
(2014) and Weyand and Chau (2015) also applied multivariate
approaches that aimed at distinguishing between different motor
imagery tasks, but employed less total number of trials to address
the classification problem, which can partially explain the lower
accuracies reported in these studies. The temporal approach

employed in this study did not require any model learning, but
relied on a time course extracted from a single channel with
certain degree of trial-to-trial variability that was not constant
across participants. Indeed, in some participants (see P03, P04,
P06, P08, or P12), we did not observe a linear decrease in the
decoding performance with reducing the number of repetitions
as in the group results, which suggests that for some participants
the inter-trial variability is higher than for others. Altogether,
we believe these are the main reasons that could explain the
divergence in the mean single-trial accuracies observed in the
present study and in the literature.

In the future, a multivariate temporal approach could be tested
that would also only require a single localizer run. Specifically,
instead of selecting and using a single (most-informative) channel
for decoding participants’ intentions, a task-specific activation
pattern would be defined after the localizer session (based on
a univariate approach over each channel comprising the setup),
here called as “base-pattern.” For each of the communication runs
a new activation pattern for each condition would be calculated
and compared to the base-pattern as in Monti et al. (2010).
The answer option leading to the highest correlation or the
smallest distance between the patterns would be the selected
option. Importantly, the number of optodes comprising the
setup should be optimized to guarantee participants’ comfort
and a good accuracy level. In addition, due to the existing
trial-to-trial variability within and across participants, a subject-
specific number of trials could be considered instead of seeking
a group-based criterion. This could be achieved, for example, by
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implementing an evidence accumulation process with a stopping
criterion that trades speed and accuracy for each participant
(Mattout et al., 2015).

Feasibility of Error-Correction Approach
Automatic recognition of error potentials has been successfully
used in EEG-based BCIs that focus on sensorimotor rhythms and
event-related potentials, since evoked responses by the feedback
differ depending on whether the feedback is correct or not
(Chavarriaga et al., 2014; Mattout et al., 2015). Hemodynamic
signals do not show such distinct patterns, which makes
direct forms of error-correction mechanisms more challenging
to implement. Here we developed an active error-correction
approach where participants were asked to indicate a decoding
error by encoding the “Error” option in the next choice run if
the decoded choice they received did not correspond to what
they intended to encode. This approach assumes that we can
correctly detect the “Error” option when participants encode it.
We built a confusion matrix by pooling all encoded answers
across participants to evaluate the performance of our proposed
error detection approach. In an ideal scenario, the number of
“Error” trials comprising this matrix should be zero or close
to zero, which would indicate that no decoding mistakes were
made. The fact that participants reached an average of ∼74%
accuracy indicates that participants had to encode “Error” several
times, but importantly, this number differed across participants.
Figure 7 (right side) shows that for example, P06 had to encode
“Error” 5/8 times, while P02 did not have to encode any.
The figure also indicates that the number of “Error” trials was
lower than “not Error” trials (thus making the confusion matrix
unbalanced). The confusion matrix shows that we reached an
accuracy of 90.62% (72/96 trials were correctly labeled as “Error”
or “not Error”). However, we only reached a recall level of 63.63%
(out of 22 error trials, 8 trials were missed), which indicates that
this approach did not always work.

It is also important to note that the number of encoded errors
does not directly represent the accuracy of the BCI setup. This
is due to three reasons: first of all, owing to a technical mistake,
data from P01-P07 were reanalyzed offline. In turn, some trials
that were incorrectly decoded in real-time were correctly decoded
offline (and vice versa), which misplaced the presence of “Error”
encoding runs (and disrupted the semantic link between the
encoded and decoded choices). This means that in the former
case (after offline analysis the choice was correctly decoded), a
subsequent error-encoding run became unnecessary, while for
the latter case (after offline analysis the choice run was incorrectly
decoded) a following “Error” encoding run should have occurred
(see Supplementary Data Sheet S1). Second, our experimental
design did not include an error option in the first level of the
nested menu. This implies that if choices were wrongly decoded
in the fourth level of the menu, participants were no longer able
to encode the “Error” option in the next run. Third, and similarly,
if a decoding error occurred in the last run of the experiment
(run number eight), participants were no longer able to encode
the “Error” option. These two scenarios could be addressed in
the future by using additional short runs (under a minute) where
the participant would verify if the decoded answer was correct or

not. The run would consist of an initial and final baseline periods
of 20 and 10 s, respectively, with a single full rotation of the
AR cube presented in between. Specifically, the AR cube would
show faces corresponding to yes/no answers, alternated with rest
periods, i.e., YES-NO-REST-YES-NO-REST (6 s per face, 36 s in
total). This would allow participants to encode twice whether the
decoding option was correct or not in 66 s, while leaving enough
time for the hemodynamic response to get back to baseline.

In this experiment participants navigated through a four-level,
nested menu. After completing one full round (i.e., reaching
level four), participants were directed back to the first level of
the menu. Since participants performed eight choice runs, this
structure allowed them to maximally go through the menu twice.
Due to the technical mistake mentioned above, the following
lines will only discuss results pertaining P08–P12: P11 completed
two full rounds (100% accuracy), while P09 and P10 completed
one full round (both participants reached a 87.5% accuracy);
P08 and P12 did not manage to complete a single round (the
decoding accuracy for both participants was 50%). These results
clearly show that statistically significant accuracy is a necessary
but not sufficient prerequisite to achieve a functionally significant
accuracy. Indeed, the accuracy that would be necessary to use the
system in a convenient way requires the accuracy to be much
higher. Future work should include the “Error” option in each
level of the nested menu. It should also consider an additional
measure besides the magnitude of the t-statistic for decoding
participants’ choices, such as a confidence measure based on
the absolute differences in the t-estimate across conditions.
We expect that a more informed decision helps improving the
decoding and the error-detection processes.

Task Selection Based on Participants’
Preference and Previous Experience
In the present study, we first trained participants to perform two
different motor imagery tasks and subsequently let them choose
their preferred option. However, unlike previous work, we did
not test whether user preference leads to better performance
compared to an experimenter-based task selection approach
(Weyand and Chau, 2017).

Intuitively, experienced BCI users may have a more realistic
idea of which mental strategy works best for them and thus
choose the task that has worked well in the past. Although we
asked participants to choose the task they felt most comfortable
with in the given setup independent of their previous experience,
P02, P04, P05, and P11 chose to use mental drawing for this very
reason. In contrast, participants P07 and P10, who also reported
being familiar with the mental drawing task (and unfamiliar to
the interacting with the cube task), chose to use interacting with
the cube as it felt more natural for them given the AR stimuli.

Previous experience with the mental task, BCI setups and
fNIRS systems did not show significant correlation with obtained
accuracies. However, differences in decoding accuracies between
(1) novices and (2) average and more experienced BCI/fNIRS
users were considerably high [65.63% vs. 80% (average) and
75% (more experienced) for BCI and 62.5% vs. 70% (average)
and 82.5% (more experienced) for fNIRS]. Similarly, we
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observed differences between the same groups but to a lower
extent regarding previous task experience. Specifically, novices
reached a mean accuracy of 71.73%, while average and more
experienced users reached 75 and 79.17%, respectively. These
observations suggest that participants with a certain level of
experience with a BCI/fNIRS system or a given mental task
may have enough introspective information to make an adequate
and informed decision on their preferred task after a single
training session.

Using AR in BCIs Offers a Great
Flexibility
Recent work has shown that EEG-based BCIs can successfully
be used in combination with new technological developments
such as AR to improve real-world practicality by offering a
richer, more direct, and intuitive interface (Kansaku et al.,
2010; Takano et al., 2011; Borges et al., 2016; Faller et al.,
2017). However, very few fNIRS applications have explored
this option (Afergan et al., 2015; McKendrick et al., 2016; Si-
Mohammed et al., 2018; Hu et al., 2019). In the present study,
we employed an AR cube to guide the temporal-encoding
approach and to display the decoded answer of participants’
intentions. For that, we used a relatively simple and flexible
setup from the hardware point of view: we made use of two
laptops, one additional computer screen, an HD webcam, and
home-made A4 cardboards. The home-made A4 cardboards
served as whiteboards and triggered the display of the AR cube
in Unity3D on an additional computer screen. Importantly, a
whiteboard offers a high degree of flexibility and individuality
as anyone (a caretaker, family member, experimenter, etc.) could
write potential choice options based on previous knowledge
of the user and/or the social context (although we used the
same choice options for all participants in this experiment, see
Supplementary Data Sheet S2). Also, a whiteboard provides
a degree of proximity to the setup and interaction between
the user and the experimenter as new choice options need
to be written down after each run. Besides, handwriting may
offer a sense of familiarity to the user. It is important to
note that participants were instructed to look at the computer
screen at all times throughout the runs, which makes the
chosen location of the cardboard (on the desk, between the
computer screen and the participant) not intuitive from a
pure AR setup perspective. Indeed, the cardboard could have
been placed in a different location (behind the screen, for
example) as long as the webcam’s placement would change
accordingly. However, we chose consciously to place the
cardboard between the screen and the participants exclusively
to exploit the cardboards’ interactive and proximity features
mentioned above.

Altogether, this relatively simple setup has the potential
to be successfully implemented in a more ecologically valid
environment such as a hospital room or a rehab center. From
the setup point of view, we picture a situation where the
user would be placed comfortably in a Fowler’s position (head
is placed at a 45-degree angle), while wearing the optodes,
fNIRS cap and overcap. The fNIRS system would be located

next to the bed. A removable desk would be attached to the
structure of the bed, above the user’s thighs, slightly tilted
toward the user’s head. A tablet fixated almost perpendicular
to the desk could be used instead of the additional computer
screen to display the AR cube. To maximize comfort, the
rotation of the desk would be adjusted to ensure the tablet
was placed at the same height as the user’s eye gaze. The
webcam would be integrated into the tablet or a separate
camera would be placed on a stable structure such as a
tripod located right next to the participant and it would be
recording the contents of the whiteboard. Alternatively, smart
glasses with an integrated camera could be used. These glasses
would then also replace the tablet and could display the cube
directly on the glasses.

From the data analysis point of view, the current decoding
process could be improved to increase the performance of the
BCI (as discussed in previous sections). Importantly, as the
majority of the analysis steps have been streamlined (through
scripts written in Matlab and Unity3D), a single BCI operator
would be sufficient to perform the measurements. However, to
assure that the channel selection procedure is properly done
(i.e., the selected channel is sufficiently informative and not
corrupted extensively by noise), an experienced researcher or a
trained medical professional in understanding the fNIRS signal
would be necessary. Of course, caretakers and family members
should be encouraged at all times to assist the experimenter in
selecting the most appropriate options to be presented to the user
through the whiteboard.

CONCLUSION AND OUTLOOK

In the present study, we showed that fNIRS-based BCIs can
be successfully combined with AR technology to address a six-
class problem using a single mental task and fNIRS channel.
AR technology allows for a seamless real-world interaction that
future studies should explore in more detail. The high inter-
subject variability observed in this study not only in achieved
accuracies but also in task preference and channel selection,
points at the need of shifting the BCI field toward a true user-
centered approach. Future studies should consider pursuing
individualized approaches to bridge the gap from research to
real-world applications.
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