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Abstract

The clinical implementation of immunotherapy has profoundly transformed cancer treatment. 

Targeting the immune system to mount anti-tumor responses can elicit a systemically durable 

response. Employing immune checkpoint blockade (ICB) has suppressed tumor growth and 

vastly improved patient overall and progression-free survival in several cancer types, most 

notably melanoma and non-small cell lung carcinoma. Despite widescale clinical success, ICB 

response is heterogeneously efficacious across tumor types. Many cancers, including breast 

cancer, are frequently refractory to ICB. Moreover, of initially ICB-responsive tumors, many 

acquire resistance due to tumor-specific alterations, loss of tumor-specific antigens, and extrinsic 

mechanisms that reshape the immune landscape within the tumor microenvironment (TME). The 

tumor-immune interaction circumvents the benefits of immunotherapy; tumors rewire the tumor­

suppressive functions of activated immune cells within their stroma to propagate tumor growth 

and progression. In this review, we will discuss the challenges facing immunotherapy success and 

address the underlying mechanisms responsible for primary and acquired breast cancer resistance 

to immunotherapy.
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Introduction

The power of the immune system to combat tumor formation and progression has been 

extensively studied and debated over the last century. Historically, cancer patients with 

postsurgical infections had better survival outcomes, leading to the hypothesis that infection­

associated activation of the immune system resulted in collateral anti-tumor effects [1]. 

Decades later, Thomas Lewis and Frank MacFarlane proposed that similar to host-vs­

graft disease, cancer and immune cells interact as part of cancer immunosurveillance 

[2]. The concept of cancer immunosurveillance stated that an intact immune system will 

eliminate most nascently transformed cells, eventually selecting for resistant cell populations 

capable of polarizing normal immune system functions to permit and even foster tumor 

growth. Further studies identified three distinct phases associated with this phenomenon: 

elimination, equilibrium, and escape; collectively known as “cancer immunoediting” [3].

Years of research cemented the importance of the immune system in controlling cancer 

and prompted the exhaustive evaluation of different approaches to therapeutically mount 

patient anti-tumor immunity. The discovery and subsequent success of ICB was a pivotal 

milestone for cancer treatment; it elicited a robust systemic response, indiscriminate of 

tumor type, underlying etiology, and disease stage. However, the clinical response in 

patients has varied widely depending on tumor immunogenicity and the prevalence of 

lymphocyte infiltration into tumor stroma. ICB has largely increased patient survival in 

melanoma, non-small cell lung carcinoma, renal cell carcinoma, lymphoma, and head 

and neck squamous cell carcinoma [4]. Unlike most immunotherapy-responsive tumors, 

breast cancers harbor lower mutational burdens and generally exhibit limited lymphocyte 

infiltration, both of which suggest reduced immunogenicity and have led to the perception 

that breast tumors are characteristically “immune cold”. This generalization overlooks breast 

cancer heterogeneity, diversity of molecular subtypes, patient disease status, which step 

in the metastatic cascade tumors are detected, and complexity of the TME. To date, ICB 

is only indicated for advanced stage, metastatic triple negative breast cancer (TNBC), 

though activity was also observed in early stage TNBC. Despite promising advances 

in TNBC, immunotherapy response in breast cancer remains modest and unpredictable, 

particularly across molecular subtypes. ICB benefit in breast cancer was first demonstrated 

in the IMpassion130 trial, where adding atezolizumab (anti-PD-L1) to standard-of-care nab­

paclitaxel increased progression-free survival in TNBC patients with ≥1% PD-L1+ immune 

cells in the tumor [5]. Subsequently, the KEYNOTE-355 trial employing pembrolizumab 

(anti-PD-1) in combination with different neoadjuvant chemotherapies (paclitaxel, nab­

paclitaxel, or gemcitabine and carboplatin) enhanced progression-free survival in patients 

with untreated, inoperable, and metastatic TNBC with a combined positive score (CPS) of 

≥10% PD-L1+ tumors [6].
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Until recently, most breast tumors were traditionally considered immunologically quiescent. 

TNBC was the only subtype with prognostic TIL activity that translated to better patient 

outcomes [7], while largely being a negative biomarker for survival in hormone positive 

(HR+) tumors [8, 9]. However, the detailed characterization of immune signatures in a 

breast cancer patient cohort by Thorsson et al revealed that breast tumors range from 

inflamed and highly immunogenic (TNBC) to intermediate (HR+ breast cancer), therefore 

pointing to other confounding factors for poor immunotherapy response in addition to TIL 

infiltration alone. These discrepancies in tumor responses stem from the different resistance 

mechanisms that cancers deploy to either prevent sensitivity to immunotherapy (primary 

resistance) or circumvent an initial favorable response (acquired resistance). Immunotherapy 

resistance occurs through multiple modalities. Tumor cells may alter their proliferative 

capacity and suppress neoantigen formation, which impair immune recognition. In contrast, 

tumor cells can externally alter stromal and immune cells within the TME to promote 

tumorigenic, immunosuppressive functions.

Overview of anti-tumor immunity

Anti-tumor immunity engages both arms of the immune system: innate and adaptive 

immunity. Per the cancer immunoediting theory, tumor cells dynamically interact with 

immune cells. In the early stages of tumorigenesis, an inflammatory response activates 

antigen presenting cell (APC) expansion to engulf and eliminate pathogens or aberrant cells 

through innate immunity.

The immune system can recognize mutated peptides expressed by aberrant cells as ‘non­

self’. Human leukocyte antigen class I (HLA-I/MHC-I), comprised of HLA-A, -B, and -C, 

binds endogenous peptides via active ATP transporters (TAP1/2) that move pre-processed 

peptides from the (tumor cell) cytoplasm into the endoplasmic reticulum where they can be 

further processed and loaded onto MHC-I for trafficking to the cell surface. Peptide-MHC 

complexes (pMHC) can be bound by cognate T cell receptors (TCRs) complexed with 

CD8 or CD4 (for HLA-I and HLA-II respectively) to trigger anti-tumor immune function. 

This function includes direct cytotoxicity, mediated by CD8+ cytotoxic T lymphocytes 

(CTLs) or effector CD4+ T cell responses that supplement CD8 T cell cytotoxicity through 

supportive cytokine release. In addition to direct T cell recognition of tumor cells, APCs, 

including dendritic cells, B cells, and macrophages, can utilize exogeneous tumor antigens 

generated from turnover of proliferating or dying tumor cells and present them through 

human leukocyte antigen class II (HLA-II), or MHC-II (consisting of HLA-DR, -DQ, 

and -DP). Of all APCs, dendritic cells are also capable of cross-presenting (transporting 

externally-acquired peptides into the cytoplasm for proteasomal processing, as would be 

required for MHC-I-associated peptides) MHC-I antigens to CD8 T cells [10], which is 

particularly important for T cell priming in the tumor microenvironment or draining lymph 

node. In addition to MHC-TCR engagement (signal 1), costimulatory molecules CD80 

and CD86, CD40, OX40, and ICOS expressed on APCs must bind to co-receptors CD28, 

CD40L, OX40L, and/or inducible T-cell costimulator ligand (ICOSL) (signal 2) on T cells 

to permit full T cell activation. Upon antigen presentation and costimulatory signaling, 

IL-12 activates a signaling cascade to promote T lymphocyte differentiation and expansion. 

Neoantigens due to genetic aberrations in tumor cells can also be presented on HLA-II to 
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helper T cells, which can secrete cytokines to functionally activate members of the innate 

immune system, namely natural killer (NK) cells, dendritic cells (DCs), and macrophages, 

to induce apoptosis in tumor cells. Due to intratumor heterogeneity, tumor cell variants may 

survive the initial anti-tumor immune response and remain quiescent, reaching equilibrium 

under the selective pressure of anti-tumor immune surveillance.

During equilibrium, dormant tumor cells develop intrinsic modifications that promote 

cellular division and immune evasion. These mutations include overexpressing proliferation 

genes, downregulating antigen expression, secreting immunosuppressive cytokines, and 

upregulating immune checkpoint ligands; all of which impede overall immunity. These 

mechanisms allow tumors to create favorable secondary niches for the metastasis of 

disseminated tumor cells. Such advantages facilitate the eventual progression of cancer 

cells from quiescently controlled, to clinically detectable tumors. Unrestrained tumors can 

also secrete cytokines to rewire the immunogenic functions of immune cells to establish an 

immunosuppressive local microenvironment for escape and ultimate progression.

Tumor-specific resistance

Tumor antigenicity and mutational burden

A fundamental tenet of adaptive immunity necessitates the recognition of foreign or aberrant 

cellular antigens that activate APCs to process and present antigens to T lymphocytes. 

Generally, genomic instability and accumulation of somatic mutations within DNA coding 

regions are hallmark features of malignant cells. These genetic anomalies can cause minor 

alternations, like single base substitutions, or major structural rearrangements, fusions, 

insertions, deletions, and variants. Antigen peptide sequences distinguishing tumor cells 

are categorized based on unique cell expression patterns. Tumor-specific antigens (TSA) are 

restricted to tumor cells compared to their non-transformed counterparts (e.g. neoantigens 

formed by mutations). Genomic aberrations often target genes that drive functional 

tumorigenic advantages. For example, the loss of function silencing of tumor-suppressor 

genes, like ATM, PTEN, P53, LKB1, and CHEK2, allows tumor cells to bypass cell-cycle 

checkpoint inhibitors to promote cellular proliferation. Furthermore, breast tumorigenesis 

is often associated with mutations in hallmark DNA repair genes like NBS-1, BRCA1 

and BRCA2. Each of these processes, both ‘driver’ mutations benefitting the tumor, and 

‘passenger mutations’ – those resulting from acquired genomic instability with no known 

tumorigenic function – can lead to TSAs. In contrast, tumor-associated antigens (TAA) 

are not unique to but are instead overexpressed on tumor cells. Human epidermal growth 

factor-receptor 2 (HER2)-amplification is a major breast cancer TAA for generating an 

immune response. Additionally, hallmark immunogenic breast cancer TAAs fall into many 

categories. Overexpressed oncofetal antigens (e.g., CEA) are proteins found in fetal tissues 

during development and are typically silenced in adult, however, are expressed in malignant 

somatic cells. Post-translationally modified antigens are overexpressed surface marker 

proteins, such as glycolipids like MUC-1. Non-somatic antigens (e.g., MAGE) are germ 

cell-specific genes that may be expressed on malignant cells. Differentiation antigens (e.g., 

NY-BR-1 and WT1) are proteins associated with terminal differentiation of tissue-specific 

cells that are found on tumor cells and non-transformed cells of the same lineage [11].
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Antigen presentation and recognition via a cognate TCR prompts the clonal expansion and 

activation of tumor antigen-specific T cells which can efficiently impair tumor growth. Thus, 

tumor neoantigen formation, release, and processing are indispensable for eliciting an anti­

tumor immune response. Tumors can shed various peptides, through various processes like 

exosome secretion or via cell turnover (e.g. cell death and necrosis) which are subsequently 

phagocytosed by APCs. However, only properly processed peptides, such as those cleaved 

to the correct length and structure, are subsequently loaded onto MHC molecules. Thus, the 

mutational load can only be beneficial for driving an immune response if: 1) tumor cells 

shed high numbers of neoantigens, 2) neoantigens are phagocytosed by APCs, 3) antigen 

peptides are processed and loaded onto MHC molecules on the surface of APCs, 4) APCs 

successfully engage T cells through MHC-TCR interactions, and finally, 5) the presence of 

co-stimulatory signaling.

Although tumors usually have high mutation burdens, they can alter every step of the 

antigen generation and processing pathways to evade immune surveillance [12]. Tumor cells 

often downregulate, mutate [13], or completely lose immunogenic antigens [14, 15] through 

suppressing antigen processing machinery that mediate antigen transport and cleavage [16]. 

Breast cancers downregulate TAP1 [17], TAP2 [18], and TAPBP [19] expression; all of 

which are critical transporters necessary for antigen transport across the ER to be loaded 

onto MHC molecules. Breast tumors harbor loss of heterozygosity and epigenetic silencing 

of some MHC-I molecules [20] effectively suppressing antigen recognition and presentation 

to T lymphocytes. Disruption of this pathway is often associated with poor clinical outcomes 

[21]. The epigenetic suppression of MHC-I molecule expression can be clinically targeted 

through the use of DNA methyltransferases to restore expression and potentially anti-tumor 

immunity[22]. Interestingly, tumors rarely lose MHC I expression altogether to escape 

immunity, since the lack of MHC-I indicates an inherent “missing self” signal, compelling 

NK cells to eliminate tumor cells. Moreover, tumors can change the expression of MHC 

subunits, such as beta-2-microglobulin (B2M), causing MHC misfolding and inability to 

bind antigens [23].

Aberrant signaling pathways

The mutational properties and epigenetic abnormalities that confer proliferative and 

invasive capacities have been extensively studied in breast cancer. However, tumors 

can also modulate key signaling pathways to alter antigen presentation, attenuate an 

immunogenic inflammatory response, and inhibit lymphocyte recruitment into tumors to 

evade immunologic detection and cytotoxicity. In addition, tumors can dysregulate signaling 

pathways to suppress apoptosis, consequently promoting survival and downregulating 

neoantigen release.

Interferon γ (IFN-γ) signaling is critical for normal immunity against pathogens and 

cancer [24, 25]; its deficiency results in severe microbial and viral susceptibilities [26]. 

NK, effector T cells, and APCs produce IFN-γ to activate inflammatory pathways via 

signal transducers and activators of transcription-1 (STAT1) signaling. STAT1 promotes 

the transcription of IFN target genes like TNF-α, iNOS, COX-2 and IL-1β; all of 

which enhance antigen presentation and MHC expression [27]. Additionally, IFN-γ can 
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directly induce apoptosis or cytostatic behavior in tumor cells [28], therefore, tumors often 

downregulate or mutate proteins involved in the IFN-γ signaling cascade, including IFN-γ 
receptors, STAT1, and JAK1/2 [29–31]. To control exacerbated immune responses, IFN-γ 
activation transcriptionally regulates PD-L1 expression as negative feedback mechanism; 

moreover, mutations in the IFN-γ pathway nullifies response to ICB [32]. As a result, 

prolonged IFN-γ exposure can lead to immune evasion by applying selective pressure [33].

Wnt/ β-catenin is another immunoregulatory pathway in cancer composed of a complex 

family of proteins that transduce signaling through ligand-dependent and -independent 

mechanisms [34]. Wnt activation culminates in the accumulation of transcriptional 

coactivator β-catenin to initiate the transcription of target genes including many cell cycle 

genes and oncogenes such as MYC. Breast cancer Wnt aberrations occur through the 

overexpression of pathway components: FZD, LRP 5/6, DDX, and ROR 1/2 [35, 36]; all of 

which can canonically and noncanonically activate Wnt. Dysregulated Wnt signaling drives 

invasiveness, epithelial-mesenchymal transition (EMT), pluripotency, enhancing motility, 

and providing cues for tumor cell proliferation [37]. Wnt can specifically attenuate anti­

tumor immunity by decreasing the expression of CCL4, which is a potent chemoattractant, 

thus preventing the recruitment of DCs and T cells to the TME and blocking adaptive 

anti-tumor immunity [38]. In TNBC, Wnt signaling correlates with a “stemness” phenotype 

and increased PD-L1 expression [39]. Consistent with these findings, tumors with elevated 

Wnt signaling often display blunted responses to ICB.

The mitogen-activated protein kinase (MAPK) pathway is commonly dysregulated in several 

tumor types, conferring oncogenic and proliferative advantages upon growth factor-cell 

surface receptor engagement [40]. MAPK activation (e.g. via K-Ras and B-Raf) upregulates 

VEGF, IL-18, and CXCL1/2, which promote tumorigenesis, angiogenesis, inhibit TIL 

recruitment, and mediate MDSC recruitment [41–43]. MAPK inhibition can upregulate 

MHC-I, MHC-II, and PD-L1 expression under basal and IFN-γ - stimulated conditions, 

depending on context, and can enhance TIL infiltration [44]. Additionally, MEK inhibitors 

have been reported to activate STAT1 signaling in mammary tumor cell line, inducing tumor 

immunogenicity through MHC-I and PD-L1 expression. [45]. Combining MEK inhibitors 

with ICB synergistically enhances the ICB-induced anti-tumor response in preclinical 

models [46].

The oncogenic activation of various signaling pathways is implicated in tumor progression 

and breast cancer therapeutic resistance. Dysregulated Notch signaling sustains TNBC 

growth by promoting angiogenesis, upregulating cell cycle genes that trigger cell division, 

and inducing stem cell maintenance [47]. Preliminary studies point to the immunological 

benefit of paracrine Notch activation in macrophages, as it permits macrophage-mediated 

phagocytosis [48]. Oncogenic Hippo inactivation promotes proliferation, invasion, and 

EMT in breast cancer [49]. Hippo signaling also drives breast cancer metastasis by 

regulating a hypoxic microenvironment in bones, inducing therapeutic resistance, and 

modulating immune evasion by upregulating PD-L1 in tumor cells [50]. Hedgehog 

signaling orchestrates M2 macrophage polarization to create an immunosuppressive TME 

[51], through blocking CTL recruitment [52], thus allowing tumor progression. Overall, 

the autocrine and paracrine activation of developmental signaling may contribute to 
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the immunological escape of quiescent tumor cells and recurrence post-therapy due to 

proliferative advantages and the establishment of an immunosuppressive systemic response.

The ability of immunogenic pathways to promote immune suppression reinforces the 

multifaceted functions of oncogenic signaling that drive therapeutic resistance. For example, 

the PD-L1 expression may be inherently upregulated to mutations or induced in response to 

aberrant oncogenic signaling. Constitutive PD-L1 upregulation on tumor cells is a result 

of epigenetic and posttranslational modifications. Many solid tumors, including breast 

cancer, harbor chromosomal amplifications (9p24.1) of amplicons containing PD-L1 ligands 

[53] and structural translocation of class II transactivator (CIITA), which encodes MHC 

expression, to the PD-L1 gene leading to upregulatedPD-L1 expression [54]. In breast 

cancer, differential methylation patterns in multiple immune checkpoint ligand promoters, 

including PD-L1, CTLA-4, LAG-3, and TIM-3 upregulate their expression compared to 

normal tissue and correlate with poor patient prognosis [55].

Inducible PD-L1 expression, however, results from pro-inflammatory signaling pathways, 

such as IFN-γ, TNF-α, and IL-6, that activate immunity and promote T cell effector 

and cytotoxic functions. Inflammation upregulates negative checkpoint inhibitor protein 

expression on immune cells (e.g. PD-1 on T cells and CD47 “do not eat me signal” on 

macrophages) as a negative feedback regulator to control exacerbated immune responses. 

This mechanism is co-opted by tumor cells within the tumor microenvironment to drive 

adaptive resistance in tumors. While PD-L1 expression may serve as a biomarker for 

patient selection to receive immunotherapy, it does not necessarily predict favorable 

patient response to anti-PD-1/anti-PD-L1 immunotherapy. Other mutations drive PD-L1 

expression in solid tumors to inhibit immune cell activation, including MYC amplifications, 

PTEN deletions, and EGFR and AKT mutations [56]. Targeting these oncogenic pathways 

therapeutically may create an avenue for combinatorial approaches with immunotherapy to 

sensitize tumors with adaptive resistance to respond to treatment.

Tumor microenvironment resistance

The composition of the TME, comprised of various cell types that foster diverse 

tumorigenic functions, plays a key role in influencing therapeutic response. As mentioned 

earlier, there is ongoing crosstalk between tumor and stromal cells. Tumors attenuate the 

production and secretion of various chemokines to block the recruitment and infiltration 

of TILs. If immune cell infiltration occurs, tumors can create an immunosuppressive 

local microenvironment permitting progression and metastasis [57, 58]. However, the 

abundance of immunosuppressive immune cell populations is not a reliable indicator for 

poor patient outcomes in response to therapy. More likely, the delicate balance between 

immunosuppressive and activated effector and cytotoxic T cells dictates response to therapy 

and the overall immunogenic status of the TME.

Innate immune cells

Cells of the innate immune system perform necessary immunogenic functions to eliminate 

pathogens and foreign material. Innate immune cells include APCs-DCs and macrophages, 

NK cells, and neutrophils. DCs and macrophages express scavenger receptors that recognize 
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endogenous and pathogenic proteins and consequently promote the phagocytosis and 

clearance of apoptotic cells and pathogens to maintain homoeostasis. Mature DCs and 

M1 macrophages express high levels of MHC-II and costimulatory ligands CD80, CD86 

to ensure successful antigen capture and presentation to T cells. This process prompts the 

release of pro-inflammatory cytokines, including IL-6, IL-12, IFN-γ and TNF-α, to create 

a delayed type hypersensitivity-like microenvironment that regulates prolonged anti-tumor 

adaptive responses [59]. In pathogenic states, immature DCs and M2-polarized macrophages 

express low levels of MHC-II and costimulatory molecules, exhibit weak endocytosis, and 

lack the secretion of pro-inflammatory cytokines, downregulating immunity to maintain a 

wound-healing, reparative environment. Additionally, they express inhibitory checkpoint 

markers PD-L1 and CTLA-4 to inactivate T cells and promote anergy. Consequently, 

inactivated DCs and macrophages fail to process antigens and may be hijacked by 

tumors to suppress anti-tumor immunity, thus allowing tumor escape. Tumors can 

polarize macrophages toward an immunosuppressive M2 phenotype, better known as tumor­

associated macrophages (TAMs). TAMs are abundantly found within the TME of many 

primary tumors, correlating with poor clinical prognosis and reduced survival. Normally, 

macrophages mount anti-pathogenic immune responses by initiating inflammation, however, 

prolonged inflammation is diverted by tumors to mediate reparative, immunosuppressive 

functions. Macrophages are co-opted by tumors to perform pro-tumorigenic functions 

through secretion of growth factors that promote tumor cell proliferation and differentiation. 

TAMs maintain tumor growth, angiogenesis, invasion, and migration by producing PDGF, 

VEGF, EGF, COX-2, and matrix metalloproteases (MMP) 2 and 9. In addition, TAMs 

secrete immunosuppressive cytokines and express immune checkpoint inhibitors, such as 

PD-L1, leading to T cell inactivation. TAMs competitively deplete T cell metabolic nutrients 

through upregulation of metabolic enzymes, Arg1, IDO1, and IDO2, which promotes T cell 

anergy [60, 61].

In response to pathogens, NK cells produce IFN-γ and TNF-α to activate macrophages and 

neutrophils to phagocytize foreign pathogens. NK cells produce perforin, granzymes, and 

other apoptosis-inducing proteins death ligands like tumor necrosis factor-related apoptosis 

inducing ligand (TRAIL) and Fas ligand (FasL), and thus can mediate cytotoxicity like 

CTLs. Since NK cells lack TCRs, they do not require antigen presentation for activation, 

however, the absence of MHC-I on normal cell surfaces, which provides a protective “self­

signal”, activates NK cytolysis (termed a ‘missing self’ signal). NK cell abundance in cancer 

patients correlates with APC, CTL, and effector T cell infiltration and activation [62]. 

Despite the positive prognostic impact of NK cells, they can mediate regulatory functions 

by inducing angiogenesis and upregulating PD-L1 and LAG-3 to block T cell activation thus 

facilitating tumor escape.

Neutrophils are the first responders during inflammation to phagocytize and eliminate 

pathogens [63]. In response to IFN-β signaling, neutrophils secrete pro-inflammatory 

cytokines TNF-α and nitric oxide (NO) to induce anti-tumor cytotoxicity. Additionally, 

they activate T cells by overexpression CD86 and CD54 [64]. The potent inflammatory 

response neutrophils initiate is a major contributor to tumorigenesis. Upon encountering 

pathogens, neutrophil phagolysosomes produce NADPH, free radicals, and reactive oxygen 

species, all of which may induce genotoxic insults that damage DNA. Neutrophils also 
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promote tumor invasion and angiogenesis through production of MMP9, elastase, VEGFA 

and oncostatin M [65]. Neutrophils can also suppress anti-tumor immunity by producing 

Arg1, a well-established suppressor of T cell function [66]. Enrichment of tumor associated 

neutrophils (TANs) within patient tumors is a negative prognostic marker. PD-L1-expressing 

neutrophils, common in TANs, can promote cancer metastasis [67]. TANs can form 

neutrophil extracellular traps (NETs), which are structures composed of decondensed 

chromatin and proteolytic enzymes that normally entrap and neutralize pathogens. NETs 

promote tumor cell adhesion, dissemination, and metastasis [68]. NET formation, termed 

NETosis, is found in both primary tumors and metastatic sites as NET components are 

overexpressed in various tumors and correlates with poor prognosis in breast carcinoma 

patients [69].

Immature myeloid cells give rise to a heterogeneous population of myeloid-derived 

suppressor cells (MDSCs) that are activated in a range of pathologic conditions and cancer. 

During acute infections, myeloid precursors differentiate into neutrophils and macrophages 

so they can activate phagocytosis. To resolve infections, MDSCs secrete immunosuppressive 

cytokines to initiate wound healing mechanisms; a process co-opted in cancer to induce 

proliferative signaling [70]. MDSC enrichment correlates with poor survival in different 

tumor types including pancreatic, breast, and lung carcinomas [71]. MDSC recruitment 

to the TME blocks cytotoxic and effector T cells and activates Treg recruitment through 

the production of anti-inflammatory cytokines IL-10, TGF-β, Arg1, and prostaglandin E2. 

Moreover, MDSCs suppress NK cells and DCs through the production of reactive oxygen 

species. In cancer, monocytic MDSCs can give rise to TAMs, while granulocytic MDSCs 

can give rise to TANs, thus replenishing the pool of immunosuppressive pro-tumorigenic 

cells [72].

Given the importance of innate immune cells in modulating tumor immunity, the paradoxical 

effects of inflammation are of note. In response to tumor-independent stressors such as 

pathogenic infections, environmental toxic exposure, obesity, and autoimmune disease, an 

inflammatory signaling cascade is initiated to activate innate and humoral immunity to 

restore homeostasis. Insults to epithelial cells activate myeloid cells to secrete inflammatory 

cytokines to promote epithelial cell proliferation and stem cell de-differentiation. Ideally, 

post injury or infection, a ‘wound-healing’ process is initiated. However, chronic exposure 

to inflammatory factors triggers cellular malignancy and progression by promoting tumor 

cell proliferation, survival, and angiogenesis. Tumor cells can self-sustain this supportive 

environment by producing inflammatory cytokines like TNF-α, IL-1β, and IL-6. Conversely, 

therapeutic inflammation can also be mediated by innate immune cells, e.g., NK cells 

and M1 macrophages, promoting anti-tumor immunosurveillance. Ultimately, however, 

sustained tumor microenvironment inflammation results in tumor cell proliferation and 

activation of immunoregulatory cells like MDSCs and Tregs, which dampen effector 

function. Thus, the plasticity of immune cells in the tumor microenvironment and duality of 

immunogenic functions must be delicately balanced in order to maintain homeostasis and 

activate anti-tumor immunosurveillance.
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Adaptive immune cells

T cell responses are determined by the stimulus they receive and the status of costimulatory 

signaling, allowing them the flexibility to perform cytotoxic, helper, or regulatory functions 

[73]. Specialized T cell subsets fight against pathogenic infections and cancer, while others 

maintain homeostasis and self-tolerance. T lymphocyte plasticity is particularly important 

for tumor progression. While the infiltration of T cells is a major prognostic and determinant 

of anti-tumor activity, tumors skew CTL functions, favoring immunosuppressive, regulatory 

activities to permit tumor immunoediting.

IFN-γ/STAT1 signaling activates effector type 1 helper T cells to promote immunity against 

biological pathogens including viruses, bacteria, or immunogenic cells. Further Th1 cell 

expansion occurs in response to IL-2/STAT4 signaling and antigen presentation. Th1 cells 

secrete pro-inflammatory cytokines that mediate a feedforward loop of Th1 activation and 

induce APCs. Consequently, APC activation allows them to perform phagocytic and APC 

functions and upregulates their MHC-I expression, thus directly priming CTL-mediated anti­

tumor immunity. Th1 cells can also activate the complement system through impacting B 

cells. Cumulatively, Th1 cell-mediated functions are critical for inducing robust anti-tumor 

immunity [74].

Type 2 helper T cells are activated in allergic responses, helminthic infections, and wound 

healing responses in response to IL-4/STAT6-GATA3 signaling [75]. Th2 cells produce 

anti-inflammatory cytokines that stimulate humoral immunity through IgE secretion, thus 

activating eosinophils to release histamines and suppress inflammation. More specifically, 

Th2-derived IL-4, IL-10 and IL-13 block Th1 activation and expansion and polarize the 

transcriptional programs of TAMs and MDSCs to assume immunosuppressives phenotypes 

[76]. Th2 cell abundance within the TME correlates with a worse prognosis in patients with 

many cancer types.

Regulatory T cells (Tregs) are the main inhibitors of autoimmune, inflammatory, and graft­

vs-host diseases [77]. Intra-tumor prevalence of Tregs correlates with poor prognosis and 

survival in many cancer patients [78]. Tregs mediate immune suppression through several 

potent mechanisms. Tregs secrete immunosuppressive cytokines TGF-β, IL-10, and IL-35 

to mediate an anti-inflammatory state. Metabolically, they outcompete effector T cells for 

a limited pool of metabolites and deprive them from necessary nutrients. Moreover, Tregs 

directly induce apoptosis in effector and CTLs by secreting granzyme A and B, and perforin 

[79].

Other CD4 T cell subsets include Th17 and follicular helper T (Tfh) cells. Th17 cells 

secrete high levels of IL-17 [80] and other cytokines like CCL2, CCL20 IL-1β, and IL-6 

[81–83] that mediate pro-inflammatory and regulatory functions [84]. The enrichment of 

Th17 cells in cancer benefits tumor growth by inducing angiogenesis via VEGF production 

or transdifferentiating into immunomodulatory Th2 or Tregs [85]. Tfh T cells regulate B cell 

antigen education in secondary lymphoid organs. Tfh produce pro-inflammatory cytokines 

IL-2 and IFN-γ to activate immunity. In cancer, Tfh cells associate with enhanced patient 

survival, increased CTL infiltration, and controlled tumor growth [86]. TNBC models 
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treated with ICB display Tfh cell enrichment, which activates B cell-mediated anti-tumor 

immunity [87].

CD8+ T cells are the chief mediators of T cell-mediated cytotoxicity [88]; they differentiate 

and expand in response to IL-12/mTOR signaling. The initial activation of CD8 cells 

primarily results from antigen presentation and costimulatory signaling by DCs in lymph 

nodes. Upon antigen education, CD8 cells are activated by binding MHC I on tumor cells. 

The TCR-MHC interaction activates CTLs to release lytic granules consisting of cytotoxic 

proteins: perforin, granzymes A and B, and granulysin. Perforin attaches to and creates 

pores in the plasma membranes of target cells. Then, apoptosis-inducing serine proteases, 

granzyme proteins, enter target cells and cleave intracellular proteins to induce an apoptotic 

signaling cascade. Activated CD8 CTLs express TRAIL and FasL that can also directly 

activate apoptosis in target cells.

While the initial presentation of neoantigens by DCs to T cells occurs in the lymph 

node, the continuous exposure to inflammatory signals induces the development of 

peripheral tertiary lymphoid structures (TLS) in secondary tissues for fast and efficient 

immunogenic responses. TLS mediate response to many pathologies including chronic 

inflammatory syndromes and cancer. TLSs harbor endothelial cells, DCs, T and B cells, 

which compartmentalize similarly to germinal centers in the lymph nodes. In cancer, 

TLSs are adjacently located to tumors and can be composed of many cells that perform 

various immune functions depending on the tumor type and immune cell content [89]. 

TLS, in melanoma, NSCLC, and TNBC, are enriched for DCs and correlate with enhanced 

CTL infiltration, which activates antitumor response and favorable patient outcome. TLS 

in hepatocellular carcinoma, however, correlated with more aggressive, advanced disease. 

More recently, TLS harboring B cells have been discovered to co-occur with T cells in 

melanoma, where they determine their cytotoxic phenotype and correspond with favorable 

patient response to immunotherapy [90, 91]. The analysis of TLS in melanoma patients 

with complete response to ICB displayed patterns of clonal B cell expansion that determines 

long-term memory anti-tumor responses [92]. Furthermore, regardless of CTL infiltration in 

soft-tissue sarcoma, B cell-containing TLS sufficiently predicted favorable patient response 

to anti-PD-1 blockade [93]. These data support the emerging role for TLS and their 

composition as a prognostic and predictive biomarker for ICB response in cancer patients.

Stromal Cells

In addition to lymphocyte infiltration, the breast tumor microenvironment is enriched for 

many stromal cells. The complex architecture of the breast, characterized by endogenous 

and recruited stromal cells, encompassing endothelial cells, mesenchymal stem cells, and 

cancer-associated fibroblasts (CAFs), significantly impacts tumor growth and progression. 

Stromal components engage in crosstalk with tumors via secreted soluble growth factors 

and cytokines that mediate various functions, such as angiogenesis, extracellular matrix 

remodeling, cellular extravasation and migration, and immune evasion, all of which enable 

metastasis.

Mesenchymal stroma cells (MSCs) are renewable pluripotent stromal calls that can 

differentiate into many types of cells like osteocytes, adipocytes, and chondrocytes. In 
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breast cancer, MSCs secrete VEGF, SDF-1, and CCL5 [94], which enhance breast cancer 

cell mobility and invasiveness [95] and induce EMT in primary tumor cells, which aids in 

metastasis to secondary locations [96]. In response to TGF-β signaling in breast cancer, 

MSCs differentiate into CAFs [97]. The autocrine CAFs production of TGF-β induces 

EMT and breast cancer metastasis. In the tumor microenvironment, CAFs produce DDR2, 

a collagen receptor, that mechanically reshapes extracellular matrix stiffness to facilitate 

tumor cells migration and metastasis [98]. Analysis of mammary tumor specimens from 

early to late stage disease revealed dynamic longitudinal changes in CAF transcriptomic 

phenotypes that mediate therapeutic resistance and correlate to poor patient survival [99, 

100].

Considerations for variable immunotherapy responses

Patient selection

A major reason for modest immunotherapy success in breast cancer is failure to preselect 

patients most likely to benefit from treatment. Initial trials evaluating combinatorial 

immunotherapy in a metastatic breast cancer setting demonstrated a survival benefit 

exclusively in patients whose tumor biopsies were positive for PD-L1 expression. Currently, 

the immunohistochemical verification of PD-L1 expression within the TME is the only 

criteria for immunotherapy eligibility (in the metastatic setting) and despite the PD-L1+ 

status of some patients, many do not demonstrate benefit to ICB. Thus, identifying novel 

biomarkers to more reliably predict patient subsets who will benefit from ICB is critical. 

Moreover, the discrepancy of PD-L1+ expression and favorable ICB response in patients 

suggests compensatory mechanisms breast tumors employ for immunotherapy resistance. 

Indeed, other inhibitory immune checkpoint ligands, like those of the B7-family (B7-H3 and 

B7-H4) can be upregulated in some patients’ tumors [101, 102].

Breast cancer patient candidates for immunotherapy (i.e., those in the first-line 

metastatic TNBC setting) have often progressed through chemotherapy (e.g. neoadjuvant 

chemotherapy [NAC]) or radiation treatment to treat the primary tumor. The neoadjuvant 

and post-surgical curative chemotherapy TNBC patients receive may significantly alter the 

immunologic landscape and adversely impact immunotherapy response in the metastatic 

setting. Ideally, chemotherapy and ionizing radiation induce immunogenic tumor cell 

death resulting in neoantigen release and detection by APCs, both of which trigger 

tumor-specific immune infiltration and activation [103]. NAC may enrich the infiltration 

of myeloid populations, which correspond to worse progression-free survival in breast 

cancer patients [104]. Detailed transcriptomic profiling of pre- and post-NAC treated 

breast tumors revealed significant, subtype-specific immune microenvironment changes 

[105]. TNBC patients displayed a higher immunogenic phenotype and augmented TIL 

abundance that correlated with pathologic complete response compared to HR+ breast 

cancer patients. Additionally, residual tumors were enriched for immunosuppressive cell 

populations like M2 macrophages and harbored less Th1 and CD8+ TILs. This evidence 

points to chemotherapy-induced immunoediting of the local TME, which could explain 

the mitigated response to second-line therapies like ICB. Therefore, ascertaining the most 

efficacious, immunogenic treatment combinations and deploying them earlier in therapy is 
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likely essential for maximizing the therapeutic benefit for breast cancer patients. However, 

such approaches must weigh the risks of financial and physiological toxicity of ICB, and 

further reinforce efforts for specific biomarkers of ICB benefit.

Insights from clinical trials

Despite the number of clinical trials evaluating the impact of immunotherapy in breast 

cancer, detailed correlative and molecular analyses of tumor specimens have not been 

reported. The reporting of larger Phase II and III breast cancer clinical trials have largely 

focused on ascertaining the safety and clinical outcomes in response to ICB, with little 

detailed tissue analysis beyond the presence of TILs or expression of PD-L1, which has 

enriched for responding patients in the metastatic setting but not the early setting. Overall, 

the modest response in breast cancer patients to monotherapy ICB indicates inherent tumor 

resistance. The molecular characterization of tumors pre- and post-treatment therapy may 

help elucidate mechanisms of adaptive tumor resistance to mono and combination therapy 

ICB.

Despite the limited information in breast cancer response to immunotherapy due to the 

relative short length of time ICB has been administered clinically in breast cancer patients, 

many conclusions can be drawn from clinical trials in other cancer types to explain acquired 

resistance to immunotherapy. The upregulation of checkpoint inhibitors LAG-3, TIM-3, 

TIGIT, and VISTA on T cells post anti-PD-L1 ICB has been described in many tumors, 

including melanoma and non-small cell lung carcinoma (NSCLC), as a mechanism for 

acquired resistance [106]. Furthermore, the employment of T cell based therapies induces 

loss-of-function mutations in critical signaling pathways that promote antigen presentation 

and T cell function, such as JAK1/2 and STAT1 mutations, to evade IFN-γ stimulation 

and impair T cell function in melanoma patients post anti-PD-L1 and anti-CTLA-4 [107]. 

In addition to immune-specific adaptive resistance, many tumors downregulate antigen 

presentation machinery in response to immunotherapy. Melanoma patients downregulate 

β2M, prompting MHC class I loss in response to PD-1 blockade, thus blocking tumor 

cell recognition by T cells. With more widescale implementation and evaluation of ICB in 

breast cancer, additional modalities of intrinsic and adaptive resistance mechanisms may be 

identified.

Unexpected outcomes to immunotherapy

In addition to immune-related adverse effects (irAEs), or organ-specific toxicities, emerging 

adverse outcomes include the rapid acceleration of tumor growth rate. ICB causes 

unpredictable and opposing effects in certain patient subsets of different tumor types, 

whose tumor burden rapidly progresses, a phenomenon fittingly called “hyperprogressive 

disease” (HPD) [108]. Several studies implicated the mutagenic overexpression of MDM2, 

EGFR, and FGF as the underlying causes for HPD [109]. HPD was evaluated in a limited 

retrospective study of a small TNBC patient cohort, however, yielded no particular adverse 

survival or prognosis [110]. Clinically expanding the application of ICB in breast cancer 

patients would conceivably demonstrate similar, adverse outcomes.
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Conclusions

Although responses to immunotherapy can often be durable and robust, cancers inevitably 

develop diverse resistance mechanisms through evolving structurally or skewing the 

functions of virtually all cells of the immune system to promote progression. Resistance 

mechanisms, like reducing mutational load (i.e immunoediting) and neoantigen formation 

and presentation, form the first line of defense against the engagement of host immunity. If 

the initial layer of protection fails and tumors are detected by the immune system, tumors 

reshape their microenvironment through secreting cytokines or upregulating the expression 

of proteins to maintain an immunosuppressive state.

The implementation of ICB has drastically improved patient response and clinical outcome 

in NSCLC, melanoma, and renal cell carcinoma patients. The recent approvals of ICB in 

TNBC breast cancer have significantly enhanced patient outcomes and opened the door for 

extension to other molecular subtypes. Many clinical trials are underway to evaluate the 

efficacy of therapeutic combinations with ICB to deepen and broaden patient responses. 

Despite initial favorable responses, tumors acquire resistance mechanisms which converge to 

escape anti-tumor immunity incurred by immunotherapy. Thus, elucidating the molecular 

mechanisms that drive molecular and immunologic resistance and exploring potential 

combinatorial approaches are vital to enhance patient responses to therapy in the future.
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Fig. 1: 
Anti-tumor immunity is initiated upon tumor cell death that releases tumor antigens for 

capture and processing by antigen presenting cells (dendritic cells, macrophages, B cells) for 

presentation to T cells through binding TCR (signal 1). Complete T cell activation requires 

the secondary engagement of costimulatory receptors (signal 2), which may also function as 

inhibitory checkpoints to suppress T cell activation. Successful antigen presentation allows 

tumor antigen-specific T cells to home to the primary tumor to perform cytolytic and 

effector functions to eliminate tumor cells. The escape of subpopulations of tumor cells may 

occur through aberrant signaling that alters neoantigen generation and release and impairs 

antigen processing machinery. Tumor-derived cues polarize immune populations (MDSCs, 

M2 macrophages, Tregs, Th2 cells) to perform pro-tumorigenic functions, leading to an 

anti-inflammatory, immunosuppressive state permissive of cancer progression.
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