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Treatment scheduling effects on the evolution of drug
resistance in heterogeneous cancer cell populations
Gauri A. Patwardhan1, Michal Marczyk 1,2, Vikram B. Wali1, David F. Stern3, Lajos Pusztai 1 and Christos Hatzis 1✉

The effect of scheduling of targeted therapy combinations on drug resistance is underexplored in triple-negative breast cancer
(TNBC). TNBC constitutes heterogeneous cancer cell populations the composition of which can change dynamically during
treatment resulting in the selection of resistant clones with a fitness advantage. We evaluated crizotinib (ALK/MET inhibitor) and
navitoclax (ABT-263; Bcl-2/Bcl-xL inhibitor) combinations in a large design consisting of 696 two-cycle sequential and concomitant
treatment regimens with varying treatment dose, duration, and drug holiday length over a 26-day period in MDA-MB-231 TNBC
cells and found that patterns of resistance depend on the schedule and sequence in which the drugs are given. Further, we tracked
the clonal dynamics and mechanisms of resistance using DNA-integrated barcodes and single-cell RNA sequencing. Our study
suggests that longer formats of treatment schedules in vitro screening assays are required to understand the effects of resistance
and guide more realistically in vivo and clinical studies.
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INTRODUCTION
The prevailing cancer therapeutic paradigm typically involves
combinations of drugs with complementary non-overlapping
mechanisms of action targeting specific genetic aberrations of
the cancer cells1. However, after the initial response, resistance
often develops resulting in treatment failure and cancer relapse.
The drug dose and duration of each treatment cycle, as well as the
sequence and time between treatment cycles, can influence how
and when drug resistance emerges2–8.
Efficient screening for effective targeted combination therapies

represents a tremendous challenge due to the combinatorial
nature of the problem9, which is further complicated by also
needing to address the scheduling aspects of the treatments that
can impact the emergence and dynamics of resistance. The recent
surge of targeted therapies has posed major challenges in
developing novel effective combinations and filtering out futile
ones. In vitro screens that are designed to evaluate the efficacy of
targeted combination therapies while also addressing the
potential emergence of resistance would be more likely to
translate to early clinical trials10.
Triple-negative breast cancer (TNBC) is a clinically aggressive

subtype associated with high mortality rates. TNBC is genetically
heterogeneous11 comprised of subpopulations arising from clonal
variants that are genetically linked but potentially having different
fitness. The tumor composition can change dynamically during
tumor growth and also during treatment, resulting in the selection
of treatment-resistant subpopulations with a high potential for
metastasis. These subpopulations can be pre-existing (innate) or
may evolve during treatment under selection in the therapy-
driven microenvironment (acquired)12. Thus, treatments can
selectively kill dominant tumor subpopulations, but surviving
cells can replicate and become dominant, causing tumor relapse.
Powerful tools such as single-cell RNA sequencing (scRNAseq) and
DNA barcoding can characterize the fitness of individual cell
clones relative to other competing clones in the tumor under

specific treatment schedules by a phylogenetic deconstruction of
resistant clones13–16.
Standard in vitro high-throughput drug combination screening

(HTS) assays involve cell viability assessment at 2 or 3 days with a
single drug or drug combination cocktail bolus treatment in cell
lines, which does not probe treatment interactions and long-term
effects. Thus, although the standard 3-day assays assess the killing
potential of drugs, they may not reflect the effectiveness of
treatments in the clinical settings, leading to frequent failure of
drugs in clinical trials17. Previously, using standard 3-day HTS we
identified the combination targeted therapy of crizotinib, an ALK/
ROS1 inhibitor, and navitoclax (ABT-263), a Bcl-2/Bcl-xL inhibitor,
to be particularly effective and highly synergistic against MDA-MB-
231 TNBC cells9. To understand the complex interplay between
cancer cell growth and selective treatment-induced cell death in a
longer format, we performed a 26-day study wherein MDA-MB-
231 cells were treated with concurrent or sequential crizotinib and
navitoclax. We evaluated the effect of sequential or concurrent
administration of the drugs at different doses in two treatment
cycles to be more representative of the clinical setting. To more
thoroughly assess the dynamics of the process, we varied the
duration of each treatment cycle separately (1, 2, or 3 days), and
the recovery phase (drug holiday) between the two cycles (2, 5, or
10 days), encompassing a total of 696 treatment conditions. DNA
barcoding of these cells enabled us to track the dynamics of clonal
selection, and scRNAseq revealed transcriptional patterns linking
treatment schedule with the emergence of resistance.

RESULTS
Design to systematically evaluate treatment scheduling
effects
We tested in excess of 500 treatment schedules utilizing six
different regimens of navitoclax/crizotinib to address the follow-
ing questions: (1) In concomitant administration of the two drugs,
how does the dose influence efficacy? (2) Is the sequential
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administration of the two drugs as effective as concomitant? (3) In
sequential regimens, does the sequence in which the two drugs
are administered matter? (4) For both the sequential and
concomitant administration schedules, how does the duration of
the treatment cycles and the duration of the recovery phase
influence overall efficacy? (5) How do the different treatment
schedules affect the emergence of drug resistance?
To systematically address the above questions, MDA-MB-231

cells were treated with seven treatment regimens (Fig. 1a),
including single-drug regimens (Regimens 1, 2), sequential
administration of the two drugs (Regimens 3, 4), or their
concomitant administration (Regimens 5, 6), with the vehicle as
non-treatment control. For each regimen, treatment duration of 1,
2, or 3 days and drug-free recovery periods of 2, 5, or 10 days were
selected (Fig. 1b), leading to a total of 696 unique treatment
schedules with a total duration between 6 days to 26 days for
each of the seven regimens (Fig. 1c). IC90 doses of the drugs were
employed in single drug or sequential regimens (10 μM navitoclax,
8 μM crizotinib), and two different IC90-equivalent combinations
(1 μM navitoclax/1 μM crizotinib or 0.5 μM navitoclax/2.5 μM
crizotinib) were used to eliminate the majority of the drug-
sensitive cells (Supplementary Fig. 1a). Viable cell numbers
measured at the end of the treatment schedule were greatly
affected by the regimen used and by the specific treatment
schedule (Supplementary Data 1). For example, in the two-cycle
single-agent treatment regimen with navitoclax (10 µM) where
cells were treated with the drug for 3 days in each cycle,

increasing the recovery periods from 2 days to 10 days caused a 9-
fold increase in viable cells at the end of cycle 2. Thus, even
varying only the duration of the recovery phase within each
treatment cycle, can drastically affect cell survival.

Drug doses within equivalent concurrent regimens impact
overall efficacy
To assess how the dose of each drug in the concomitant
administration of the two drugs affects overall efficacy, we
selected two different combinations of navitoclax and crizotinib
for that both had IC90 effect in the standard 3-day assay
(combination 1: 1 μM navitoclax/1 μM crizotinib; combination 2:
0.5 μM navitoclax/2.5 μM crizotinib) (Supplementary Fig. 1a). To
assess the overall efficacy of the two combinations, we focused on
the longest treatment schedule of 26 days that included two
cycles of a 3-day treatment phase followed by a 10-day recovery
phase (Fig. 2a). This schedule more closely mimics 2-week
treatment cycles that are used in many clinical regimens, and
the longer cycle time allows regrowth of resistant clones allowing
their molecular characterization. Overall, combination 2 with the
lower navitoclax dose was the most effective of the two
concomitant schedules over two cycles. We notice that in the
first treatment cycle, both combinations had a comparable impact
on cell viability after 3 days with 32.5 versus 16.8% cells surviving
compared to vehicle (Fig. 2a and Supplementary Fig. 2a) and a
similar proportion of apoptotic cells, 71 versus 76% (Fig. 2a and
Supplementary Fig. 1a), for combination 1 and 2, respectively.
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Fig. 1 Schematic of in-vitro experimental design to assess the efficacy of drug combinations. a Depiction of the six sequential and
concurrent treatment regimens tested in this study. A seventh regimen included vehicle treatment. b Treatment regimens included two
treatment cycles, each comprising of a treatment phase (incubation with the drug) and a drug-free recovery period. c Set of 81 treatment
schedules evaluated for each treatment regimen.
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Although cells recovered similarly in the first recovery period after
the second treatment cycle cells treated with combination 1
continued growing robustly and nearly doubled at the end of the
retreatment period compared to those in combination 2 for which
growth was controlled (Fig. 2a). After 26 days at the end of
treatment, combination 2 was more effective at controlling
growth compared to combination 1 that resulted in 6-times
greater viable cell mass. Combination 2 treatment also induced a
higher rate of apoptosis both after the first drug holiday and after
retreatment (Fig. 2b). Flow cytometric analysis using EpCAM,
CD24, and CD44 cell surface markers exhibited a similar
percentage of stem-like cells with either combination (Supple-
mentary Fig. 2c). We further evaluated mammosphere formation
and 2D colony formation as surrogate in vitro markers for
tumorigenicity of these stem-like cells at the end of the second
recovery period (26th day). At that time, cells that received
combination 1 formed significantly more mammospheres (8-fold
greater for combination 1; t-test p= 0.01) and viable colonies
(3.35-fold greater for combination 1; t-test p < 0.01) compared to
cells treated with combination 2 (Fig. 2c, d, Supplementary
Fig. 2b).

To further probe into the underlying molecular mechanisms
explaining the differences in cell response between the two
concurrent treatment combinations, we quantified the levels of
apoptotic regulators (Fig. 2e). Navitoclax is known to target the
antiapoptotic Bcl-2 family members Bcl-2, Bcl-w, and Bcl-xL,
although MDA-MB-231 cells express very low basal levels of BCL2
(Supplementary Fig. 3a) and medium levels of BCL2L1 (Supple-
mentary Fig. 3b). Upregulation of Bcl-xL has been reported in cells
treated with ABT-199, a selective inhibitor of Bcl-218. In our study,
Bcl-xL levels were similar until the end of the first treatment for
both combinations (Fig. 2e and Supplementary Fig. 1c), but after
the first recovery period cells treated with combination 1
displayed elevated levels of Bcl-xL. High Bcl-xL was associated
with increased phosphorylated AKT and ERK (normalized to total
levels) compared to combination 2 that remained high through-
out the second retreatment cycle (Supplementary Data 3). Thus,
navitoclax appears to upregulate Bcl-xL via a negative feedback
loop, which is associated with higher downstream activity of AKT
and ERK mitogenic pathways, rendering cells insensitive to
retreatment (Fig. 2e). The higher dose of crizotinib in combination
2 suppresses AKT and ERK phosphorylation resulting in an overall
greater tumoristatic effect.
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Fig. 2 Assessment of concurrent combination treatment regimens. a Cell growth curve for two different combination regimens. The
schedules included two cycles, each consisting of a 3-day treatment period followed by a 10-day recovery period. Points on time axis: a-pre-
treatment baseline, b-after 2 days treatment, c-after 3 days treatment, d-after 10 days of recovery, e-after 2 days of treatment in cycle 2, f-after
3 days of treatment in cycle 2, g-after 10 days of recovery in cycle 2. b Percentage of apoptotic cells using Annexin V and PI staining at
different treatment points in the schedule. c Mammosphere count after the end of the treatment schedule. d Colony formation assay after the
end of the treatment schedule. Representative pictures of colony formation are provided in Supplementary Fig. 2b. e Quantification by
Western blot of protein levels involved in targeted pathways. In a–d, the error bars shown represent the standard deviation of triplicate
measurements (biological replicates). P-values are from a two-sided t-test.
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The order of drugs in sequential regimens could precondition
cells for resistance
Next, to examine the efficacy of sequential navitoclax and
crizotinib, we treated cells with one cycle of navitoclax followed
by one cycle of crizotinib (Fig. 1a; Regimen 3) and also tested the
reverse order of administration of the two drugs (Fig. 1a; Regimen
4) as shown in Fig. 3. Single-agent regimens that included two
treatment cycles with the same drug were also included as
controls. The left panel in Fig. 3a shows navitoclax as the first cycle
treatment in schedules that only vary in the duration of the first
recovery period (2, 5, or 10 days). After 2-day recovery cells are
sensitive to crizotinib (Fig. 3a, upper left), but with longer recovery
periods cells recover exponentially and become resistant to
subsequent treatment with crizotinib (Fig. 3a left, middle: 5 days
and lower: 10 days). These results are consistent with previous
reports that single-agent navitoclax has limited efficacy in human
xenografts and patients in a phase II lung cancer study19,20.
However, these recovered cells were still sensitive to the second
cycle of navitoclax retreatment started after 10 days of drug
holiday, but interestingly, were resistant to subsequent treatment
with crizotinib rendering it an ineffective sequential treatment
regimen (Fig. 3a, bottom left). In single-agent therapies, two cycles
of crizotinib and in sequential therapies, crizotinib followed by
navitoclax were clearly superior treatment regimens that inhibited
long-term cell growth (Fig. 3a, right panels). However, at the end
of the 10-day drug-free holiday after the second treatment cycle,
cells started proliferating again and showed activation of ERK and
AKT (Fig. 3b), suggesting the emergence of resistant clones even
with this regimen. Bcl-xL overexpression has been implicated in
resistance to tyrosine kinase inhibitors21, so treatment with
navitoclax may have inhibited the apoptotic effect of crizotinib
(Fig. 3b). Neither crizotinib, as a single agent, or the crizotinib-

navitoclax sequential regimen upregulated Bcl-xL, and these
treatments were considerably more effective (Fig. 3b).
These results demonstrate that not only the specific combina-

tion of treatments but also the sequence by which they are
administered to a large extent determines the durability of the
treatment effect and may lead to the emergence of drug
resistance. A better understanding of how these phenomena
interact with the dynamics of cell growth is crucial for designing
effective schedules for administering combination cancer
therapies.

Treatment scheduling influences the evolution of drug
resistance
Further, we evaluated the effect of treatment schedule para-
meters, including drug sequencing and duration of treatments,
and the duration of the drug-free recovery periods following each
treatment cycle on cell growth. Overall, crizotinib monotherapy
and combination 1 had marginal cytostatic effects, but navitoclax
monotherapy or combination 2 were cytotoxic at 2 or 3 days (Fig.
4a, Supplementary Data 1, 2). The subsequent drug-free period
revealed interesting recovery dynamics. Irrespective of cycle 1
treatment or schedule, cell growth was controlled after 2 days of
recovery, or after 5 days of recovery for the longer cycle 1
treatment durations (Fig. 4b). Combination 2 treatment in cycle 1
could adequately control growth even after 10 days of recovery,
provided that treatment duration was at least 2 days, but
navitoclax monotherapy that appeared equally effective in cycle
1 failed to control cell growth after 10 days of recovery in drug-
free media (Fig. 4b), which highlights the risk of obtaining
potentially misleading assessments from standard 3-day screening
assays.
Next, we considered the combined effect of cycle 2 treatment

and duration over all combinations of the preceding phases. The

Fig. 3 Sequential regimens result in different patterns of resistance. a Growth curves associated with sequential treatment regimens and
schedules. Cells received a 3-day treatment followed by 2 days (top), 5 days (middle), or 10 days (lower) of recovery in cycle 1, followed by 3-
day treatment and 10-day recovery in cycle 2. Left Panel: navitoclax given as cycle 1 treatment. Right panel: crizotinib given as cycle 1
treatment. b Quantification by Western blot of protein levels involved in targeted pathways at different times in the treatment cycle. Letters
correspond to the time points on the plots in a. The colors identifying the different samples at each time point corresponding to the color of
the curves in a.
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second cycle of navitoclax added after the first navitoclax
treatment was effective at controlling the overgrowth observed
during the recovery period (Fig. 4c). However, cycle 2 navitoclax
treatment was particularly effective when combined with prior
crizotinib, which was able to control cell growth even with
2 days of treatment (Fig. 4c). The reverse order (navitoclax
followed by crizotinib) was largely ineffective, emphasizing the
importance of drug sequence over a broad range of scheduling
scenarios.
Finally, considering the duration of the second drug-free period

after cycle 2, crizotinib in cycle 1 followed by crizotinib or
navitoclax, or combination 2 that included a higher concentration
of crizotinib were similarly effective in controlling growth after up
to 5 days in drug-free media (Fig. 4d). The two-cycle crizotinib

regimen appeared most effective at controlling cell outgrowth
after prolonged recovery (Fig. 4c). Overall, undertreatment in cycle
1 appears to be a major factor in the reemergence of resistant cell
populations.
Thus, even though 486 treatment schedules out of 696

appeared effective (Supplementary Fig. 4), only 335 treatment
schedules were actually effective after considering the effect of
the post-cycle 2 recovery phase. Overall, treatment regimens that
received navitoclax first or combination 1 were less effective than
other treatment regimens, which could be discovered only after
considering different treatment and drug holiday durations. It is
noteworthy that these differences were not distinguishable with a
typical 3-day treatment assay.

Fig. 4 Effect of treatment schedules on cell response. a Effect of cycle 1 treatment and duration on MDA-MB-231 cell growth. b Effect of the
duration of drug-free recovery after cycle 1. Each group corresponds to a different duration of drug-free recovery and includes all cycle
1 schedules for the corresponding treatment regimen. c Effect of cycle 2 treatment and duration over all the combinations of cycle 1
treatment durations and drug-free recovery periods. d Effect of the duration of recovery after cycle 2, over all the other combinations of prior
durations. Combination 1 included equal doses of navitoclax and crizotinib. Combination 2 included a higher dose of crizotinib than
navitoclax. Throughout the plots, points have been color-coded based on the duration of cycle 1 treatment (vehicle—black, 1 day—red,
2 days—blue, 3 days—green). Since scales on panels a and b differ, we added a red reference line at 3000 to make the comparison easier. The
box plots represent the distribution in the luminescence value, with the lower and upper sides of the box representing the first (Q1) and third
(Q3) quartiles, the thick line representing the median, and the length of the upper and lower whiskers being 1.5(Q3-Q1).
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DNA barcoding allows tracking of clones resistant to
navitoclax treatment
To investigate whether the cancer cells that survive and proliferate
after two cycles of treatment represent pre-existing resistant
clones, we used a DNA barcoding strategy to track the clonal
lineages longitudinally through the treatment cycles. Treatment
can suppress proliferation and promote the death of drug-
sensitive cell clones thus debulking the tumor while promoting
outgrowth of drug-resistant clones present in a heterogeneous
tumor cell population. In addition, rapid feedback responses
through the microenvironment can remodel cancer cell pheno-
types and support the proliferation of treatment-resistant
subpopulations.
We assessed the impact of sequential treatments on the clonal

diversity of cancer cells that had been tagged with a high-density
DNA barcode library. Navitoclax treated cells demonstrated an
interesting dynamic, where cells were highly sensitive to 72 h
treatment (Fig. 4a), but fully recovered after 10 days in drug-free
media (Fig. 4b). Yet, upon retreatment with the same concentra-
tion of navitoclax, post-navitoclax treated cells were as sensitive to
the drug as the treatment-naïve cells (Fig. 4c). We initially sought
to understand this dynamics behavior. Barcoded MDA-MB-231
cells were treated with navitoclax for 3 days followed by 10-day
recovery and subsequently by a second cycle of 3-day navitoclax
retreatment and finally by another 10-day recovery period to allow
drug-resistant clones to recover and proliferate. The diversity of
barcodes was determined before treatment (baseline), after the
first treatment cycle, and also after the second treatment cycle. For
this, we used two vials of barcoded cells to capture the variability

between vials and two replicates for each of three-time points per
vial to capture the variation between the emergence of resistant
clones. Thus, for each time point, we collected a total of four
samples (Supplementary Fig. 5a). If resistant clones pre-existed
and were subsequently selected, we would expect a subset of
barcodes present in the baseline sample to be enriched in the
post-treatment populations consistently in all replicates. Other-
wise, the surviving populations may consist of clones that
randomly escaped the cytotoxic effects of the treatment, and in
this case, we would observe different clones enriched in each of
the four replicates of the post-treatment samples. Interestingly,
the highest concordance of unique barcodes recovered, and their
abundance was observed between replicates, and then between
vials (Supplementary Fig. 5b). Overall, we observed higher
concordance between samples from vial 1 than between samples
from vial 2. For all subsequent analyses, we merged the four
replicates for each of the three treatment samples but excluded
barcodes that were present only in a single replicate (Supple-
mentary Fig. 5c). From this point, we coded the groups of
barcodes according to their existence in 3 subsequent time points.
Overall, 28,296 (26%) out of 109,370 total unique barcodes

detected were present in all three samples (Fig. 5a). These
represent the resistant cell clones that pre-existed in the baseline
population and survived both cycles of navitoclax treatment. In
addition, 5460 unique barcodes (5%) were observed post-cycle 1
and post-cycle 2 but not at baseline, and 1879 barcodes (2%)
observed only post-cycle 2 but not in the prior samples. These
clones represent low abundance pre-existing clones that were
likely underrepresented in the high clonal complexity baseline
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sample and thus were not detected. Subpopulations consisting of
18,161 (17%) and 32,164 (29%) unique clones represent navitoclax
sensitive cells killed after cycle 1 and cycle 2, respectively (Fig. 5b).
Interestingly, although about half of the susceptible clones were
killed after one cycle of navitoclax, the remaining required a
second cycle to be eliminated. Another set of 19,994 barcodes was
observed only after cycle 1 treatment. Cells from these clones
started to regrow in the recovery period after cycle 1 treatment
(Fig. 3a) and were subsequently killed in cycle 2. Because many of
these barcodes were detected only in experiment 2 (samples S5a
and S5b, Supplementary Fig. 6c), it is possible that they may be
PCR amplification artifacts and were eliminated from further
analysis.
Baseline populations shared more clones with those post

treatment cycle 1 (Jaccard index= 0.56) compared to populations
after cycle 2 (Jaccard index= 0.35), as additional clones were
eliminated in cycle 2 (Fig. 5a, b). While 22% of the clones present
at baseline were eliminated post-cycle 1, about a third of the
remaining clones represent aggressive resistant clones that more
than doubled in abundance between baseline and post-cycle 1
(Fig. 5b). However, the majority of the clones that increased in
abundance between baseline and post-cycle 1 were new clones
(Fig. 5b). In contrast, considerably fewer clones increased in
abundance post-cycle 2, and the majority were also present post-
cycle 1 (Fig. 5b). Overall, we observed a decrease in barcode
complexity after each treatment cycle, with the complexity more
drastically reduced after the second cycle to about 50% of the
original barcodes (Fig. 5c). The majority of the clones that survive
both treatment cycles are resistant clones observed also in the
baseline population (Fig. 5c). When the relative abundance of the
clones is accounted for, these pre-existing resistant clones that
represented about 40% of the initial population became the vast
majority (93%) of the resistant population after cycle 2 (Fig. 5d). It
appears that a large subset of resistant cells pre-existed, but it is
possible that more than one unique barcode could have infected
cells originating from the same resistant clone, and therefore we
cannot assume that unique barcodes necessarily represent unique
clones.

Single-cell RNA sequencing identifies pathways of resistance
to navitoclax treatment
To better understand the mechanisms of resistance, we char-
acterized the transcriptional pathways of cells subjected to the
same 2-cycle sequential navitoclax treatment using single-cell
RNAseq. We measured expression in approx. twenty thousand
cells collected at four time points: before treatment (baseline; S1),
on day 3 of cycle 1 treatment (post-treat cycle 1; S2), just prior to
the beginning of cycle 2 (pre-cycle 2; S3), and on day 3 of cycle 2
(post-treat cycle 2; S4).
To identify transcriptional markers associated with the resistant

subgroups detected by DNA barcoding, we compared gene
expression in cell groups as follows. To identify markers for cells
that survived the last treatment cycle (labeled as 001 in Fig. 6a,
where 0 denotes absence and 1 presence and the three numbers
represent baseline, post-cycle 1, and post-cycle 2 samples,
respectively), we compared the expression levels of cells in the
post-cycle 2 sample (S4) vs. those in previous time points (S1, S2,
S3). Expression profiles of the top five markers with the highest
effect size are presented in Fig. 6a. Among the identified markers
overexpressed in the resistant cells included genes GNB2L1, NPM1,
CSF2, TKT that act as a sensor of the stress response (Fig. 6a).
Similarly, to find markers for cells that were present in post-
treatment samples but not in baseline (group labeled as 011), we
compared all post-treatment samples (S2, S3, S4) versus the
baseline sample (S1). Genes involved in protein synthesis and
metabolism were identified (EEF1D, RPS4X, GAPDH) that underline
a greater proliferative state. Also, we identified genes that were

previously reported as markers of resistance of other treatments,
e.g., DDIT4 was responsible for resistance to neoadjuvant
chemotherapy in TNBC22, and RPS4X was found as a marker of
cisplatin resistance in two breast cancer cell lines23. Similarly, by
comparing cells present at baseline but not in any post-treatment
samples (group labeled as 100) we identified markers associated
with navitoclax sensitive cells, including RBMX, RKBP1A, and TBCA.
Interestingly, among the genes underexpressed in the cells that
required the second treatment cycle in order to be eliminated
(labeled as 110) was BIRC5 that encodes for the protein also called
survivin, a member of the inhibitor of apoptosis (IAP) gene family
that inhibit caspase activation and negatively regulate apoptosis.
Clustering of the 20,000 cells integrated from 4-time points

revealed seven distinct groups of cells (Fig. 6b). The middle of the
UMAP plot shows the mix of resistant cells observed at all time
points. Three clusters were separated from the rest: (i) the orange
cluster (bottom left) consisted mostly of highly sensitive cells that
were killed after a single cycle of treatment; (ii) the green cluster
(bottom right) consisted of cells under stress observed only
immediately at the end of treatment cycle 1 and treatment cycle
2; (iii) the yellow cluster (right) consisted mostly of highly
proliferating clones that emerged after the recovery phase in
cycle 1 and were subsequently killed by the second cycle of
treatment.
Figure 6c shows the expression profiles of selected groups of

genes, specifically targets of navitoclax, proliferation markers, and
apoptosis and stem-like genes. Interestingly, we found that
navitoclax reduced expression of BCL2L1, but only after cycle 2.
We observed the same effect on the indirect target SOX9. Also, in
most of the cells, after cycle 2 proliferation is significantly reduced,
as reflected by the cell proliferation marker MKI67, while at the
same time XIAP an inhibitor of apoptosis is increased further
reducing apoptosis and promoting proliferation. After retreat-
ment, we observed an increase in expression of two common
stem-cell markers CD44 and MYC, which indicates that the
surviving cells show increased resistance to therapy and
potentially greater metastatic potential.
Lastly, we found genes that were differentially expressed in

subsequent pairs of treatment phases, namely baseline versus
post-treatment cycle 1, post-treatment cycle 1 versus post-
recovery cycle 1, and post-recovery cycle 1 versus post-
treatment cycle 2. The top five differentially expressed genes for
each comparison (|logFC| >1 and highest p-value) are shown in
Supplementary Figs. 7a, b. Among these genes, we noticed some
of the markers of cell sensitivity or resistance discussed above.
Changes in expression of all genes on a pathway level are
summarized in Supplementary Fig. 7c. Late effects of cancer
treatment, mostly prevalent after the second cycle of treatment,
included a marked increase in inflammatory response pathways,
TNFa signaling pathway, and decrease in oxidative phosphoryla-
tion. We also observed a decrease in expression of genes involved
in the G2M checkpoint and E2F target pathways, which were
consistent with reduced proliferation after cycle 2 treatment.

DISCUSSION
Recent clinical advances have underscored the potential impact of
different treatment regimens involving combinations of targeted
cancer drugs on improving the survival outcomes of cancer
patients24–28. Rigorous in vitro evaluation of various drug
combination regimens can help identify effective regimens before
entering first-in-human studies, thereby increasing the success of
clinical trials. Here, we characterize the efficacy of treatment
regimens involving the targeted drugs navitoclax (ABT-263) and
crizotinib, and systematically address the effect of scheduling
variables such as concurrent or sequential administration, order of
sequencing, treatment time, and recovery period, can have on the
efficacy of the regimen and emergence of resistance in the long-
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term format in vitro assays. Treatment of DNA barcoded cancer
cell populations revealed enrichment of specific clones, indicating
that navitoclax treatment selects pre-existing resistant clones.
Furthermore, single-cell RNAseq analysis identified genes and
pathways associated with resistance mechanisms, which are
masked by standard bulk RNAseq analysis.
In vitro treatment studies in long format can provide valuable

insight into the interplay between cell kill and growth of resistant
clones to help design optimal dosing regimens and combinations
that can better predict long-term response and potential
resistance in vivo or in clinical studies. Here, we present an
extensive assessment of treatment schedule variations (696 sche-
dules) of two targeted therapies, navitoclax and crizotinib, and
demonstrate their impact on the final outcome of the treatment.
The 26-day treatment schedule encompassing two cycles of
treatment followed by drug-free recovery revealed that 335 of the
696 treatment schedules tested were effective, with the majority
of them involving crizotinib alone. Interestingly, concurrent
combination treatment (Combination 2) with lower doses of
crizotinib and navitoclax (~IC50) achieved a similar effect as a high
dose (IC90) crizotinib monotherapy, suggesting that concurrent

administration of Combination 2 may deliver better results in mice
or in the clinic than either monotherapy or sequential adminis-
tration of these two drugs.
Our study shows that although navitoclax alone imparts a

significant cytotoxic effect, surviving cancer cells recover quickly
after long drug holidays, which is reflective of the rapid adaptation
of surviving clones to fast-growing clones. Similar to our study, a
recent study also reported a reversible drug-tolerant state in TNBC
patients and PDX mouse models using DNA barcoding and
genomic analysis29. Such an effect was not observed with low
dose of navitoclax in combination with crizotinib or with crizotinib
alone. This can be explained by the different mechanisms of
action of the two targeted treatments. We showed that navitoclax
treatment causes upregulation of Bcl-xL via negative feedback
regulation resulting in higher downstream activity of the AKT and
ERK mitogenic pathway, rendering cells insensitive to retreatment.
On the other hand, in Combination 2, a higher dose of crizotinib
suppresses AKT and ERK phosphorylation leading to cell death
without priming cells for resistance.
Tumor heterogeneity is a complex phenomenon that con-

tributes to the development of resistance to treatment. Recent

a b

c ABT-263 target
genes

Proliferation and apoptosis
markers Stemness markers

BCL2L1

SOX9

MKI67

XIAP

CD44

MYC

Fig. 6 Effects of navitoclax treatment at the single-cell level. a Expression heatmap of top five markers of 4 important cell groups defined in
DNA-barcoding experiment. b UMAP plot presenting cell clustering after alignment of the samples. The name of each cluster represents the
dominance of cells from particular samples. c Expression of selected important genes presented on UMAP plot (left side) and summarized on
boxplot (right side). Above each boxplot, there is a proportion of expressed cells per sample.
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studies have focused on characterizing the evolutionary dynamics
of heterogeneous tumors resulting after the treatment of cancers
with combination therapies30–34. Several studies have shown that
heterogeneous tumor cell populations contain resistant tumor
clones prior to therapy that are gradually selected as susceptible
clones are killed35–37. Tumor growth can be controlled by
moderating natural competition between susceptible and resis-
tant cells by managing drug dosage or timing more closely to
prevent selection or biological adaptation to treatment. For
example, Shaw et al reported that a crizotinib-resistant tumor
became susceptible to crizotinib retreatment in an NSCLC patient
underscoring the importance of treatment scheduling and
monitoring of tumor sensitivity38. Enriquez-Navas et al. demon-
strated that a treatment schedule consisting of a standard high
dose of paclitaxel until tumors started to shrink followed by a
reduced dose improved treatment-free survival in mice with MDA-
MB-231/luc and MCF-7 xenografts. In contrast, in mice that
received the standard treatment of a fixed maximum tolerated
dose of paclitaxel, tumors grew immediately after stopping
treatment39. This approach of adaptive therapy was also success-
ful in a pilot study in metastatic castrate-resistant prostate cancer
patients with an increase in the median time of disease
progression from 16.5 months to 27 months and a reduction in
total drug administered by 47%40.
We employed DNA barcoding and scRNAseq to track individual

cell clones initially present in a cancer cell population and how
they evolve under the selection pressure imposed by two cycles of
treatment41. DNA barcode infected cells exhibited enrichment of
the same set of barcodes after treatment and retreatment with
navitoclax, indicating selection of pre-existing resistant clones.
However, due to the high complexity of the DNA barcode library,
we could not capture the presence of exactly the same pre-
existing resistant clones between replicates. A similar issue was
observed in replicate mice in a recent study by Echiverria et al.
using patient derived xenografts of treatment-naive metastatic
TNBCs where clonal selection and specific clone dominance in
metastases in diverse organs was established using high complex-
ity DNA barcode library42. Furthermore, scRNAseq helped to track
differential gene expression in baseline cells versus those
persisting post-treatment and post-retreatment to understand
transcriptional changes associated with drug resistance. Treat-
ment naïve cells at baseline expressed navitoclax sensitivity genes
whereas cells that survived after navitoclax treatment expressed
genes associated with stress response. Also, all post-treatment
samples expressed genes involved in protein synthesis and
metabolism indicating greater proliferation.
A limitation of our study is that the combination of crizotinib

and navitoclax was assessed in a single TNBC cell line. However,
extensive screening performed in our prior study9 demonstrated
that this combination is synergistic in most TNBC cell lines tested.
The main focus of this study was to show that strong efficacy in
preclinical testing may not guarantee generalizability and
translatability in the clinical setting. Our study illustrates that
treatment scheduling is potentially a critical consideration for
maximizing drug benefit to the patient and controlling the
development of drug resistance. Drug resistance is a dynamic
population phenomenon, which is not captured by the standard
screening assays with bolus administration of a drug cocktail and
3-day efficacy endpoint assessment. Dynamic treatment schedul-
ing in a set of cancer cell lines would be necessary to help identify
the best treatment combination and the best administration
schedule to control long-term tumor growth and prevent the
establishment and outgrowth of resistant clones. Quantitative
modeling of in vitro treatment scheduling data to predict drug
response could help direct the selection of rational therapeutic
regimens from available targeted therapies for individual patients
and enable understanding of disease progression43. Furthermore,
in vivo studies in PDX mouse models, combining DNA barcode

and scRNAseq can help guide combination treatment strategies in
patients who develop resistance. Nevertheless, the selection of
pre-existing resistant clones is one of the potential mechanisms of
drug resistance. Our study showed that treatment with one drug
can induce biological changes in the cells that make them more
resistant to the other drug. Resistance could even be mediated by
cell-to-cell interactions with certain clones influencing the growth
of other clones by secreting growth or inhibitory factors in the
presence of the drug14,44,45. Next-generation drug screening
assays and cancer model systems would need to capture some
of these nuances in order to be able to address the all so common
occurrence of drug resistance46.

METHODS
Cell culture and drugs
The TNBC cell line MDA-MB-231 was purchased from the American Type
Culture Collection (Manassas, VA) and maintained in RPMI 1640 media
supplemented with 10% FBS and 1% penicillin-streptomycin. The cell line
was authenticated by ATCC by short-tandem repeat profiling, karyotyping,
morphology, and cytochrome C oxidase I testing. The cell line was used at
passages 3 to 9, and cultured less than 3 months after thawing. Crizotinib
(catalog no. S1068) and navitoclax (ABT-263 catalog no. S1001) were
ordered from Selleckchem, TX.

Treatments and cell viability in 96-well plates
The IC90 dose for monotherapies or concomitant regimens was calculated
by treating MDA-MB-231 cells with either navitoclax, crizotinib, or their
combination for 72 h in triplicate assays. The dose at which 90 percent of
cells were killed was selected as the IC90 dose. At least three independent
experiments were performed to calculate the IC90 dose (Supplementary
Fig. 1a). MDA-MB-231 cells were subjected to 696 different treatment
schedules resulting by varying treatment duration (1, 2, or 3 days) and
drug-free recovery (2, 5, or 10 days) for the first and second treatment
cycles independently over a 26-day period (Fig. 1). We used 6 treatment
regimens where crizotinib and navitoclax were administered either
sequentially (single agents at IC90 dose) or concomitantly (combination
at IC90 dose): (i) crizotinib (8 µM) followed by crizotinib (8 µM); (ii) crizotinib
(8 µM) followed by navitoclax (10 µM); (iii) navitoclax (10 µM) followed by
navitoclax (10 µM); (iv) navitoclax (10 µM) followed by crizotinib (8 µM); (v)
crizotinib (1 µM)+ navitoclax (1 µM) followed by crizotinib (1 µM)+
navitoclax (1 µM); (vi) crizotinib (2.5 µM)+ navitoclax (0.5 µM) followed
by crizotinib (2.5 µM)+ navitoclax (0.5 µM) and (vii) vehicle control. All
treatment schedules were assessed in triplicate at the same time in parallel
by using forty-five 96-well plates.
To help interpret the effect of a varying number of cells entering cycle 2

treatment depending on the regiment and schedule in cycle 1, we had
control plates to establish standard curves with initial cell numbers ranging
from 0–100,000 cells per well for all 6 treatment regimens. For the standard
assays, 2000 MDA-MB-231 cells per well were plated in clear bottom
opaque-walled 96-well plates (Thermo Scientific, MA) (day 0) and allowed
to attach overnight. The following day cells were treated with either
crizotinib, navitoclax, or one of the combined regimens as specified for
cycle 1 and incubated in the drugs for 1–3 days. At the specified treatment
endpoint, the drug-containing media was removed and replaced with
drug-free fresh media where cells were incubated for 2–10 days. At each
drug holiday endpoint, media were removed again and fresh media with
drugs or drug combinations as specified for cycle 2 treatments were added
followed by incubation for 1–3 days and followed by a drug holiday of
2–10 days. At the final endpoint of each treatment schedule, viable cell
count was determined by incubating cells with CellTiter-Glo reagent
(Promega, Madison, WI) for 10min followed by measuring luminescent
ATP using a Synergy HT microplate reader.

Flow-cytometry
For flow cytometry analysis 350,000 cells were plated in 10 cm plates in
triplicate. Cell number was extrapolated from 96 well to 10 cm plate by the
surface area of the plate. Apoptotic cells were evaluated using the FITC
Annexin V kit (BD Pharmingen, catalog no. 556570) following the
manufacturer’s protocol. Briefly, adherent and floating cells after 48 h of
treatment were centrifuged for 5 min at 1200 rpm, washed twice with PBS,
and resuspended in 1× binding buffer at a concentration of 1 × 106 cells/
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ml. Then, 100 µl of cell suspension was incubated with 5 µl of FITC Annexin
V and 5 µl of PI in binding buffer for 15min at room temperature in the
dark and finally 400 µl of 1× binding buffer was added. Samples were
analyzed by 10,000 events per sample excluding doublets and apoptotic
cells were determined by measuring FITC-Annexin V and PI fluorescence
using an LSRII flow cytometer (Becton-Dickinson) and FlowJo software
(version 7.6.5).
Gating strategy—Starting live population was identified by gating FSC/

SSC and doublets were excluded by SSC-H/SSC-W and FSC-H/FSC-W. Cells
were then identified as apoptotic cells that are Annexin V positive/PI
negative and Annexin V-PI double positive. Gates were applied using
unstained cells as controls (Supplementary Fig. 8a).
Cancer stem-like cells were evaluated by staining cells for breast cancer

cell surface markers EpCAM-FITC, CD24-PE, and CD44-APC at given time
points. EpCAM+CD44+CD24− cells were identified as stem-like cells. Briefly,
cells were trypsinized and washed with PBS. Cells were then spun down
and approximately 1 × 106 cells were resuspended in 100 μl of blocking
buffer (1× DPBS+ 2% BSA) for 5 min. Subsequently, 20 µl of each of
primary antibodies, APC Mouse Anti-Human CD44 (Cat. # 560890 BD
Pharmingen), PE Mouse Anti-Human CD24 (Cat. # 560991 BD Pharmingen)
and ESA/Ep-CAM, Mouse MAb anti-Human (Cat. # BMDMM101416 accurate
chemical and scientific corporation) were added to cells and gently mixed.
Cells were incubated with the fluorescent-labeled antibodies for 20min at
room temperature mixing at every 5min interval and then quenched with
1ml Blocking Buffer and spun down at 1200 rpm for 5min. The
supernatant was aspirated and cells were resuspended in 1000 µl of PBS
keep on ice until analyzed by flow cytometry and subsequently analyzed
by LSRII flow cytometer.
Gating strategy—Starting live population was identified by gating FSC/

SSC and doublets were excluded by SSC-H/SSC-W and FSC-H/FSC-W. Cells
were then identified as EpCAM-FITC negative (below 103) EpCAM-FITC
negative (beyond 103). Basal cells were identified as EpCAM− CD44+
CD24− from EpCAM negative cell population. Stem-like cells were
identified as EpCAM+ CD44+ CD24− and luminal cells were identified
as EpCAM+ CD44+ CD24+ from EpCAM positive cell population. Gates
were applied using IgG and unstained cells as controls (Supplementary
Fig. 8b).

Mammosphere assay
At the end of the 26-day treatment schedule, cells were trypsinized and
100 cells per well were added in 6 well ultra-low attachment plates in
triplicate. By observing under the microscope, spheres that had more than
50 cells at the end of 3 weeks were counted as mammospheres.

Colony formation assay
At the end of the 26-day treatment schedule, cells were trypsinized and
100 cells per well were added in a 6-well plate in triplicate. Media was
changed every 3 days and colonies were observed under the microscope.
At the end of 15 days, media was removed, colonies were washed with PBS
and then fixed using a 3:1 mixture of methanol/acetic acid for 5 min.
Crystal violet solution in methanol (5%) was added to plates for staining.
After 15 min, excess staining was removed by washing stained colonies
with PBS 5 min for 5 times.

Immunoblotting
Cells from control and treatment plates for all samples were collected from
the same experiment and processed in parallel. Briefly, whole protein
lysates were extracted with RIPA buffer containing proteinase and
phosphatase inhibitors. Lysate samples were electrophoresed in 4–12%
NuPAGE SDS-polyacrylamide midigels (Life Technologies Corporation) and
transblotted onto PVDF membrane simultaneously. PVDF membranes
were blocked with 2% BSA in 10mM Tris-HCl,50mM NaCl, 0.1% Tween 20,
pH 7.4 (TBST), followed by incubation with primary antibodies, diluted
1:1000 to 1:5000 in TBST/2% BSA overnight. Bcl-xL (dilution 1:1000, Cat. #
2764), phosphor p44/42 MAPK (dilution 1:2000, Cat. # 4370), p44/42 MAPK
(dilution 1:1000, Cat. # 4695), phosphoAKT (dilution 1:2000, Cat. # 4060),
pan AKT (dilution 1:1000, Cat. # 4691) were obtained from Cell Signaling
and actin (dilution 1:5000, Cat. # sc1616) was ordered from Santa Cruz
Biotechnology, Inc. Membranes were washed five times with TBST,
incubated with horseradish peroxide (HRP)-conjugated secondary anti-
bodies in TBST/2% BSA for 1 h, rinsed with TBST, and detected by
chemiluminescence (SuperSignal West Pico Chemiluminescent Substrate;
Pierce). Actin-HRP antibody (Santacruz Biotech) was used to measure actin

level as a loading control for each lane. To multiplex, the same membranes
were used to probe multiple proteins with different molecular weights by
carefully cutting the membranes horizontally at respective molecular
weights as indicated by BioRad precision color marker which was run in
the first lane. These cut membranes were separately probed with
respective antibodies and finally assembled together and chemilumines-
cence was measured at different exposure times. The representative blots
shown in the Supplementary Data 4 are indicated in the red box. For main
figures, Fig. 2e and Fig. 3b, blots were cut from Supplementary Data 4.

High complexity DNA barcode library
We used the Cell Tracker high complexity DNA barcode library
BC13×13–30M-X (Cellecta, Inc, CA) containing more than 50 million
unique barcodes. Each construct is comprised of a 267-bp-long
oligonucleotide containing a 40-bp-long double barcode sequence (two
18-bp-long sequences independently and randomly selected from a
defined dictionary of ~13,000 18nt barcode sequences and linked by a
4-nucleotide spacer) and a flanking primer pair for barcode amplification.
The CellTracker 50 M Barcode Library was constructed in a Cellecta third-
generation lentiviral pRSI16-U6-bc-HTS6-UbiC-TagRFP-2A-Puro-w vector
that expresses both TagRFP (Evrogen) and a Puromycin resistance gene
under a human Ubiquitin C promoter as selection markers for isolation of
barcoded cell populations.

Generation of barcoded MDA-MB-231 cell line
MDA-MB-231 cells were cultured in RPMI-1640 supplemented with 10%FBS
and 1% penicillin-streptomycin. Cells were barcoded by mixing cell
suspension, lentivirus, and 0.8 μg/ml polybrene. We infected 1.02 × 108

cells with 14 µl of the virus with 6.7 × 108 TU/ml viral titer targeting 10% of
transduction for a multiplicity of infection (m.o.i.) of approximately 0.1 to
ensure that the majority of cells were labeled with a single barcode per
cell. We actually achieved 3% infectivity (3.06 × 106 cells were barcoded
out of 1.02 × 108) based on the RFP-positive population analyzed by flow
cytometry. Puromycin (1 µg/µl) selected barcoded cells were expanded to
9 × 107 cells in culture for the minimal period to obtain a sufficient clonal
representation and apportioned into 36 cryovials, each containing 2.5 ×
106 cells, for storage. For every experiment, a vial was thawed, and cells
were expanded without discarding any cells until the population was
enough for all replicates of all treatments.

Treatment of DNA barcoded MDA-MB-231 cells
Two vials (V1 and V2) of DNA barcoded MDA-MB-231 cells were expanded
to get enough cells and treated in parallel. Cells were treated with
navitoclax to collect two replicates per vial (total 4 replicates) at each of 3
time-points, (i) baseline-S1, (ii) after 3 days of navitoclax 10mM treatment
and 10 days of recovery-S2, (iii) after 3 days of navitoclax 10mM
retreatment and 10 days of recovery-S3; Detailed description of DNA
barcoded samples can be found in Supplementary Fig. 5a.

Barcode amplification
Barcodes were amplified for next-generation sequencing (NGS) using two
rounds of PCR with Titanium Taq DNA Polymerase (Clontech-Takara, Cat.
no. 639208). Briefly, cells were pelleted by centrifugation and gDNA was
extracted using Qiagen DNeasy blood and tissue kit (Cat. no. 69504) and
stored at −80 °C. The first round of PCR reactions (18 cycles) was run using
5 µg of genomic DNA as a template. Parallel multiple PCR reactions (5 µg
each) were run to include all of the DNA of the treatment or control group
to avoid barcode loss. For the second round of PCR (14 cycles), P5 and P7
adapters that are complementary to immobilized primer sequences in the
NGS Illumina flow cells and a 6-bp-long index sequence were added to the
first-round PCR product. Each treatment or control group was labeled with
one of the 16 unique indices to multiplex up to 16 samples for sequencing
simultaneously. Products from the 2nd round of PCR were purified using
QIAquick PCR purification kit (Cat no. 28104), resolved on a 2% agarose gel,
and the 316-base pair band was excised and extracted using QIAquick Gel
Extraction kit (Cat no. 28704).

Next-generation barcode sequencing
NGS was carried out using the Illumina HiSeq platform at Yale Center for
Genome Analysis. PCR-amplified products were analyzed using an Agilent
Technologies 2100 bioanalyzer to determine the insert size. The
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concentrations were determined using qRT-PCR with a kit from Kapa
Biosystems. PCR amplicons were prepared at 2 nM and loaded at 15 pM
with 15% of spiked in PhiX Control (Illumina, Cat. no. FC-110-3001) and on
the Illumina HiSeq2500 sequencer for single-end read in Rapid Mode using
50 TruSeq Rapid SBS Kit v2HS (cat no. FC-402-4022), TruSeq Rapid SR
Cluster Kit v2-cBot-HS (Cat no. GD-402-4002) and HiSeq Rapid SR Flow Cell
or High Output Mode using the 50 TruSeq SBS Kit v3HS (Cat no. FC-401-
3002), TruSeq SR Cluster Kit v3-cBot-HS (Cat no. GD-401-3001) and HiSeq
SR Flow Cell (Illumina). Samples were sequenced at 44 cycles for read 1 and
6 cycles for the I7 index read.

Barcode data pre-processing
Barcode sequencing runs were converted to FASTQ files and analyzed
using custom R scripts. First, reads were filtered by matching the
4-nucleotide spacer sequence (CGAA) that linked two 18-mer barcode
sequences and the spacer sequence after the second barcode. The
remaining reads were trimmed after the second spacer. Further, quality
filtering was applied; reads with a Phred quality score <25 in more than
2 bp were removed, and then single bp with Phred quality score <25 were
replaced with N. Next, two barcode sequences were extracted from each
read and only reads with both barcodes from 16 to 20 bp long were
matched against the barcodes dictionary provided by Cellecta. Matching
to the dictionary was done sequentially: first allowing no mismatches and
then increasing the number of allowed mismatches to two and matching
the remaining reads. Reads with barcodes that did not match to dictionary
were excluded. In all analyzed samples ~15% of reads were discarded
during the pre-processing step.

Merging replicated samples
Concordance between samples was assessed based on common barcodes
that were visualized on Venn diagrams and quantified by Jaccard index,
and by calculating the Pearson correlation coefficients between the
abundance of common barcodes (Supplementary Fig. 5b). Next, all 4
replicates per treatment phase (2 biological replicates from experiment 1
and 2 from experiment 2) were merged, keeping all barcodes that were
observed in at least 2 replicates (Supplementary Fig. 5b). Three merged
samples (one sample per treatment phase) were used in further analysis.

Calculation of barcode overlap between samples
All barcodes from 3 merged time points were divided into 7 groups based
on co-occurrence patterns in the three treatment samples as visualized by
Venn diagrams. We coded the groups of barcodes according to their
existence in 3 subsequent time points, e.g., “100” is a group of barcodes
that were found only in the baseline (first) time point. Barcodes prevalent
in one sample (S5: experiment 2, measurement after 1st treatment), that
probably arose during the PCR amplification step, and barcodes observed
only after the 1st treatment (group 010) and not observed after 1st
treatment (group 101) were considered technical artifacts and were not
further analyzed. The reasons for excluding these two groups of barcodes
are as follows. The proportion of the number of unique barcodes relative to
the number of sequencing reads is much higher for sample S5 than other
samples (Supplementary Fig. 6a). The concordance between biological
replicates of S5 was much lower than for other samples, and many high
abundance barcodes were observed only in one of the two biological
replicates (Supplementary Fig. 6b). Furthermore, the proportion of
barcodes observed only after the first treatment compared to all barcodes
was considerably higher in biological replicate 2 (group 010; Supplemen-
tary Fig. 6c). There were 3416 low abundance barcodes observed in the
baseline sample and after the second treatment (group 101; Supplemen-
tary Fig. 6d). Since these last two groups of barcodes were not biologically
interesting and are suspected to be likely technical artifacts, we removed
them from further analysis. Abundance-weighted barcode prevalence was
visualized using clonal evolution plots from Timescape R package47.

Single-cell RNA sequencing on 10X Chromium platform
MDA-MB-231 cells were treated using two cycles of navitoclax. Samples at
the following four times were collected for single-cell analysis: (i) baseline-
S1, (ii) after 3 days of 10 μM navitoclax treatment-S2, (iii) after 10 days of
drug holiday-S3, (iv) after 3 days of 10 μM navitoclax retreatment-S4. The
entire experiment lasted 18 days. Immediately after plate harvesting, cells
were trypsinized and a single cell suspension of 6000 cells per sample at
1000 cells/ml with viability above 90% were processed at YCGA on the 10X

Chromium following the standard manufacturer protocol. For sequencing,
two samples were multiplexed on one lane of a HiSeq 4000 flow cell giving
25,000 reads per cell. Chromium Single Cell 3′ Library and Gel Bead Kit V2
(PN-120237), Chromium Single Cell A Chip Kit (PN-120236), and Chromium
i7 Multiplex Kit (PN-120262) were used to prepare the single-cell library
following the manufacturer’s instructions. The Cell Ranger Single-Cell
Software suite48 from 10X Genomics was used for demultiplexing, cell
barcode processing, and gene-level quantification of the raw scRNAseq
profiles.

Single-cell RNA data pre-processing
For each sample, low-quality cells were filtered by thresholding on the
number of expressed genes (bottom 5% removed), total UMI counts (top
1% removed), and percent of expression of mitochondrial genes (cells with
more than 15% of mitochondrial genes removed). In addition, a model of
correspondence between the number of expressed genes and total UMI
counts was fitted using smoothing splines. Cells outlying from the model (|
z-score|> 3) were excluded. In this step, for each sample, ~7% of the cells
were filtered. Next, genes expressed in less than 1% of cells were filtered,
leaving ~12,000 genes in the analysis. Data were normalized using the
modified median-of-ratios method from DESeq2 R package49. The main
idea of the modification was to use only expressed cells in the calculation
of reference sample and calculation of median of expressed genes for each
cell, due to the sparsity of single-cell data. At last, normalized data were
log2-transformed (log2(x+ 1) transformation).

Modeling of single-cell expression data
A stochastic dropout effect (no expression), caused by either technical or
biological factors, is widely observed in single-cell experiments. Thus, we
used a two-part generalized linear model that simultaneously models the
rate of expression over the background of various transcripts and the
positive expression mean as implemented in the MAST R package50. We
adjusted the model for two covariates: cellular detection rate (the fraction
of genes that are detectably expressed in each cell) and percent of
expression of mitochondrial genes per cell. Applying the model to single-
cell expression data leads to an estimation of log odds ratio (logOR),
quantifying the ratio (fold) of dropout odds (probability) between the two
conditions, and log fold changes (logFC), quantifying the mean difference
in gene expression between cells in the two conditions. Statistical
significance of these measures was calculated using the Wald test with
Bonferroni correction for multiple testing to get adjusted p-values. We
used logFC and corresponding adjusted p-values to find differentially
expressed genes between subsequent treatment phases and logOR to find
the markers of cell groups defined in the DNA barcoding experiment. We
summarized logFC estimates on gene-set level using a collection of
MSigDB Hallmark pathways51. Residuals from the MAST model, that
provide the scaled and centered expression data for each gene after
removing the contribution of the unwanted covariates, were further used
for clustering of the cells.

Sample alignment and clustering
First, we selected the highly variable genes per sample by analyzing
residuals from the smooth-spline model of the association between gene
expression mean and variance on a log2 scale. The filtering was applied,
and the model was fitted repeatedly until no outliers (|z-score| >3) were
found. Next, 4 samples from the same experiment were integrated based
on a common source of gene variation using Seurat package52. Briefly, to
reduce data dimensionality and find shared correlation patterns between
samples canonical correlation analysis (CCA) was performed. The First 10
CCA components, as recommended by ‘MetageneBicorPlot’ function from
the Seurat package, were used to align samples. Prior to alignment, 10% of
cells with the lowest ratio of variance explained by PCA to CCA per sample,
were removed as they may represent non-overlapping cells. The CCA basis
vectors were aligned between samples by Seurat, resulting in a single,
integrated dataset. Then, clusters of cells were identified by a shared
nearest neighbor modularity optimization-based clustering algorithm. The
resolution parameter that sets the ‘granularity’ of the downstream
clustering was optimized by finding knee-point on the within-sum-of-
squares vs. the number of clusters plot, giving 7 final clusters. Each cluster
was labeled based on its cell composition, e.g., for cluster S1 more than
half of the cells are from sample S1. After alignment and clustering, cells
were visualized using UMAP with cosine distance metric53, the number of
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nearest neighbors set to 10, and the minimum distance between points
set to 0.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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