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Mapping human behaviors to brain activity has become a key focus in modern
cognitive neuroscience. As methods such as functional MRI (fMRI) advance cognitive
scientists show an increasing interest in investigating neural activity in terms of functional
connectivity and brain networks, rather than activation in a single brain region. Due to the
noisy nature of neural activity, determining how behaviors are associated with specific
neural signals is not well-established. Previous research has suggested graph theory
techniques as a solution. Graph theory provides an opportunity to interpret human
behaviors in terms of the topological organization of brain network architecture. Graph
theory-based approaches, however, only scratch the surface of what neural connections
relate to human behavior. Recently, the development of data-driven methods, e.g.,
machine learning and deep learning approaches, provide a new perspective to study
the relationship between brain networks and human behaviors across the whole brain,
expanding upon past literatures. In this review, we sought to revisit these data-driven
approaches to facilitate our understanding of neural mechanisms and build models
of human behaviors. We start with the popular graph theory approach and then
discuss other data-driven approaches such as connectome-based predictive modeling,
multivariate pattern analysis, network dynamic modeling, and deep learning techniques
that quantify meaningful networks and connectivity related to cognition and behaviors.
Importantly, for each topic, we discuss the pros and cons of the methods in addition
to providing examples using our own data for each technique to describe how these
methods can be applied to real-world neuroimaging data.

Keywords: neuroscience, graph theory, data driven, machine learning, neural network

INTRODUCTION

A key challenge in cognitive neuroscience is determining how human behaviors or mental
representations map onto patterns of neural activity. Research traditionally hypothesizes that
specific human behavior or cognitions are closely associated with the activity of a single brain
region. Modern neuroscience methods, specifically the development of fMRI, have expanded the
human neuroimaging scope from identifying regional activation in brain images to communication
between pairs of brain regions (Mill et al., 2017). However, evidence now overwhelmingly

Frontiers in Human Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 875201

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.875201
http://creativecommons.org/licenses/by/4.0/
mailto:ramey.ameyc@gmail.com
https://doi.org/10.3389/fnhum.2022.875201
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.875201&domain=pdf&date_stamp=2022-06-16
https://www.frontiersin.org/articles/10.3389/fnhum.2022.875201/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-875201 June 11, 2022 Time: 14:14 # 2

Liu et al. Large-Scale Brain Network Methods

indicates that whole-brain functional and network activations
can be indexed to provide insight into the mechanisms behind
human behaviors.

Whole-brain networks play a fundamental role in
neuroscience, and numerous scientists have been fascinated
by their ability to reveal the brain’s intricate functional
properties. Whole-brain networks identify neural connectivity in
a relatively unbiased manner. That is, one must differentiate the
meaningful signatures of neural activity that underlie behaviors
from noisy or redundant neural activity. Setting up reliable
functional connections, or brain network-based neuromarkers,
is pivotal in investigating human behaviors. However, selecting
the best neuromarkers in relation to behaviors from the intensive
whole-brain network is difficult.

Measuring whole-brain neural network activity is complex.
It has been suggested that the brain acts as a parallel processor,
meaning that multiple regions influence one another across
whole-brain neural networks simultaneously. Associations
between these whole-brain neural connections and human
behavior often require multi-level approaches that have
the potential to include every single connection, regional
organization, and the whole-brain topological architecture. The
noisy nature of brain activity, let alone whole brain activity,
requires a more sensitive statistical approach to detect the robust
associations with behaviors. Furthermore, recent theories have
emphasized that neural computation may be more dynamic than
previously thought (Langdon and Chaudhuri, 2021). In other
words, networks previously associated with behavior may need
to be reconsidered in a more dynamic fashion. With the help of
recent advances in statistical methods it is now much easier to
find clear brain-behavior associations from unbiased whole-brain
networks in static and dynamic time series. However, given the
complexity of the results, meaningful interpretations of identified
brain regions can be a challenge. Selecting an optimal technique
is integral for the interpretation of results.

This review focuses on two topics: First, how analyzing
whole-brain neural networks can facilitate our understanding
of neural mechanisms and build models of behavior. Second,
this review focuses on implementing a multi-level approach,
both spatially and temporally, to obtain unbiased whole-brain
neural network results. We review popular approaches to
analyze whole-brain activity such as graph theory, connectome-
based predictive modeling, multivariate pattern analysis, network
dynamic modeling, and deep learning techniques that quantify
meaningful whole-brain networks regarding cognition and
behavior. Importantly, each technique will be reviewed with
pros and cons of its application to inform readers of the best
approach for their data (a table is also provided for convenience,
Table 1). Furthermore, we also provide examples for each
technique, describing how the method can be applied to real-
world neuroimaging data.

METHOD

In this paper, we will use our own data to demonstrate the usage
of the above-mentioned data-driven approaches for whole-brain

analyses, illustrating how whole-brain data-driven approaches
can provide additional insight into cognition studies.

General Procedure
Sixty-five participants (33 males) came into the lab to complete
two cognitive tasks. The first was a problem-solving task
consisting of math problems and performance feedback. The
second was a memory test that indexed what participants saw
during the problem-solving task. Live electroencephalogram
(EEG) recordings were completed during the entire experimental
session. Participants were seated in a sound proofed chamber, set
up with an EEG, and were instructed to begin the task which was
displayed on a computer screen in front of them. Participants
were able to move through the task by pressing buttons on a
button box placed in their laps. The present set up minimizes
movement from the participant which can contribute to noisy
neural data. The problem-solving task consisted of a 34-min math
task consisting of standard multiplication and division problems
(e.g., 10× 20 =) that initial pilot tests confirmed varied in degree
of difficulty to ensure all participants would solve problems
correctly and incorrectly. During each trial, participants were
given three answer choices below each problem (A, B, or C)
presented on the screen, with the answer to each problem
randomly presented in one of the three answer positions on each
trial. Participants made all answer selections via the button box
placed in their laps and did not have scratch paper or a calculator.
After each response, participants received feedback for 2 s that
indicated whether their selected answer to the math problem was
wrong or correct. To assess memory for feedback (indexed in the
second task), the words “Wrong” or “Correct” were presented in a
novel font on every trial (see Forbes et al., 2015; Forbes et al., 2018
for examples). Participants were given 16 s to solve each problem.
If participants were unable to answer a problem within that time
frame, they would receive negative feedback (i.e., “Wrong” would
appear on the screen). Participants completed an average of 83.9
problems. The present data is ideal for this review as it ensured
participants went through myriad cognitive processes while live
EEG was recorded. Furthermore, the repetitive nature of the math
and memory tests (further described below) ensured we would
have enough trials per stimuli to test these advanced methods.

Memory Test
Like Forbes et al. (2018), participants were presented with a
surprise memory test containing 400 trials after the problem-
solving task while EEG data was recorded simultaneously.
Among the 400 trials, participants were presented with each
font/feedback pairing they had previously seen during the
problem-solving task, i.e., each performance feedback stimulus
that was shown for 2 s, with the remaining trials acting as “lures.”
During each trial, participants were randomly presented with the
words “wrong” or “correct” written in one of the 200 different
fonts in the middle of a computer screen. A scale was presented
below each font/feedback combination and participants were
asked to indicate whether they had seen the combination during
the problem-solving task using a six-point scale (1 = I know I
didn’t see it, 4 = I think I saw it, 6 = I know I saw it). If participants
were presented with a previously seen font, responses of 4–6
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TABLE 1 | The strength and weakness of each method in behavioral prediction scenarios.

Method Application scenarios Strengths Weaknesses

Graph theory To quantify human behaviors using the
brain network’s topological architecture

or organization.

Allows researchers to quantify multiple
regions to describe neural network
architecture in myriad ways (e.g.,
efficiency, connectivity strength)

Often, the interpretation of global or
regional graph theoretical measures in

relation to human behaviors is
ambiguous. Causality can not be

inferred.

CPM To search for all neural connections in
relation to human behaviors using a

data-driven approach.

Allows researchers to examine neural
activity related to behavior without any
prior bias. Novel connections are often

found in relation to behavior.

The functional connectivity revealed
may not conventionally relate to the

examined behavior. Researchers must
take care in the interpretation of the

results and often replication or
validation is needed.

MVPA classification To increase the sensitivity of recognizing
behavior related cognitive states in

human brain network.

Allows researchers to focus on the
statistical nature of mental

representations via classification by
activation similarities.

Creating an optimal predictive model
using MVPA in order to finding

cognitively meaningful features needs
to be further validated regarding neural

networks.

MVPA RSA To identify how similarly/differently
human brain network performs in

different cognitive states.

Allows researchers to focus on the
statistical nature of mental

representations via classification by
representational distance, e.g.,

dissimilarities.

The association with behavioral scores
is not straightforward. These

associations must be interpreted
carefully after considering possible

cognitive theories.

Brain network dynamics To evaluate the moment-to-moment
variability of brain network

representations in relation to behaviors.

Allows researchers to utilize time series
to provide insight into how neural
networks fluctuate in a temporal
manner in relation to cognitive

processes and behavior.

Too many connections in neural
networks may lead to ineffective time

series segmentation. Feature reduction
is needed before dynamic modeling.

GCN based deep learning To significantly increase the prediction
accuracy for behavioral performance
scores in “big data” scenarios using

brain network.

Allows researchers to estimate
incredibly accurate behavior predictions
from neural activation if the sample size

is sufficient.

Because of the large number of
parameters within deep learning

models, these models can often overfit
in small samples. Indeed, GCN models
not only need connectivity values but

also the features on nodes within neural
networks. The added features

differentiate this analysis from other
conventional network analyses which

are solely based on neural connections.
Thus, the cognitive interpretation is

difficult because the model is often too
complicated to localize the features that

contribute to the prediction results.

Meta-analysis To pre-select a related functional
connectivity in hypothesis-driven

behavioral studies.

Allows researchers the opportunity to
leverage past literature to bolster

current studies. Also provides a tool to
help replicate past findings.

Researchers lose the opportunity to
identify novel findings.

were classified as hits, and responses of 1–3 were classified as
misses. If participants were presented with a novel font, responses
of 4–6 were classified as false alarms, and responses of 1–3
were classified as correct rejections. Using these classifications,
we calculated d-prime scores to measure participants’ ability to
accurately discriminate seen from unseen fonts. Prior research
suggests that d-prime score is a more sensitive assessment of
memory effects that accounts for guessing (Wickens, 2001). To
calculate d-prime scores, z scores for false alarm rates were
subtracted from z scores for hit rates. Because z scores for 0 or 1
cannot be calculated, participants without hits were given scores
of 0.1 and participants with perfect scores were given a score of
0.9. Therefore, larger d-prime scores indicate that participants
were better at discriminating between previously seen fonts and
lures, i.e., had more accurate memory recall. Within the results

presented in this review, d-prime will serve as a proxy for
memory accuracy.

Electroencephalogram Recording
Continuous EEG activity was recorded using an ActiveTwo head
cap and the ActiveTwo Biosemi system (BioSemi, Amsterdam,
Netherlands). Recordings were collected from 128 Ag-AgCl
scalp electrodes and from bilateral mastoids. Two electrodes
were placed next to each other 1 cm below the right eye
to record startle eye-blink responses. A ground electrode
was established by BioSemi’s common Mode Sense active
electrode and Driven Right Leg passive electrode. EEG activity
was digitized with ActiView software (BioSemi) and sampled
at 2,048 Hz. Data was downsampled post-acquisition and
analyzed at 512 Hz.
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Electroencephalogram Preprocessing
For performance feedback analyses, the EEG signal was epoched
and stimulus locked from 500 ms pre-feedback presentation
to 2,000 ms post-feedback presentation. For memory test
analyses, EEG signal was epoched and stimulus locked from
500 ms pre-performance feedback presentation (previously seen
font/feedback combinations or lures) to 1,000 ms post-feedback
presentation. EEG artifacts were removed via FASTER (Fully
Automated Statistical Thresholding for EEG artifact Rejection)
(Nolan et al., 2010), an automated approach to cleaning EEG data
that is based on multiple iterations of independent component
and statistical thresholding analyses. Specifically, raw EEG data
was initially filtered through a band-pass FIR filter between
0.3 and 55 Hz. Then, EEG channels with significant unusual
variance (absolute z score larger than 3 standard deviations
from the average), mean correlations with other channels,
and Hurst exponents were removed and interpolated from
neighboring electrodes using a spherical spline interpolation
function. EEG signals were then epoched and baseline corrected;
epochs with significant unusual amplitude range, variance, and
channel deviation were removed. The remaining epochs were
then transformed through ICA. Independent components with
significant unusual correlations with EOG channels, spatial
kurtosis, slope in the filter band, Hurst exponent, and median
gradient were subtracted and the EEG signal was reconstructed
using the remaining independent components. In the last
step, EEG channels within single epochs with significant
unusual variance, median gradient, amplitude range, and channel
deviation were removed and interpolated from neighboring
electrodes within the same epochs.

Source Reconstruction
All a priori sources used in network connectivity analyses were
identified and calculated via forward and inverse models utilized
by MNE-python (Gramfort et al., 2013, 2014). The forward
model solutions for all source locations located on the cortical
sheet were computed using a 3-layers boundary element model
(BEM) (Hamalainen and Sarvas, 1989) constrained by the default
average template of anatomical MNI MRI. Cortical surfaces
extracted with FreeSurfer were sub-sampled to approximately
10,240 equally spaced vertices on each hemisphere. The noise
covariance matrix for each individual was estimated from the
pre-stimulus EEG recordings after preprocessing. The forward
solution, noise covariance and source covariance matrices were
used to calculate the dynamic statistical parametric mapping
(dSPM) estimated inverse operator (Dale et al., 1999, 2000).
The inverse computation was done using a loose orientation
constraint (loose = 0.2, depth = 0.8) (Lin et al., 2006). Using depth
weighting and noise normalization approaches, dSPM inverse
operators have been reported to help characterize distortions in
cortical and subcortical regions, and improve the bias accuracy
of neural generators in deeper structures, e.g., the insula (Attal
and Schwartz, 2013). The cortical surface was divided into
68 anatomical regions (i.e., sources) of interest (ROIs; 34 in
each hemisphere) based on the Desikan–Killiany atlas (Desikan
et al., 2006) and signal within a seed voxel of each region was

used to calculate the power within sources and phase locking
(connectivity) between sources.

Functional Connectivity Estimation and
Network Construction
Frequency coupling was calculated within identical frequency
bands and temporal periods between all pairs of nodes. Phase
locking values (PLV) (Lachaux et al., 1999), which measure
variability of phase between two signals across trials, were
utilized to define connectivity strength. In other words, for
every participant, condition, and frequency band, we obtained
a symmetric 68 × 68 adjacency matrix, representing all pairs
of nodes – or edges – in each participant’s whole-brain network
during a given period. For the memory task period, PLVs were
averaged from the first 500 ms after the memory task appeared.
For the resting state period, PLVs were averaged from the first
500 ms after the onset of the initial fixation cross.

GRAPH THEORY

Graph theory is the one of the earliest attempts to manipulate
large-scale brain networks in cognitive studies. Graph theory
allows researchers to integrate multiple regions in an analysis
to describe neural network architecture using a global view.
As mentioned previously, in the realm of social and behavioral
neuroscience, neural activity has often been conceptualized
by investigating region-based activity. Graph theory, however,
allows one to capture a more wholistic description of the brain
by observing the connectivity and neural architecture between
regions either in a specific a priori network, or across the whole
brain, instead of focusing on one area specifically. Within graph
theory, modularity, efficiency, and network hubs are standard
measures to observe the underlying neural architecture behind
various cognitive states and behaviors. We break these measures
down below (Figure 1).

Community Structure
Functional segregation within whole-brain networks and
subnetworks plays an essential role in the representation of
cognitive states and can be defined by modularity. Modularity
quantifies the amount of densely connected nodes, or modules,
within a network (Girvan and Newman, 2002; Bullmore and
Sporns, 2009). Modules in functional brain networks are thought
to represent groups of brain regions that are collectively involved
in one or more cognitive domains. Importantly, regions that are
anatomically or functionally close to one another are likely to be
members of the same cluster or module and share information
with one another.

Quantifying neural activity within modularity allows
researchers to operationalize neural configurations across the
brain. Modularity is often calculated based on hierarchical
clustering. In this case, smaller groups of nodes are organized
into larger clusters maintaining a scale-free topology (Girvan and
Newman, 2002). If a network has high modularity, it can be said
to be more functionally segregated, i.e., a subnetwork of nodes
within a given network has higher connectivity within itself than
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FIGURE 1 | Typical architectural features of functional brain networks. (A) The simplest model is entirely random structure. (B) Networks with modular structure,
divided into communities with dense connectivity. (C) Small-world networks, which balance efficient communication and high clustering. (D) Networks with hub
structure, characterized by a heavy-tailed degree distribution.

it does with the rest of the network (Kim et al., 2020). However,
how this network is segregated in relation to the rest of the
brain is not quantified by this measure of modularity. Usually, a
brain network module that is psychologically meaningful (e.g.,
working memory network) can be widely distributed among
several anatomical modules across the brain.

Efficiency
Complex whole-brain networks promoted by higher modularity
are often more stable and synchronous (Papo et al., 2014).
Another important characteristic of cognitive states that can
be defined by graph theory is efficiency, or the high output
of information transfer with a low connection cost between
nodes (Stanley et al., 2015; Cohen et al., 2016). High global
efficiency varies between cognitive states and has ramifications on
numerous cognitive processes. For example, increased efficiency
has positive outcomes on processes such as working memory and
spatial orientation ability (Stanley et al., 2015). In these cases,
greater neural network efficiency led to both increases in working
memory and spatial orientation ability. Greater efficiency has also
correlated to better executive task performance and intelligence
(Bassett et al., 2009; Li et al., 2009; Van Den Heuvel et al., 2009).
These studies all demonstrate the importance of efficiency in
representing high functioning cognitive states.

There are a few ways to operationalize efficiency (Rubinov
and Sporns, 2010). The most common way to operationalize
efficiency is small-worldness. Small-worldness defines a network
that is highly clustered, but has short characteristic path
lengths (Bullmore and Bassett, 2011). This small-world like
structure gives networks a unique property, as they have
regional specialization and efficient information transfer across
broader regions. If a whole-brain network has a high degree
of small-worldness, one would then be able to infer that
although it has regional segregation, whole-brain information
transfer is still efficient. We can gauge the network efficiency
by analyzing global network efficiency (GNE) as well. Global
network efficiency is a graph theory-based measure that offers
perspective about complex mental tasks that we expect to elicit
widespread reorganization in the brain (Forbes et al., 2018),
i.e., whole-brain reorganization. During cognitively demanding
processes requiring more reciprocal communication between
remote, specialized areas, an efficient network organization may
dynamically facilitate better coordination.

Network Hubs
All cognitive states require the integration of distributed neural
activity across the whole brain. However, it is often the case that
specific nodes within these neural networks drive this activity.
Utilizing graph theory, analyses can identify these key network
hubs that are essential for neural communication and integration.
Understanding these hubs provides essential information about
the underpinnings of complex cognitive states; functional
segregation and specialization are essential for cognitive function.
Two types of hubs are essential in describing these cognitive
states. For example, if one is interested in one subnetwork in the
brain, they could utilize provincial hubs. Provincial hubs are hubs
that are mainly connected to nodes within their own network
modules. On the other hand, if one was more interested in whole-
brain states, one could examine connector hubs. Connector hubs
are regions that are highly connected to nodes in other network
modules, speaking more to whole-brain connectivity (Guimera
and Amaral, 2005). Numerous studies have conducted analyses
that note the existence of specific sets of hub regions in various
cognitive states, and brain developmental stages (Xu et al., 2021).
Specifically, for global communication processes, the precuneus,
insular superior parietal, and superior frontal regions have been
cited as essential network hubs integral to multiple cognitive
processes (Iturria-Medina et al., 2008). Observing network hubs
from resting state brain activity has also provided evidence to
suggest that communication within the human brain is not
random, but rather it is organized to maximize efficient global
processing. It is also found that the most pronounced functional
connections are found between network hubs that share a
common function (Honey et al., 2009).

Pros and Cons to Graph Theory
Graph theory is an invaluable tool when it comes to quantifying
the brain’s network architecture in relation to cognition and
behavior by measuring modularity, efficiency, and network hubs.
For example, graph theory can allow us to obtain a global, or
whole-brain, view of the brain’s configuration during a given
cognitive task, providing deeper understanding regarding specific
network and regional measures. Given the highly adaptive
nature of brain network organization to task demands, this not
only indicates the extent to which processes draw on multiple
functional organizations, but also provides information about
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the actual role of the individual communities or sub-networks
themselves. Yet these measures still have their limitations. One
critical limitation is that the neuro-cortical interpretation of
global graph theoretical measures is ambiguous, especially when
researchers associate them with human behavioral or cognitive
task scores. For example, results often can suggest that one
type of stimulus may be more associated with a global network
measure over other types. The reasons behind these associations
are often unclear; one cannot determine which brain regions
are more efficiently connected to others and which regions are
not. Even for subjects with equivalent brain network efficiencies,
biases toward specific stimuli may be caused by different network
organizations. Thus, comparing global measures is not ideal
for determining the cognitive mechanisms behind stimuli bias.
However, it may be more useful to further contextualize broader
graph theory findings by supplementing them with other network
analysis methods that target activity in smaller networks, regions,
or relationships with behavior.

Real Data Example
Memory retrieval draws upon multiple functional processes
(vision, memory, reasoning, etc.). Because memory retrieval
relies on multiple functional processes, it can be expected
that more brain regions would communicate with one another
during memory retrieval than at rest. Thus, we hypothesized
that memory retrieval tasks (remembering unique performance
feedback previously displayed during the problem-solving task)
would elicit greater global network efficiency in connection with
retrieval accuracy (i.e., a more efficient brain network would
support better memory performance). Global network efficiency
was operationalized using small-worldness which quantifies
whole-brain neural efficiency. Linear regressions were conducted
on memory d-prime scores, operationalizing memory accuracy
as stated in the methods, and small-worldness. Significant effects
were found between small-worldness and d-prime scores for
feedback fonts during the retrieval task for all frequency bands
(Theta: β = 1.33, F[1,70] = 4.50, R2 = 0.06, p = 0.027; Alpha:
β = 1.95, F[1,70] = 7.73, R2 = 0.10, p = 0.007; Beta: β = 1.92,
F[1,70] = 5.92, R2 = 0.08, p = 0.017; Gamma: β = 1.62,
F[1,70] = 4.98, R2 = 0.07, p = 0.027). All frequency bands
demonstrated a positive relationship suggesting the more global
efficiency was present, the better memory recall was. This finding
illustrates our hypothesis that global network efficiency may
positively support cognitive task performance.

CONNECTOME-BASED PREDICTIVE
MODELING

Setting up a reliable neural-behavior relationship is pivotal
in modern cognition studies. Graph theory only provides a
“qualitative” evaluation between brain network organizations
and human behaviors. In other words, graph theory investigates
brain networks from the perspective of topological organizations.
However, it is often more important to understand exactly which
communications, between pairs of brain regions, contribute to
cognitive functions. To date, the establishment of reliable neural-
behavior relationships is challenging and a prominent question

(Poldrack, 2010; Barch et al., 2013) in neuroimaging studies.
Connectome predictive modeling (CPM) can provide insight.

Connectome predictive modeling (CPM; Shen et al., 2017)
can reveal the nuances of activity within subnetworks and
across the whole-brain using fully data-driven analyses that
allow researchers to examine neural activity related to behavior
without any prior bias, i.e., predefined brain regions based past
literature (see the description of whole brain meta-analyses in
the Supplementary Material for further detail). This approach
also provides the opportunity to find relationships between novel
connectivity and behavioral scores by exploring every single
connection within the whole-brain network.

Connectome predictive modeling is particularly useful in
predicting human behavior scores. The first step in CPM
is to examine each functional connection between all brain
regions from the whole-brain network to observe whether
they correlate with behavior scores. Often scores that reach a
p = 0.001 threshold are suggested to be meaningful for this
initial step (Rosenberg et al., 2016). Next, a linear model is
built to maximize the fit between the summation of selected
functional connectivity values and behavior scores. In the last
step, CPM uses the linear model to predict behavior scores in new
individuals. Currently, CPM doesn’t depend on sophisticated
mathematical measures. Instead, CPM discovers meaningful
patterns by using simple linear regression models. Because
of this approach, it is especially helpful for psychologists,
neuroscientists, and clinicians (Cheng et al., 2021) who may have
limited background knowledge of more complicated quantitative
approaches such as multi-variant pattern analysis (MVPA) and
machine learning techniques.

Because of the linear regression approach of CPM, an
important aspect of the method is validation. With so many
connections tested, the threshold of p = 0.001 (Rosenberg et al.,
2016; or the threshold chosen by the researcher) during the first
step may not be enough to filter through neural noise (i.e., false
positives). Thus, validation is needed. According to Rosenberg
et al. (2015, 2016, 2017), CPM validation could be internal
or external. Internal validation requires results to be validated
using a leave-one-subject-out or multi-fold cross-validation
procedure. In these two procedures, significant associations
between behavior and neural connectivity are identified in all
subjects except ones that are left-out. A linear model is then
built to best fit the relationship between network connectivity
strength and the representative behavior score. Next, the left-
out participant’s network strength is incorporated into the
linear model and a predicted behavior score is given for the
participant. This step repeats for all participants in the group. If
the participants’ predicted behavior scores and original behavior
scores are significantly correlated, it suggests that the connectome
feature and model are able to predict novel individual’s (or the
left-out subject’s) behavior scores. External validation takes a
different approach using a train test method. External validation
tests the connectivity of the model, built on one set of data, on
a completely independent set of data. For this reason, this type
of validation has been said to be more rigorous but also a more
generalized approach, i.e., to be able to predict behaviors from
unseen subjects without overfitting (Cohen et al., 2020; Boutet
et al., 2021). These steps are illustrated in Figure 2.

Frontiers in Human Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 875201

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-875201 June 11, 2022 Time: 14:14 # 7

Liu et al. Large-Scale Brain Network Methods

FIGURE 2 | The CPM approach identifies functional connectivity networks that are related to behavior and measures strength in these networks in previously unseen
individuals to make predictions about their behavior. First, every participant’s whole-brain connectivity pattern is calculated by correlating the fMRI activity time
courses of every pair of regions, or nodes, in a brain atlas. Next, behaviorally relevant connections are identified by correlating every connection in the brain with
behavior across subjects. Connections that are most strongly related to behavior in the positive and negative directions are retained for model building. A linear
model relates each individual’s positive network strength (i.e., the sum of the connections in their positive network) and negative network strength (i.e., the sum of the
connections in their negative network) to their behavioral score. The model is then applied to a novel individual’s connectivity data to generate a behavioral
prediction. Predictive power is assessed by correlating predicted and observed behavioral scores across the group.
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Given the predictive nature of validation, CPM can also
be applied to behavior prediction hypotheses. That is, a
unique pattern of neural activation in associated with specific
behaviors is able to predict behavior scores across different
cognitive states or populations, helping to detect the cognitive
state and population differences. For example, using CPM,
Rosenberg et al. (2017) identified a functional brain network
whose connectivity strength predicted individual differences
in sustained attention performance. The identified network
generalized to previously unseen individuals recruited both
from the United States and China, in addition to children and
adolescents. The identified network was also able to predict
sustained attention scores quantified from multiple cognitive
tasks designed for measuring an individual’s attention capability
using both resting-state and task-evoked brain states. Together
results suggest that this network may be a generalized model
for sustained attention. Yet, CPM provided nuanced details by
revealing novel connectivity between regions within the network
which, previously, were not related to attention capability. In
another example, Liu et al. (2021b) applied CPM in a more
sophisticated manipulation. The experiment had participants
complete challenging math problems in stressful and normal
contexts. Results suggested that a resting-state network, revealed
by CPM after examining the whole-brain connections, directly
related to negative math performance in the stress group. The
network did not successfully predict math performance in control
contexts. Results suggest that stressful situations may impede the
brain network’s transition from a maladaptive state in resting
state to a more adaptive state during the cognitive tasks.

Pros and Cons of Connectome
Predictive Modeling
Unlike the graph theoretical approaches, CPM provides an
option to investigate the relationship between brain connectivity
and behaviors within specific brain regions of interest, and
the whole-brain, using a data driven approach. Indeed, in
conventional hypothesis-driven approaches for exploring specific
cognitive functions, researchers often intuitively search for brain
regions related to a cognitive function in a meta-analysis
database, and then check if connectivity, or any types of network
organization, in these brain regions is associated with behavioral
scores. CPM provides another solution: it allows a data-driven
search mechanism to discover a predictive functional network.
CPM’s strength is its ability to synthesize neural and behavioral
activity, making it an integral tool for cognitive and behavioral
neuroscientists. However, one downfall of CPM is that the
functional networks discovered may exist in the brain regions
without any direct association with the task at hand. Combating
this issue is still an ongoing process (Rosenberg et al., 2017).
However, findings are perceived to be meaningful due to CPM’s
powerful ability to predict behavior.

Real Data Example
In our dataset, we wanted to use CPM during memory retrieval
to predict memory accuracy for the wrong and correct feedback
stimuli presented during the problem-solving task. Regressions

between each edge in connectivity matrices during memory
retrieval and behavioral memory performance scores for correct
and wrong feedback stimuli were measured across n-1 subjects
and used to assess the relevance of functional connections
to behavior. The p-value in each regression between neural
connectivity and behavioral outcomes (memory score for the
presented feedback) was recorded in a 68× 68 symmetric matrix
(see the “Methods” section for a more detailed description of
the symmetric matrix) from each frequency band, resulting in
2,244 × 4 = 8,976 p-values for each regression. To find the
most significant associations between specific connectivity and
the memory scores for both correct and wrong performance
feedback stimuli, as well as to control for multiple comparisons,
the resulting p-values were held to a 0.001 threshold (Rosenberg
et al., 2016) as described above. A single summary statistic,
network strength, was used to characterize each participant’s
degree of connectivity by averaging all edges found below the
threshold. To ensure our results pertained to positive effects on
memory performance, we only involved edges in the positive tail.
These edges represent a positive effect on memory performance.
The identified network, constructed from the significant positive
edges was then utilized for the left-out participant with both
correct and wrong performance feedback stimuli to test their
predictive power to memory score. This procedure repeated
n times via a leave-one-out cross-validation to validate the
network discovered.

Results show that CPM successfully identified a functional
network that significantly predicted memory score for correct
and wrong performance feedback stimuli, respectively, (correct:
β = 0.47, F[1,70] = 33.13, R2 = 0.32, p < 0.0001; wrong:
β = 0.51, F[1,70] = 46.30, R2 = 0.40, p < 0.0001). In addition,
to investigate whether memory retrieval performance for correct
and wrong performance feedback stimuli relies on the same
functional network, networks identified in each leave-one-out
round were also used to predict the memory performance
for the left-out participant in the alternative memory tasks,
i.e., functional networks found during the memory of correct
performance feedback stimuli was used to predict the memory
of wrong performance feedback stimuli, and vice versa. Results
indicated that networks found in the correct performance
feedback stimuli memory and networks found in the wrong
performance feedback stimuli memory could not be used
interchangeably for prediction, suggesting that the memory
retrieval process for correct performance feedback stimuli and
wrong performance feedback stimuli may rely on different
connectivity, and in turn, different neural mechanisms.

MULTI-VOXEL PATTERN ANALYSIS
(MVPA) IN BRAIN NETWORKS

Multi-voxel pattern analysis (MVPA) seeks to enhance the
sensitivity of detecting neural representations and cognitive states
by looking at the contributions of activity from all regions of the
brain (Norman et al., 2006; Mill et al., 2017). MVPA also has
the capability to establish more reliable and generalized neural
patterns that correspond to cognitive functions. In other words,
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MVPA focuses on the statistical nature of mental representations
in available data and how reliably this representation can be
mapped to novel and unseen data. This is exactly what machine
learning techniques revolve around. Hence, MVPA is considered
a technique that leverages machine learning and multivariate
statistics to identify the cognitive states with distributed neural
activity (Haxby et al., 2001). To achieve categorization, a common
approach involves removing a part of the available data and
using it to test the categorizations built on the remaining data.
This train-test method is a form of cross validation. Another key
step in MVPA is to establish a model that statistically describes
the relations between neural representation and cognitive states
in available data. This relies on advanced statistical techniques,
e.g., non-linear fitting, support vector machines, artificial neural
networks, and the deep learning (for details about deep learning
please see deep learning in brain networks section).

In the first MVPA study in cognitive neuroscience (Haxby
et al., 2001), illustrated that collapsing activity from multiple
voxels together can be used in a well-trained model to distinguish
which object categories subjects were viewing. Currently, there
are many ways to conduct MVPA analyses in cognitive
science. The main category of MVPA is classification (including
regression which can be considered classification on continuous
cognitive output) and representational learning (RSL). Although
MVPA is traditionally conducted on individual neural regions, it
has recently been implemented with functional connectivity and
networks (Anzellotti and Coutanche, 2018).

In network-based classification, MVPA usually starts with a
feature selection approach, which utilizes a t-test, e.g., (Wei et al.,
2018) or F-test, e.g., (Abraham et al., 2014) that statistically
tests differences between functional connectivity across the
whole-brain. Significant test values are utilized to quantify
areas that have the most substantial differences in connectivity.
A classifier is built from these values to categorize cognitive states
based on the selected connectivity. For example, Dosenbach
and colleagues (Dosenbach et al., 2010) successfully separated
children’s and adults’ brains using functional network MVPA
in resting state. This work was further developed, leading to
a new branch in neuroscience – brain age prediction. Indeed,
Li et al. (2018) successfully predicted subjects’ brain age using
functional network in resting-state and MVPA regression. It
is worth noting that feature selection in MVPA using a data-
driven approach, e.g., t-test or F-test, also faces the problem of
interpretation. Results may be ambiguous. A good MVPA model
not only yields good classification and prediction output, but
also labels the brain representations well, i.e., the selected brain
features uncovers the proper cognitive mechanisms according to
the cognitive study. Indeed, Dosenbach et al. (2010) found that
the weakening of short distance connections and strengthening of
long-distance connections may predict brain maturity. Although
vague, this result is reasonable, as the integration of more distant
brain regions (through long distance connections) has been
suggested to indicate more complex cognitive functions present
in older humans.

Another critical MVPA approach is representational similarity
analysis (RSA) (Kriegeskorte et al., 2008). RSA is a multivariate
method that can be used to extract information about distributed

patterns of representations across the brain (Dimsdale-Zucker
and Ranganath, 2018). Rather than trying to categorize the
neural representations into corresponding cognitive states like
MVPA classification, RSA uses the representational distance (or,
more generally, dissimilarities) between neural activity patterns
associated with the cognitive states as a summary statistic
to classify (Mack et al., 2013; Diedrichsen and Kriegeskorte,
2017). More generally, after all distances are measured from
several cognitive states, a matrix can be constructed. From this
matrix, the representational dissimilarity matrix (RDM), where
the representational distance (or dissimilarity) between pairs of
cognitive states can be indexed and further deciphered, can be
constructed. These types of analyses are called representational
geometry (Kriegeskorte and Kievit, 2013; Freeman et al., 2018).

In RSA analysis, the first step is to choose a brain feature (e.g.,
connectivity of interest) and estimate the activity pattern. The
second step is to estimate the RDM. The most commonly used
distance measure is the correlation distance (Pearson correlation
across features selected), yet other distance measures such as the
Euclidean or Mahalanobis distance can also be used. The final
step is to compare the RDM to assess the extent to which different
representations are alike (Aguirre, 2007; Kriegeskorte and Kievit,
2013). Depending on the cognitive states of interest, comparison
of representational distance can detect different cognitive stimuli
(Beaty et al., 2020), individual differences (Chen et al., 2020),
neural plasticity (Fischer-Baum et al., 2017), disease abnormities
(Cauda et al., 2014), longitudinal brain development (Schwartz
et al., 2021), and even the representational alteration across time
periods (Kobelt et al., 2021). An illustration of the technique is
displayed in Figure 3.

Like MVPA classification, although RSA was first applied in
decoding brain patterns in individual neural regions, it has been
applied in network activity across brain regions as well. Using
this approach, RSA has shown robust findings comparing fine-
grained cognitive states, e.g., (Beaty et al., 2018, 2020). RSA has
even been suggested to be able to identify specific individuals.
In a study conducted by Finn and colleagues (Finn et al.,
2015), whole-brain functional networks were utilized to extract a
“brain fingerprint,” a unique neural signature, for each individual.
This signature is intrinsic and can be used to identify subjects
regardless of which cognitive task the subject is performing. Brain
fingerprinting may represent how different individuals process a
variety of cognitive tasks, including the personalized strategies,
habits, or normative behaviors (Tavor et al., 2016). Using RSA,
Tavor and colleagues (Tavor et al., 2016) established whole-
brain functional connectivity to represent one cognitive task for
every individual subject. These functional networks were then
associated with a single point in representational space, such that
the researcher could map the distances of all the cognitive tasks’
FC network in RDM. Results suggested that points in the RDM
were closest to all other points from the same subject, no matter
which cognitive state those points were related to. Each individual
could be identified using the RDM.

Representational similarity analysis on network analysis can
also target more refined spatial patterns by analyzing regional
networks (Cole et al., 2013; Mill et al., 2017). In another memory-
related study, Xue and colleagues (Xue et al., 2010) found that
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FIGURE 3 | Representational similarity analysis. Illustration of the steps of RSA for a simple design with six visual stimuli. (A) Stimuli (or, more generally, experimental
conditions) are assumed to elicit brain representations of individual pieces of content (e.g., visual objects). Here, the representation of each item is visualized as a set
of voxels (an fMRI region of interest) that are active to different degrees (black-to-red color scale). We compute the dissimilarity for each pair of stimuli, for example
using 1–correlation across voxels. (B) The representational dissimilarity matrix (RDM) assembles the dissimilarities for all pairs of stimuli (blue-to-red color scale for
small-to-large dissimilarities). The matrix can be used like a table to look up the dissimilarity between any two stimuli. The RDM is typically symmetric about a
diagonal of zeros (white entries along the diagonal). RDMs can similarly be computed from stimulus descriptions (bottom left), from internal representations in
computational models (bottom right), and from behavior (top right). By correlating RDMs (black double arrows), we can then assess to what extent the brain
representation reflects stimulus properties, can be accounted for by different computational models, and is reflected in behavior. Adapted with permission from
Kriegeskorte and Kievit (2013).

the subsequently remembered faces and words showed greater
representational similarity in neural networks across several
brain regions. This result suggested that successful memory
encoding occurs when the same neural representations are more
precisely reactivated across time, rather than when patterns of
activation are more variable across time (Xue et al., 2010).

Pros and Cons of Multi-Variant Pattern
Analysis in Brain Networks
Instead of decoding brain patterns from activity within brain
voxels or regions, using MVPA in brain networks allows
cognitive states to be recognized by decoding whole-brain
functional connectivity. By incorporating information from
multiple connectivity networks, MVPA provides a more precise
method for examining differences in small and nuanced neural
activation patterns that cannot be detected using classical MVPA
analysis in single brain regions. The scope of MVPA has been
expanded; any techniques that manipulate the representation
of distribution patterns in the brain could all be considered a
variation of MVPA (Cohen, 2017). For example, RSA provides a
new view for researchers to compare cognitive states in a relative
way by comparing the relation between corresponding neural
representations. MVPA approaches can also be used to decode

dynamics in a network (Stokes et al., 2013; King and Dehaene,
2014). By evaluating the moment-to-moment variability of
multivariate representations, insight into the timescale of task-
related information in specific networks can be gained.

Setting up an optimal predictive model using MVPA and
finding cognitively meaningful features needs to be further
validated regarding neural networks. Due to the influx of
advanced machine learning techniques, it is sometimes the case
that researchers utilize these methods without understanding the
mathematical processes behind them. Although these methods
provide new resources to researchers, because of the automated
nature, researchers may not be able to detect mistakes.

Real Data Example
Multi-Variant Pattern Analysis-Classification
Multi-variant pattern analysis using whole-brain network
connectivity was utilized to test whether memory retrieval
processes for correct and wrong performance feedback stimuli
could be recognized based on network connectivity. Whole-brain
phase-locking values (PLV), measuring connectivity between all
brain regions, were used for each participant when they were
shown the veridical correct and wrong feedback stimuli during
a problem-solving task. The whole-brain network in memory
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retrieval tasks was used as one sample in the training dataset.
Classifier training and testing were conducted using a leave-
one-out cross-validation approach. Classifier training began with
a feature selection approach, where t-tests, e.g., (Cohen et al.,
2016), were conducted on every single functional connectivity
between correct and wrong feedback classes across the whole-
brain. Connectivity with p < 0.05 was selected as a feature to
represent the most distinct connectivity between the two groups.
This procedure was conducted on all frequency bands (theta,
alpha, beta, and gamma). A support vector machine (SVM) based
classifier was then trained to maximally separate the two cognitive
states (correct vs. wrong feedback stimuli) based on the selected
connectivity. The trained classifier was then applied to classify the
leave-one-out participant using the same connectivity that was
selected from the training dataset.

Results exhibited that overall, only 51.2% (1,000 permutation
test: p = 0.774) of the cognitive states were accurately classified,
which means the memory retrieval for correct and wrong
performance feedback stimuli can only be recognized by chance.
Results from the previous section (see details in CPM section)
indicate that memory retrieval processes are different between
correct and wrong performance feedback stimuli; however, by
using MVPA, analyses could not find direct evidence explaining
how the brain performs distinctly during the two processes. This
may suggest that the memory retrieval process for correct and
wrong performance feedback stimuli are subject to individual
differences. These results also demonstrate how choosing the
correct analytic technique is integral for neural analyses. CPM
provided evidence that these retrieval processes differed, whereas,
MVPA demonstrated no significant differences.

To test whether the whole-brain functional network-based
MVPA could be an effective process for classification, we
did the same analysis to classify accurate and inaccurate
memory retrieval processes, regardless of the correct or wrong
performance feedback stimuli. Specifically, each participant’s
memory retrieval trials where the performance feedback
stimuli were accurately remembered (either correct or wrong
performance feedback stimuli) were collapsed to construct
a whole-brain functional network. Trials where fonts were
inaccurately remembered were collapsed to construct another
network. MVPA classification with leave-one-out cross-
validation was applied to classify each cognitive state. Results
exhibited that overall, 77.6% (1000 permutation test: p = 0.013)
of the cognitive states were correctly classified. Together, the
results suggest that accurate memory retrieval and inaccurate
memory retrieval are more easily classified using brain networks
than specifically classifying the correct and wrong performance
feedback stimuli retrieval tasks.

Multi-Variant Pattern Analysis-Representational
Similarity Analysis
As stated in Xue et al. (2010), memory encoding is enhanced by
reactivating the initial neural representation in each subsequent
study episode, and pattern reinstatement can account for
subsequent memory effects in both recall and recognition tests.
We hypothesize that brain pattern similarity between memory
encoding and recall would be associated with the participants’

memory accuracy scores. To test this, we first constructed a
PLV-based adjacency matrix for each subject in their memory
encoding process and another adjacency matrix in their memory
recall process. Next, a linear Pearson’s correlation was conducted
between the two adjacency matrices, obtaining a R value to
indicate the representational similarity between them. After
this, another linear regression analysis was conducted between
the output R value and the memory score overall. Results
suggested marginal effects where memory scores were positively
correlated with the representational similarity between encoding
and retrieval for subjects for theta, alpha and beta frequency
bands (Theta, β = 0.31, F[1,70] = 3.54, R2 = 0.055, p = 0.065;
Alpha: β = 0.30, F[1,70] = 3.37, R2 = 0.051, p = 0.071; Beta:
β = 0.28, F[1,70] = 3.37, R2 = 0.052, p = 0.070). A significant
relationship was found in the gamma band (Gamma: β = 0.31,
F[1,70] = 4.18, R2 = 0.066, p = 0.043). Results bolster Xue and
colleagues (Xue et al., 2010) findings by suggesting that the more
similar neural activity is during memory encoding and retrieval,
the more accurate participants memory scores are.

BRAIN NETWORK DYNAMICS

Traditional analyses that test functional connectivity in the
brain operate under the assumption that the activation
remains constant throughout the length of the recording
(Allen et al., 2012). However, the human brain operates
in a more sophisticated manner. Its topological organization
changes continuously, regardless of the cognitive process at
hand (Tomescu et al., 2014; Chen et al., 2016; Vidaurre et al.,
2018). These changes, which emerge over time scales spanning
milliseconds to minutes, are non-random. Brain networks tend
to exhibit a relatively stable status within a certain period of
time, which is captured as a “brain state.” Thus, any brain
process can be represented as a series of repeatedly emerging
brain states that transition between one another in a temporally
coordinated manner. Transitions between states are also non-
random. Some of the brain states may play the role as a transition
hub that temporally bridges other states together (Anderson
et al., 2014; Taghia et al., 2018), or, a transition may only
occur between specific groups of brain states (or metastates;
Vidaurre et al., 2017), suggesting that brain state sequencing is
temporally organized.

Brain states, and the transitions between states, occur as a
result of numerous factors such as brain development, brain
aging, or degenerative diseases (Wang et al., 2014). Thus,
brain network dynamic analyses have been implemented in
developmental work (Hutchison and Morton, 2015) and clinical
diagnosis (Dadok, 2013; Ou et al., 2013; Wang et al., 2014).
In cognitive tasks, there is also increasing evidence suggesting
that human behavior is weighted by both spatially balanced
topological patterns in brain networks and latent cognitive
processes related to the networks. Different cognitive processes
require the brain to change states. The brain must change from
its default temporal processes, defined by a particular state,
and transition to a brief, task-efficient state. Moreover, resting
state conversions are also subject to individual differences. These
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individual differences demonstrate the value and richness in
dynamic network analyses.

Network Dynamic Construction
The most widely used approach to characterize network
dynamics are sliding window (or gradually tapered) correlations
between regions of interest (Di and Biswal, 2013; Kucyi and
Davis, 2014; Lindquist et al., 2014; Zalesky et al., 2014).
Time series data representing neural activity is input into the
sliding window analysis. Connectivity within the window is
computed between each pair of time series truncated by the
sliding window with a Pearson correlation coefficient. Pearson
correlation coefficients are calculated continuously as the sliding
window moves across the time series data. When connectivity
from all windows is concatenated, a set of connectivity matrices –
a dynamic functional connectome, representing the temporal
evolution of whole-brain functional connectivity – is obtained
(Calhoun et al., 2014; Preti et al., 2017). An illustration is
provided in Figure 4.

Dynamic network analyses need to be calculated in distinct
ways for fMRI, EEG, and MEG methodologies. fMRI studies have
a much slower time course due to the hemodynamic response
in the brain. Thus, coherent oscillatory brain synchronization
originating from underlying neuron activity at various frequency
bands (Laufs et al., 2003; Buzsaki and Draguhn, 2004; Mantini
et al., 2007) is limited. In this instance, dynamic network analyses
may not accurately depict how neural states fluctuate in real
time as fMRI cannot index these smaller timescales. On the
other hand, methods such as EEG and MEG, which have a
much higher temporal resolution in comparison to fMRI, are
able to be used to estimate brain dynamics by incorporating not
only cross-region temporal synchronization but also cross-region
phase synchronization (Chang and Glover, 2010; Yaesoubi et al.,
2015; Demirtaş et al., 2016). Cross-region and phase temporal
synchronization are achieved by time-frequency analysis using
short-time Fourier transformation coherence (STFT; Liu et al.,
2017) or wavelet transformation coherence (Chiu et al., 2011).

Brain States
Once the dynamic functional connectivity is established, brain
dynamics can be categorized into several brain states that
reoccur over time. Clustering algorithms, such as k-means
clustering introduced by Allen et al. (2012, 2014) used to be
the most widely used method to obtain brain states (Damaraju
et al., 2014; Hutchison et al., 2014; Rashid et al., 2014;
Barttfeld et al., 2015; Gonzalez-Castillo et al., 2015; Hudetz
et al., 2015; Marusak et al., 2016; Shakil et al., 2016; Su
et al., 2016; Liu et al., 2021a). A limitation with clustering
algorithms, however, is that they summarize brain patterns
only based on the spatial distribution of brain connectivity.
Alternatively, Hidden Markov Models (HMMs) can be used to
provide robust modeling of rapidly changing functional network
structure on rapid cognitive timescales. HMM clusters brain
states by simultaneously incorporating how different brain states
temporally link to one another, i.e., the highest probability
of how brain states were sequenced (Rabiner et al., 1989).
HMM has been used in multiple studies across a range of data
modalities, including fMRI (Baldassano et al., 2017), EEG (Borst

and Anderson, 2015), and MEG (Vidaurre et al., 2016, 2018). An
illustration is provided in Figure 4.

The functional meaning of each brain state needs to
be carefully interpreted to provide a more comprehensive
explanation of a cognitive process based on sequences of brain
states. In brain region-based analyses, a brain state is defined
using the most significantly powered region or component, i.e.,
a single brain region or co-activated brain regions, that explains
the largest variance across all the regions (Anderson et al., 2014).
For example, in an executive function study (Liu et al., 2017), one
of the brain states characterized by dominant power in fronto-
polar cortex was defined as the state responsible for solving
problems. This was because the fronto-polar region is thought
to highly correlate with cognitive processes such as reasoning
and working memory (Klingberg et al., 1997; Salazar et al.,
2012; Darki and Klingberg, 2015). It was also found that the
longer each participant spent in this state, the more accurately
they could solve the problems. On the other hand, in brain
states constructed using networks and the whole-brain, there are
many functional connections involved. Therefore, it is difficult
to say which connections are dominant. In this case, brain
states may be defined using topological organizations within
the network across the brain regions (Chen et al., 2016). For
example, Vidaurre et al. (2018) define brain states by finding
tightly connected functional modules, while Shine et al. (2016)
define brain states according to the integration/segregation of the
whole-brain network.

Brain States Features
The following five metrics are commonly assessed in brain states
analyses: (1) frequency or proportional occupancy, measured as
the proportion of all windows classified as instances of particular
states, and computed separately for each state, (2) mean dwell
time or mean lifetime, measured as the average number of
consecutive windows classified as instances of the same state, (3)
inter-transition interval, measured as the number of consecutive
instances before a transition to the same state, (4) the number
of transitions or the number of states, measured as the number
of state transitions across certain conditions/individuals, which
may represent the stability of whole-brain dynamics (more states
means less stable and fewer states means more stable) (Liu
et al., 2017), and (5) state transition probability, measured as the
likelihood that a brain state at time instance t remained within
the same brain state in the previous time t-1; this can be used to
determine the state transition paths. For example, Taghia et al.
(2018) indicated that the brain state that dominates the high-load
working-memory condition does not suddenly shift to the state
that dominates the fixation condition without first accessing a
state associated with an intermediate cognitive demand.

Pros and Cons of Network Dynamics
Network dynamics describe neural data unlike any other previous
analysis. Neural dynamics describe how neural activation can
fluctuate over time on the order of milliseconds, providing insight
into how the brain networks reorganize in a temporal manner
in relation to cognitive processes and behaviors. Unfortunately,
because of the complexity of network dynamics, results can take
a long time to compute and the results may be ambiguous.
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FIGURE 4 | Hidden Markov Modeling (HMM) network analysis (B) as opposed to sliding-window network analysis (A). Whereas the sliding window has a fixed width
and ignores the data beyond its boundaries, the HMM automatically finds, across the entire data set, all the network occurrences that correspond to a given state,
enhancing the robustness of the estimation (because it has more data than a window) and adapting to inherent network time in a data driven manner. In this
example, the states themselves reflect unique spatial patterns of oscillatory envelopes and envelope couplings, that consistently repeat and different points in time.
The non-marked segments of the data correspond to other states.

For example, Hidden Markov models need to be trained on
a set of seed sequences and generally require a larger seed.
This type of training involves repeated iterations of the Viterbi
algorithm which can be quite slow. Moreover, the brain states
that result from Hidden Markov models are defined using neural
networks that are usually based on connectivity between all pairs
of brain regions available for analysis. Thus, this often results in a
brain state that is difficult to define, i.e., the more connections
within the brain state, the more the functional definition of
the brain state becomes unclear, leading to ambiguous results.
Computationally, many parameters can result in overfitting,
and consequently, algorithms are often unable to segment time
series data effectively (Vidaurre et al., 2018). To circumvent
this problem, a commonly used approach to reduce features in
modeling brain states is the principal component analysis (PCA;
Anderson et al., 2014; Becker et al., 2014; Vidaurre et al., 2018).
Another approach proposed by Vidaurre et al. (2017) is to apply
Hidden Markov models on raw region level signals instead of
connectivity level signals. After characterizing the brain states,
networks are estimated by pooling all data corresponding to a
specific brain state. Finally, as another alternative, instead of
using all connectivity, some sub-networks of interest may be pre-
defined, then a single matrix representing the graph-theoretical
properties of the specific sub-network can be estimated (Liu et al.,
2021a). In this way, brain states can be defined based on the
activity of a small number of sub-networks.

Real Data Example
To construct dynamic functional connectivity, time series
were extracted for all 68 sources in each trial, using MNE
(Gramfort et al., 2013, 2014). Each memory retrieval trial was

defined as the time between when the participants make their
answer selections and the presentation of the performance
feedback stimuli computer screen. Unlike the stationary
functional connectivity calculated by phase locking, time-variant
connectivity between all pairs of brain regions was generated
using the spectral coherence analysis from every single EEG
trial that was collected during the memory task. In other words,
for each memory retrieval trial, we obtained a symmetric
68 × 68 connectivity score matrix for each time window. Each
adjacent matrix was further pruned by applying a statistical
threshold (Liu et al., 2011, 2013) to retain coefficients rij ≤ 30%
of the total connections. We further optimized our model by
examining activity over several smaller functional subnetworks
(subsets of the entire matrix) relevant to understanding memory
retrieval performance.

As discussed earlier, memory retrieval for correct fonts and
wrong fronts may rely on different memory mechanisms and
different brain networks. To simplify the analysis and avoid
overfitting, three memory-related networks, namely the semantic
memory network, the emotional memory network, and the
episodic memory network, were extracted. Network strength
was measured for every functional subnetwork from every time
window in theta band. For every memory retrieval trial, we
obtained three time-courses to represent the activity of the
three functional subnetworks in terms of how closely the brain
regions within each subnetwork communicate with one another
compared to other nodes in the whole brain (Forbes et al., 2018)
and we name it network strength.

To resolve dynamic network activity, we applied HMM to
time-courses extracted from the network strength from the three
functional networks. Results yielded 17 distinct brain states; the
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fractional occupancies (reflecting the proportion of time spent
in each state) were measured for all states from every single
memory retrieval trial. Then, the fractional occupancies were
averaged across the correct and wrong performance feedback
stimuli memory trials independently for each participant. The
averaged fractional occupancies were then correlated with the
memory accuracy scores (d-prime) for both correct and wrong
performance feedback stimuli. Results indicated that only one
of the brain states showed a significant correlation with the
wrong performance feedback stimuli d-prime score (β = 2.79,
F[1,70] = 5.23, R2 = 0.073, corrected p = 0.025). This state
showed the highest activity or network strength in the emotional
memory network, and lower activity, respectively, in the other
two networks. Results suggest that the more time participants
spent in this dominant state, emotional memory network, the
higher the probability that they can accurately remember the
wrong performance feedback stimuli from the problem-solving
task. Results suggest further evidence that memory retrieval
processes behind wrong performance feedback stimuli may be
related to emotional processing.

DEEP LEARNING IN BRAIN NETWORK

Deep learning, or deep neural networks (DNN), is a branch of
a broader family of machine learning methods. These machine
learning methods are based on traditional shallower artificial
neural networks (ANN) (Lecun et al., 2015; Schmidhuber,
2015). DNN significantly increase the sensitivity of conventional
machine learning methods by adding more layers between
input and output than ANNs (hence “deep”). Multiple layers
extract different levels of representations/abstractions from the
sensory input (Hinton, 2010). Recently, deep learning has
become revolutionary due to its success in clinical diagnosis
(Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014;
Eickenberg et al., 2017), image processing (Kamnitsas et al.,
2017; Zhao and Mukhopadhyay, 2018; Pinto et al., 2020) and
behavior prediction (Plis et al., 2014; Van Der Burgh et al., 2017;
Nguyen et al., 2018).

Brain networks, which have been widely used for exploring
human brain organization and cognition (Smith et al., 2009;
Assaf et al., 2010; Power et al., 2011; Yeo et al., 2011; Bertolero
et al., 2015; Dubois and Adolphs, 2016; Reinen et al., 2018),
unfortunately are not represented in the Euclidean grid. Instead,
they are represented via graphs that depend on reciprocal
relationships and similarities between pairs of brain regions.
The complexity of graph data has brought significant difficulties
to the application of existing DNN algorithms (Shuman et al.,
2013). Recently, many studies that extend deep neural network
approaches for graph data have emerged (Wu et al., 2019). The
most important line of work is built on spectral graph theory
(Bruna et al., 2013; Defferrard et al., 2016) which implements
convolution through a complex Fourier transform on graphs.
Another broad category of work relies on the graphs’ spatial
information; the main idea is to generate a node’s features by
aggregating its neighbors’ features, e.g., (Niepert et al., 2016;
Veličković et al., 2017; Chen et al., 2018; see Figure 5 for
an illustration).

Although some of the models mentioned above have been
applied to brain studies (Cucurull et al., 2018; Duffy et al.,
2019; McDaniel and Quinn, 2019). These works all define
graphs as an architecture involving both edges and features over
nodes. Importantly, they assume that the connectivity between
all pairs of nodes is identical across samples (a single set of
edge weights fixed for all samples). An illustration of such
graph architecture can be seen in Figure 7. Additionally, a
typical example of such architecture is the registered brain mesh
on neural surfaces (Robbins et al., 2004; Liu et al., 2020). In
contrast, the representation of whole-brain neural networks can
be defined by edges between nodes, not features over nodes.
In other words, the discrimination of brain networks for each
sample lies in the connectivity strength and edge distribution
between brain regions, but not the feature distribution over
brain regions. Thus, the techniques adopted by most graph-based
deep neural networks do not apply to actual brain network data
(Kawahara et al., 2017). Therefore, to date, only a small number
of studies have attempted to apply deep neural networks to brain
connectivity data.

Fully Connected Neural Network
Fully connected neural network analyses input all connectivity
in a given neural network as a vector (i.e., lower triangular
entries of the matrices) into a fully connected deep neural
network. In this case, the model outputs are the hypothesized
behavioral and demographic variables. FCNN models equally
manipulate all neural connectivity. In other words, they do
not take information from other neighboring connections
into consideration for training. Because other neighboring
connections are not taken into consideration, it creates an
unbiased model.

BrainNetCNN
Alternatively, the BrainNetCNN analyses take in connectivity
matrices for input (Figure 6). Like FCNN analyses,
BrainNetCNN analyses also output behavioral and demographic
variables. BrainNetCNN consists of four types of layers:
Edge-to-Edge (E2E), Edge-to-Node (E2N), Node- to-Graph
(N2G), and a final fully connected (linear) layer. The first
three types of layers are specially designed layers specific to
BrainNetCNN. The final fully connected layer is the same as
that used in FCNNs.

The Edge-to-Edge (E2E) layer is a convolution layer using
cross-shaped filters (Figure 6) and can be considered a
fundamental processing level to the sensory input. The E2N layer
and N2G layer can be considered the higher level, or the abstract
level, of input processing. Finally, the N2G layer outputs are
linearly summed by the final fully connected layer to provide a
final set of prediction values.

Graph Convolutional Neural Network
Another technique that allows researchers to utilize whole-brain
networks in deep learning is to embed neural network data
into a framework such as a spectral graph convolution network
(Figure 7). The critical step of this approach is to construct a
standard graph structure that is representative of all subjects, in
addition to assigning a feature value for each of the nodes in
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FIGURE 5 | Architecture of a CNN on graphs and the four ingredients of a (graph) convolutional layer.

FIGURE 6 | Schematic representation of the BrainNetCNN architecture. Each block represents the input and/or output of the numbered filter layers. The 3rd
dimension of each block (i.e., along vector m) represents the number of feature maps, M, at that stage. The brain network adjacency matrix (leftmost block) is first
convolved with one or more (two in this case) E2E filters which weight edges of adjacent brain regions. The response is convolved with an E2N filter which assigns
each brain region a weighted sum of its edges. The N2G assigns a single response based on all the weighted nodes. Finally, fully connected (FC) layers reduce the
number of features down to two output score predictions.

FIGURE 7 | Estimation of single subject connectivity matrix and labeled graph representation. Pearson’s correlation is used to obtain a functional connectivity matrix
from the raw fMRI time-series. After specifying the graph structure for all subjects, based on spatial or functional information, each row/column of the connectivity
matrix serves as a signal for the corresponding node (node features). The common connectivity matrix used for all subjects can be established using the anatomical
information, e.g., the spatial distance between brain regions, or the physiological information, e.g., the mean functional connectivity matrix among the training
samples.
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the brain network to represent the network differences across
samples. Two approaches are applied to construct a standard
graph structure (Ktena et al., 2018; McDaniel and Quinn, 2019).
The first approach is based on anatomical information, i.e.,
the connectivity established in the common graph representing
the spatial distances between connected brain regions. For the
second approach, the common graph’s connectivity is estimated
as the mean functional connectivity matrix among the training
samples. This kind of structure is more meaningful from a
neuroscientific view because it reflects the average functional
connection strength between pairs of brain regions within a
sample. Feature values for each of the nodes was usually assigned
by nodal properties defined in graph theory, such as nodal degree,
or nodal clustering coefficients.

3D Connectome Convolutional Neural
Network
Another deep learning technique is the use of a 3D connectome
convolutional neural network (CNN). Khosla and colleagues
(Khosla et al., 2019) preprocessed resting state fMRI data
to extract the 3D spatial structure instead of only relying
on each region’s averaged information. In this study, voxel-
level maps were created by analyzing each voxel’s connectivity
information with respect to the averaged value of each region
of interest present in the selected atlas. Using this technique
allowed a specific brain region’s connectivity strength to be
mapped onto the whole 3D image. The number of channels is
determined by the number of regions defined in the atlas used
to segment the brain. Then the problem is resolved using the
classic CNN approach.

Although scientists and engineers have attempted different
ways to integrate whole-brain networks into the framework
of deep neural networks, the predictive power of existing
models is questioned by some researchers (He et al., 2018,
2020; Khosla et al., 2019, 2021; Raviprakash et al., 2019). He
et al. (2018, 2020) compared the prediction results of human
cognitive performance using brain DTI structural connectivity
data between the deep graph convolutional network model and a
simple kernel regression model. Results indicated that the graph
based deep learning models did as well or worse than the kernel
regression analysis, which is a much easier model for prediction.
This suggests that although deep learning has been shown to be a
promising tool for neuroimaging data analysis, much more work
needs to be done to verify these models in network analysis. New
designs are expected in future studies.

Pros and Cons of Deep Learning
Deep learning is the most technologically advanced method
in neural data analysis. As soon as the first techniques were
published, deep learning has drawn intensive attention from
all scientific fields and has been very successful in some
medical fields, such as medical image processing and clinical
diagnosis. However, the application of deep learning approaches
in cognitive neuroscience is relatively recent.

A typical deep learning model contains millions of parameters,
which requires a large amount of data for training to achieve the

target that researchers are interested in. This creates challenges
for individual studies, where usually no more than hundreds of
subjects were examined, which may not be enough to obtain a
perfect model. “Big data” also creates challenges for data sharing
and transparency.

Conventional deep learning approaches depend on the
geometrical relevance (e.g., image voxels) of the variables within
the searching field of the deep learning filters. Hence the
graph-like data architectures, as represented in brain network,
cannot be embedded directly into the deep learning frame.
Some of the basic operations in deep learning, such as
convolutions and pooling, are very difficult to realize in networks.
The most widely used deep learning approaches on graphs
rely on a spectral decomposition to accomplish the graph
convolution. This decomposition is very ambiguous and does
not provide straightforward physical meanings for interpretation.
Furthermore, this approach does not focus on the topological
representation (edges) of the individual network. Rather, it
tends to map the feature difference in each individual node in
accordance with the connections within the network. Feature
representations on each node are not typically involved in a
common brain network, and thus this approach cannot be
precisely replicated in brain network studies. Several attempts
have been made to accommodate graph deep learning to
brain networks. However, these approaches appear to be either
incapable to convert the connectivity and network values into
truly meaningful information, or unable to provide evidence that
they can describe the brain network in a proper way that relates
to specific cognitive states. In summary, although deep learning
has been proven to have great potential, we are still a long way
away from using it to investigate whole-brain networks in an
appropriate way.

Real Data Example
In the present memory study, a GCNN approach was applied to
predict memory scores in the correct and wrong performance
feedback stimuli trials, respectively. To construct a fixed set
of edge weights across all the participants in the two memory
retrieval conditions, two 68× 68 standard whole-brain networks
were generated by averaging all functional brain networks across
all subjects’ whole-brain networks (across all frequency bands).
Three graph theoretical feature values (nodal degree, nodal
clustering coefficient and local efficiency) across 4 frequency
bands (so in total 3 × 4 = 12 feature values) were assigned over
each brain region for each subject.

Graph convolutional neural networks consider spectral
convolutions on graphs defined as the multiplication of a signal
with a filter in the Fourier domain. The signal h on the graph
nodes is filtered by g as:

g ∗ h = U(UTg � UTh)

Where g is a non-parametric filter defined by the
N-dimensional vector of graph Fourier coefficients, where
N is the number of nodes in the graph (68 in this case). Using
a non-parametric filter enables the receptive field of the filter
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to cover the entire graph at each layer. U is the Fourier basis
of the graph Laplacian L, given by the eigendecomposition of L,
i.e., L = U3UT , 3 is the ordered real non-negative eigenvalue
values vector of graph Fourier transform, ∗ is the convolution
operator and

⊙
denotes element-wise multiplication. The graph

Laplacian L is defined as L: = D – W where the degree matrix
D is a diagonal matrix whose ith diagonal element di is equal
to the sum of the weights of all the edges connected to vertex i
as Dii =

∑
j Wij; W is a weighted adjacency matrix encoding

the connection between brain regions. After normalization, the
graph Laplacian is defined as L = In − D−1/2WD−1/2 where In
is the identity matrix.

The output is a single value that represents the memory score
for each font type. The input maps were vector-valued signals
(twelve graph-theoretical features) on the graph nodes and an
adjacency matrix given by the common graph architecture. The
GCN used a GC8-P4-GC16-P4-FC512 architecture, where GCn
is a non-parametric graph convolutional layer with n channels, P
is a pooling layer and FC is a fully connected layer. Each layer
is followed by ReLU non-linearity. Mean squared error (MSE)
was used as the loss function with an Adam optimizer, a learning
rate of 10–6, and an L2 regularization parameter of 10–8 and a
batch size of 2.

Results using five-fold cross-validation indicated that
prediction is poor for both correct (r = 0.19, p > 0.05) and wrong
performance feedback stimuli (r = 0.21, p > 0.05) in memory
score prediction, as suggested by past literature (Kawahara et al.,
2017; He et al., 2020). The results suggested that even if we can
construct a format to run the graph-based deep learning models
on whole-brain networks, we are still far from understanding
interpretations within whole-brain networks.

CONCLUSION

Attributing functional connectivity and brain network activation
to mental representations is challenging both theoretically
and statistically. Currently, cognitive neuroscience research
focuses on investigating the activation of connectivity or
brain networks between brain regions that are pre-selected via
hypothesis-driven approaches. In these cases, the associated
ROIs are usually determined based on evidence from a narrow
selection of studies in past literature, or the researcher’s
own limited knowledge (see the meta-analysis section in the
Supplementary Materials). Recent technical and methodological
advances have initiated new strategies to navigate the neural
mechanisms underlying cognitive function using multi-level,
both spatially and temporally, approaches. These approaches
decrease the possibility of establishing a “biased” hypothesis due
to restricted or incomplete understanding of specific cognitive
functions, or the possibility of generating false-positive results

due to the noisy brain network representations. Multi-level
methods have also provided unique neural insight into individual
differences in subjects. These individual differences can be used
in both clinical and social psychological applications. From
a clinical perspective, individualized treatments have become
popular. If individual differences can be predicted from these
neural methods, primarily data-driven techniques such as deep
learning, personalized treatments can be implemented on a
more regular basis.

The present review describes how novel neuroscience
methodologies can begin to relate whole-brain networks to
cognition and behavior, both in the aggregate and over time.
Graph theory and connectome-based predictive modeling
provide insight into how neural architecture can change
in relation to various behaviors and cognitions. Meta-
analytic techniques synthesize research, bringing the scientific
community closer to identifying the exact function of regions
and networks. MVPA uses an entirely data-driven approach to
reveal nuances behind neural activity in relation to behavior
that would not be able to be seen by typical neural analyses.
Furthermore, novel techniques like network dynamic modeling
and deep learning allow researchers to model neural activity
in a more accurate manner. Considering the brain acts as a
parallel processor, researchers need to consider neural activation
both over time and in layers. Network dynamic modeling
and deep learning techniques allow researchers to embark on
these questions.

Overall, current technology helps researchers make sense of
data by employing multi-level analyses that are more accurate in
modeling the whole brain as it genuinely functions. By modeling
the brain in this manner, not only are researchers advancing
neuroscience research by creating more accurate neural models
in relation to behavior and cognition, but they are also coming
closer to creating more optimal treatment options for both
clinical and social psychologists.
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