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1  |  INTRODUC TION

Atrial septal defect (ASD) is one of the most common forms of con-
genital heart disease (CHD) and a major cause of childhood morbidity 
and mortality, with an estimated incidence of 100 per 100,000 live 

births.1 The process of cardiomyogenesis is precisely and spatially 
regulated by signalling molecules. The regulation of this process in-
volves a conservative network of tissue-specific transcriptional fac-
tors that are necessary for the morphogenesis of the atrioventricular 
septum. Any interruptions to this process can result in embryonic 
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Abstract
This study aimed to characterize the cells and gene expression landscape in atrial 
septal defect (ASD). We performed single-cell RNA sequencing of cells derived from 
cardiac tissue of an ASD patient. Unsupervised clustering analysis was performed to 
identify different cell populations, followed by the investigation of the cellular cross-
talk by analysing ligand-receptor interactions across cell types. Finally, differences 
between ASD and normal samples for all cell types were further investigated. An 
expression matrix of 18,411 genes in 6487 cells was obtained and used in this analy-
sis. Five cell types, including cardiomyocytes, endothelial cells, smooth muscle cells, 
fibroblasts and macrophages were identified. ASD showed a decreased proportion of 
cardiomyocytes and an increased proportion of fibroblasts. There was more cellular 
crosstalk among cardiomyocytes, fibroblasts and macrophages, especially between 
fibroblast and macrophage. For all cell types, the majority of the DEGs were down-
regulated in ASD samples. For cardiomyocytes, there were 199 DEGs (42 upregulated 
and 157 downregulated) between ASD and normal samples. PPI analysis showed that 
cardiomyocyte marker gene FABP4 interacted with FOS, while FOS showed interac-
tion with NPPA. Cell trajectory analysis showed that FABP4, FOS, and NPPA showed 
different expression changes along the pseudotime trajectory. Our results showed 
that single-cell RNA sequencing provides a powerful tool to study DEG profiles in the 
cell subpopulations of interest at the single-cell level. These findings enhance the un-
derstanding of the underlying mechanisms of ASD at both the cellular and molecular 
level and highlight potential targets for the treatment of ASD.
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lethality or heart defects.2,3 ASD is a non-cyanotic CHD triggered 
by aberrant abnormal blood flow between the left and right atria.4 
However, the pathogenic mechanism of ASD remains largely un-
known, despite that great efforts have been employed in the pre-
vention, diagnosis, and treatment of ASD.5–7

Studies have investigated the pathogenesis and crucial molec-
ular markers of ASD. For example, multiple transcription factors, 
including GATA4, NKX2-5, dHAND, TFAP2 and TBX5, are required 
for early heart development.8,9 Yang et al. suggested that selective 
expression of NEXN, an F-actin binding protein, could lead to ASD 
by inhibiting GATA4.10 Duong et al. showed that Nr2f1a is expressed 
in differentiated atrial cardiomyocytes and that it mediates the size 
of the atrial and atrial-atrioventricular canal by regulating the differ-
entiation of atrial cardiomyocytes.11

Single-cell RNA sequencing (scRNA-seq) analysis allows the 
characterization of gene expression landscapes at the single-cell 
level, which can help us to understand the potential regulatory and 
driving mechanisms of biological disorders.12 Utilizing scRNA-seq, 
studies have investigated the spatial and temporal programming of 
heart development in animal models, which has revealed the gene 
expression patterns in the process of organ development.13,14 On the 
basis of scRNA-seq analyses of healthy and diseased heart, Gladka 
et al. suggested that there were disease-specific cell subpopulations, 
and found that CKAP4 could modulate the activation of fibroblasts, 
showing positive correlations with known myofibroblast markers.15 
However, to our knowledge, no studies have yet investigated the 
development of ASD using scRNA-seq analysis. In addition, scRNA-
seq studies of heart development have mostly been based on animal 
models, and less so on human cardiac tissue. Therefore, we aimed to 
characterize gene expression in cells derived from ASD and normal 
control tissues using scRNA-seq analysis.

2  |  MATERIAL S AND METHODS

2.1  |  Patient and tissue samples

Normal ventricular muscle tissue and tissues adjacent to ASD 
were collected from the cadaver of a 3-month-old male ASD pa-
tient. The study protocol was reviewed and approved by the 
Medical Institutional Ethics Committee of Qilu Hospital, Shandong 
University, China. (Prot. KYLL-2018-080). The study was carried out 
in accordance with the approved guidelines. Written informed con-
sent was provided by the parents. All procedures in this study were 
performed in compliance with the Helsinki Declaration.

2.2  |  Single-cell sequencing and data pre-
processing

Samples were prepared into a single-cell suspension and examined 
for cell count and cell viability using a Countess® II Automated Cell 
Counter. Single-cell suspensions with cell activity above 80% and 

a cell concentration of 1000 cells/μl were mixed with 10× Barcode 
Gel Beads and enzyme to construct a 10× Genomics labelled single-
cell library in accordance with the manufacturer's instructions. The 
Illumina HiSeq platform was used for sequencing of the library. Raw 
reads were aligned to the reference genome using STAR cell ranger, 
and unique alignment sequences were selected for subsequent anal-
ysis. The Unique Molecular Identifier (UMI) was calibrated based on 
the unique RNA sequence alignment results. After removal of dupli-
cates, UMI counting was carried out for the different genes for each 
Barcode to determine the effective cells.

2.3  |  Unsupervised clustering and cell-
type annotation

Expression data were normalized based on UMI, followed by the 
analysis of reduced dimension using principal component analysis. 
A graph-based clustering algorithm16 and K-means17 were used 
for cell clustering analysis. The t-distributed stochastic neighbour 
embedding (tSNE)18 was used to visualize the clustering results. 
Based on the results of cell clustering, exact tests of the nega-
tive binomial of sSeq were used to perform differential analysis 
and identify the significantly differentially expressed genes of 
each cell cluster. These genes were considered feature genes. Cell 
clusters with more than 1% proportion of cells were selected for 
subsequent analysis. On the basis of edger analysis19 (Version: 
3.4, http://www.bioco​nduct​or.org/packa​ges/relea​se/bioc/html/
edgeR.html), the count matrices of gene expression were con-
verted into logCPM for subsequent analysis. A total of 24 cell 
markers were obtained based on the feature genes combined with 
the cell markers recorded in the CellMarker20 (http://bio-bigda​
ta.hrbmu.edu.cn/CellM​arker/) and PanglaoDB21 (https://pangl​
aodb.se/) databases, and the cell markers reported in the study of 
Cui et al.22 FABP4, CD36, TNNT3 and AQP1 were markers for car-
diomyocytes; SELE, ACKR1, PLVAP, DNASE1L3 and CCL14 were 
markers for endothelial cells; RGS5, GJA4, TAGLN, ACTA2, MYL9 
and SOD3 were markers for smooth muscle cells; DCN, COL1A2, 
LUM, COL1A1, FBLN1 and TCF21 were markers for fibroblasts; 
and AIF1, CD163 and CD68 were markers for macrophages. The 
R package ComplexHeatmap was used to visualize heatmaps for 
cell marker expression, and cell clusters were annotated for sig-
nificantly highly expressed markers.

2.4  |  Cell-cell crosstalk between cell types

In order to explore the cell-cell crosstalk among different cell types, 
the R package iTALK23 (https://github.com/Coolg​enome/​iTALK) 
was used to analyse ligand-receptor interactions. In brief, the up-
regulated genes of each cell type were matched to the 2,648 non-
redundant ligand-receptor interactions (including growth factors, 
cytokines, checkpoints and another four types) recorded in the 
iTALK package.

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
https://panglaodb.se/
https://github.com/Coolgenome/iTALK
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2.5  |  Cell trajectory analysis

The single-cell trajectory analysis method allows the ordering 
of cells along with a pseudotime axis, which helps to character-
ize transitional processes such as lineage development.24 The R 
package Monocle25 (version: 2.18.0, http://bioco​nduct​or.org/
packa​ges/relea​se/bioc/html/monoc​le.html) was used to perform 
cell pseudotime trajectory analysis. Genes that were expressed in 
at least ten cells with mean expression values >0.5 and differen-
tially expressed with q values <0.01 were used in cell trajectory 
analysis.

2.6  |  Differential expression analysis between 
ASD and normal tissue for each cell type

Differential expression analysis between ASD and normal tissue 
for each cell type was performed using the R package edgeR. The 
Benjamini and Hochberg method was used to perform multiple tests 
correction. Differentially expressed genes (DEGs) were selected that 
had |logFC| >0.263 (1.2 fold change) and adjusted p-values <0.05.

2.7  |  Functional enrichment analysis

Gene Ontology (GO_BP) terms and KEGG pathways were analysed 
for DEGs identified in each cell type using the online Metascape 
tool26 (http://metas​cape.org) with default parameters: Min 
Overlap = 3, p-value Cut-off = 0.05, and Min Enrichment = 1.5. The 
top 10 GO_BP terms and KEGG pathways (ranked by p-value) were 
displayed in bubble diagram.

2.8  |  Gene set variation analysis (GSVA)

The R package GSVA27 (version: 1.36.2, http://bioco​nduct​or.org/
packa​ges/relea​se/bioc/html/GSVA.html) was used to perform gene 
set variation analysis (GSVA) to compare GO_BP terms and KEGG 
pathways in ASD and normal cells with reference gene sets c2.cp.
kegg.v7.1.symbols.gmt and c5.go.bp.v7.2.symbols.gmt from MSigDB 
v7.1.28 The enrichment scores of each GO_BP term and KEGG path-
way were calculated to obtain a score matrix, followed by differen-
tial analysis using the R package limma (version: 3.44.3). Results with 
p-values <0.05 and |logFC| >0.263 were considered statistically 
significant.

2.9  |  Protein-protein interaction (PPI) 
network and modules

The DEGs identified for each cell type were uploaded to the STRING 
database29 to investigate their interactions, using the following pa-
rameter: Homo sapiens and highest confidence (PPI score = 0.9). The 

PPI network was then visualized using Cytoscape30 (version 3.4.0). 
The CytoNCA plugin31 (Version 2.1.6) was used to analyse the de-
gree of centrality for nodes in the PPI network without weight-
ing. The MCODE plugin32 in the Metascape software was used to 
screen the key modules of the PPI networks using default param-
eters (Degree Cut-off  =  2, Node Score Cut-off  =  0.2, K-core  =  2, 
Max. Depth = 100). The modules with scores >5 were identified as 
key modules. ClusterProfiler33 (version:3.8.1) was used to investi-
gate the KEGG pathways identified for the genes in key modules. A 
Benjamini and Hochberg adjusted p-value <0.05 was used to iden-
tify significantly enriched pathways.

2.10  |  Immunohistochemical staining

Tissue sections were deparaffinized, rehydrated, and treated with 
citrate buffer (pH 6.0) to retrieve antigens. Then, 3% H2O2 was added 
to sections for 20 min to block endogenous peroxidase activity, and 
3% bovine serum albumin was added to block nonspecific bind-
ing sites. The sections were incubated with primary antibody anti-
FABP4 antibody (Proteintech) and anti-DCN antibody (Proteintech) 
at 4°C overnight, then incubated with secondary antibody at room 
temperature for 50 min. Diaminobenzidine was added as a chromo-
gen and the sections were incubated for 2 h at room temperature. 
Sections were then counterstained with haematoxylin, rinsed, and 
air-dried. Finally, the sections were sealed with neutral resin and 
examined under a fluorescent microscope (XSP-C204; CIC). Three 
random fields were photographed under ×400 magnification and 
analysed using Image-Pro Plus 6.0.

2.11  |  Cell culture and treatment

H9C2 cell lines were purchased from ATCC and cultured at 37°C 
with 5% CO2. The cells were seeded at a uniform density (10,000/
cm2) and grown to 80% confluence in DMEM containing 10% foe-
tal bovine serum and antibiotics. The medium was then replaced by 
DMEM without foetal bovine serum supplemented with ANP (MCE) 
for 12 h at different concentrations.

2.12  |  Annexin V-FITC assay

Apoptotic capability was studied by staining the treated H9C2 cells 
with Annexin V-FITC and Propidium Iodide (PI). The cells were col-
lected after centrifugation, washed with phosphate-buffered saline, 
and resuspended in Annexin buffer. The cells were then centrifuged 
at 700g for 5 min, the supernatant was discarded, and the pellet was 
resuspended in 1× binding buffer. Three-hundred microliters of the 
sample solution was transferred to a 5 ml culture tube and incubated 
with 5 μl FITC-conjugated annexin V (Meilune) and 5 μl PI (Meilune) 
for 15 min at room temperature in the dark. Two-hundred microlit-
ers of 1× binding buffer was added to each sample tube, and the 

http://bioconductor.org/packages/release/bioc/html/monocle.html
http://bioconductor.org/packages/release/bioc/html/monocle.html
http://metascape.org
http://bioconductor.org/packages/release/bioc/html/GSVA.html
http://bioconductor.org/packages/release/bioc/html/GSVA.html
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samples were analysed using a BD FACSVERSE flow cytometer with 
in-built BD FACSuiteTM Software.

2.13  |  Small interfering RNA (siRNA) transfection

siRNAs were transfected into vascular smooth muscle cells (VSMCs) 
using Lipofectamine® RNAiMAX (Invitrogen) according to the manu-
facturer's protocol. The siRNA for hsa_circ_0000280 was designed 
according to sequences of the junction point. All siRNAs were devel-
oped and synthesized by Shanghai GenePharma Co., Ltd, and their 
sequences are shown in Table S1.

2.14  |  RNA isolation and quantitative PCR (qPCR)

Total RNA from the tissue specimens and cells was isolated using 
TRIzol reagent (Life Technologies). To measure the levels of circRNA 
and mRNA, cDNAs were prepared using the Primescript RT Master 
Mix (Takara) and quantitative PCRs were carried out using TB Green 
Premix EX Taq (Takara). circRNA and mRNA expression were normal-
ized to β-actin levels using the 2−ΔΔCT method. The primer sequences 
are shown in Table S2. The average cycle threshold for genes was 
calculated from a minimum of three separate measurements.

2.15  |  Statistical analysis

GraphPad PRISM 5 (Graphpad Software) was used for statistical 
analyses. ASD and normal samples were compared using the un-
paired t test. p-values <0.05 were considered statistically significant.

3  |  RESULTS

3.1  |  Identification of different cell types

An expression matrix of 18,411 genes in 6487 cells was identified 
and used in this analysis. Unsupervised clustering showed that the 
6,487 cells were clustered into 13 cell clusters (Figure 1A). After fil-
tering the cell clusters with cell proportions less than 1%, there were 
nine cell clusters (clusters 0–8) retained and used in the following 
analysis (Table 1). As seen in Figure 1B, the cell proportions in each 
cell type were different in ASD and normal samples. The propor-
tion of cardiomyocytes and smooth muscle cells were lower in ASD 
samples compared with normal samples, while ASD samples showed 
higher proportions of endothelial cells and fibroblast than the nor-
mal samples. In addition, the proportion of macrophages had also 
increased in ASD samples.

The expression of 24 marker genes is shown in Figure  1C. 
Cells in Clusters 0 and 1 showed significantly higher expres-
sion of FABP4, CD36, TNNT3 and AQP1, which are markers of 
cardiomyocytes. Therefore, Clusters 0 and 1 were considered 

cardiomyocyte clusters. Markers of endothelial cells, includ-
ing SELE, ACKR1, PLVAP, DNASE1L3 and CCL14, were highly 
expressed in Cluster 5. Hence, Cluster 5 was defined as an en-
dothelial cell cluster. Clusters 4 and 6 were considered smooth 
muscle cell clusters due to the high expression of markers RGS5, 
GJA4, TAGLN, ACTA2, MYL9 and SOD3. Markers of fibroblasts, 
including DCN, COL1A2, LUM, COL1A1, FBLN1 and TCF21, were 
highly expressed in Clusters 2, 3 and 7. Hence, Clusters 2, 3 and 
7 were defined as fibroblast clusters. Cluster 8 was considered a 
macrophage cluster due to the high expression of markers AIF1, 
CD163 and CD68. Finally, five different cell types, cardiomyo-
cytes, endothelial cells, smooth muscle cells, fibroblasts and mac-
rophages were identified. The cardiomyocytes, endothelial cells, 
smooth muscle cells and fibroblasts contained different cell clus-
ters, suggesting that these four cell types might contain different 
subpopulations of cells.

To strengthen our results, we also downloaded the public bulk 
data of GSE13​2176, GSE23959 and GSE35776 from GEO and ex-
tracted the samples we needed. Among them, samples of children 
with ASD were selected from GSE13​2176; Samples of neonates 
with right and left ventricles were selected from GSE23959 as nor-
mal controls. Control samples also were established in the right ven-
tricle of infants extracted from GSE35776. Totally, 10 ASD cases 
and 18 controls were obtained. Based on markers we used for cell-
type identification, the ssGSEA was applied to explore the different 
infiltration degrees of cardiomyocytes and fibroblasts using the R 
package ‘GSVA’. As shown in Figure S1, it can be seen that in the 
ASD group, the infiltration level of cardiomyocytes has a significant 
decrease. In contrast, the infiltration level of fibroblasts has an obvi-
ous increase, which is basically consistent with our conclusion.

3.2  |  Ligand-receptor interactions in cell crosstalk

Ligand-receptor interactions among the cell types were investigated 
using iTALK. Most ligand-receptor interactions were identified among 
cardiomyocytes, fibroblast and macrophage, suggesting that there 
was more cell crosstalk among these three cell types, especially more 
cell crosstalk between fibroblast and macrophage. From normal sam-
ples, 8 ligand-receptor pairs were identified, including one growth 
factor ligand-receptor interaction (fibroblast CTGF and macrophage 
ITGB2) and 7 other ligand-receptor interactions. From ASD samples, 
15 ligand-receptor pairs were identified, including one growth factor 
ligand-receptor interaction (fibroblast CTGF and macrophage ITGB2) 
and 14 other ligand-receptor interactions (Figure 1D). Notably, growth 
factor ligand-receptor interaction (fibroblast CTGF and macrophage 
ITGB2) was shared in normal and ASD samples. Interactions between 
fibroblast COL1A2/COL1A2-cardiomyocyte CD36 were also com-
mon in both normal and SAD samples. Compared with normal sam-
ples, there was more cell crosstalk among cells in ASD samples. Most 
ligand-receptor interactions were specific in normal samples (such as 
cardiomyocyte ICAM2-macrophage ITGB2) and ASD samples (such as 
fibroblast BGN-macrophage LY96).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132176
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23959
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35776
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132176
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23959
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35776
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We also analysed with a typical method CellPhoneDB. Ligand-
receptor interactions were identified in five cell types. Among them, 
there was more cell crosstalk among cardiomyocytes, fibroblast cells 
and macrophages in ASD sample (Figure S2). To show specific com-
munication between them, we screen out 14 significant ligand and 
receptor gene pairs, displayed in a bubble graph (Figure S2). It was 
revealed that SPP1-CD44 pairs were significantly activated in ASD 
samples, especially in macrophages. This point was consistent with 
the result in iTALK analysis. The bubble diagram proved that these 
ligands and receptors play essential roles in the crosstalk between 
cardiomyocytes, fibroblasts and macrophages.

3.3  |  Differences between ASD and normal 
samples for different cell types

We firstly examined the DEGs between ASD and normal samples in 
cardiomyocytes, endothelial cells, smooth muscle cells, fibroblasts 
and macrophages (Figure 2A and Figure S3). Endothelial cells showed 

most DEGs between ASD and normal samples. For all cell types, the 
majority of the DEGs were downregulated in ASD samples (Table 2).

For cardiomyocytes, there were 199 DEGs between ASD and 
normal samples, including 42 upregulated genes and 157 down-
regulated genes. These DEGs were mainly enriched for some 
RNA-related biological processes, such as RNA catabolic process, 
nuclear-transcribed mRNA catabolic process (nonsense-mediated 
decay), and nuclear-transcribed mRNA catabolic process, and KEGG 
pathways such as viral myocarditis, cell-adhesion molecules and 
regulation of lipolysis in adipocytes (e.g., FABP4, NPPA and MGLL). 
There were similarities and differences in the functional enrichment 
results for DEGs of different cell types. The DEGs for fibroblast were 
primarily involved in biological processes, such as translational initi-
ation and protein localization to the endoplasmic reticulum, and in 
KEGG pathways, such as focal adhesion, ECM-receptor interaction 
and apoptosis. DEGs in macrophages were significantly enriched in 
antigen processing and presentation. The DEGs for smooth muscle 
cells were implicated in blood vessel morphogenesis and develop-
ment (Figure 2B).

F I G U R E  1  Cell clustering and cellular crosstalk analysis. (A) tSNE two-dimensional distribution cluster of cells. Different colours 
represent different cell clusters. (B) Histogram showing the cell proportions in each cell type in ASD and normal samples. (C) Heatmap of 
marker genes across nine major cells clusters (Clusters 0–8). (D) Heatmap showing the potential ligand-receptor pair expression (connected 
by straight lines) according to cell type in normal samples and ASD samples. 3–7 (NC), normal group; 4–8 (Test), ASD group
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3.4  |  Gene set variation analysis

According to the methods described above, GSVA was performed 
to evaluate the differences in GO_BP terms and KEGG pathways 
between ASD and normal samples for each cell type. Six KEGG 
pathways showed significant differences between ASD and normal 
samples for cardiomyocytes. For example, ribosome was enriched 
in ASD, while antigen processing and presentation was significantly 
enriched in normal samples. A total of 8, 6, 0 and 9 KEGG pathways 
with significant differences were found for endothelial cells, smooth 
muscle cells, fibroblasts and macrophages, respectively (Figure S4).

A total of 191 GO_BP terms showed significant differences be-
tween ASD and normal samples for cardiomyocytes. For example, 
innate immune response in mucosa and regulation of potassium ion ex-
port across the plasma membrane were significantly enriched in ASD 
samples, while positive regulation of the force of heart contraction 
was significantly enriched in normal samples. There were 242, 177, 
75 and 132 GO_BP terms with significant differences for endothelial 
cells, smooth muscle cells, fibroblasts and macrophages, respectively. 
For example, aorta smooth muscle tissue morphogenesis was asso-
ciated with ASD in fibroblasts. For endothelial cells, natural killer cell 
chemotaxis was significantly enriched in ASD samples (Figure 3).

3.5  |  PPI network and module analysis for each 
cell type

We also investigated the interactions among these DEGs (Table  3). 
For cardiomyocytes, the PPI network contained 121 nodes and 519 
interactions. Among these interactions, cardiomyocyte marker gene 
FABP4 showed interaction with FOS (c-fos), while FOS showed inter-
action with NPPA (ANP), which has been reported to play an important 
role in heart development.34,35 Compared to normal samples, expres-
sion of FABP4 and FOS were decreased in ASD samples, while expres-
sion of NPPA was increased in ASD samples (p < 0.05) (Figure 4A). A 

total of five modules were identified from the PPI network (Figure 4B). 
Genes in different modules were enriched for different pathways. For 
example, genes in module 1 (red module) were implicated in the ribo-
some pathway, and genes in module 5 (blue module) were enriched for 
the complement and coagulation cascade pathways (Figure 4C).

For fibroblasts, the PPI network contained 107 nodes and 606 
interactions. The fibroblast marker gene DCN showed interaction 
with MMP2, which has been reported to play an important role in 
the regulation of myocardial extracellular matrix homeostasis and 
cardiac remodelling.36–38 Three modules were identified from the 
PPI network (Figure 4D). Genes in different modules were enriched 
for different pathways. Similarly, genes in module 1 (red module) 
were implicated in the ribosome pathway, and genes in module 3 
(yellow module) were enriched in the complement and coagulation 
cascade pathways. Genes in module 2 (orange module) were en-
riched for various pathways, such as protein digestion and absorp-
tion, and ECM-receptor interaction (Figure  4E). In addition, there 
were more interactions among DEGs for macrophages, and the PPI 
network contained 124 nodes and 2,659 interactions. The PPI net-
works for macrophages, endothelial cells, and smooth muscle cells 
are shown in Figure S5. Similarly, DEGs in different modules were 
significantly enriched for different pathways (Figure S5).

3.6  |  Cell pseudotime trajectory analysis

We also performed cell trajectory analysis using Monocle to order in-
dividual cells in pseudotime for cardiomyocytes, endothelial cells and 
smooth muscle cells, respectively. As shown in Figure 5, cells from 
normal tissues and ASD tissues were distributed in different trajec-
tory states for all three cell types, suggesting there were significant 
difference between normal and ASD samples. Cardiomyocytes transi-
tion from normal to disease tended to decrease by pseudotime, while 
colorectal cells and Smooth muscle cells transition from normal to dis-
ease tended to increase by pseudotime. Figure 5A showed the pattern 

number Per cent (%)

3–7 (NC) 4–8 (Test) Total 3–7 (NC) 4–8 (Test) Total

cluster0 590 681 1271 25.911 15.8 19.296

cluster1 527 598 1125 23.144 13.875 17.079

cluster2 244 648 892 10.716 15.035 13.542

cluster3 114 687 801 5.007 15.94 12.16

cluster4 335 445 780 14.712 10.325 11.842

cluster5 127 453 580 5.578 10.51 8.805

cluster6 220 253 473 9.662 5.87 7.181

cluster7 51 281 332 2.24 6.52 5.04

cluster8 32 145 177 1.405 3.364 2.687

cluster9 9 43 52 0.395 0.998 0.789

cluster10 14 36 50 0.615 0.835 0.759

cluster11 8 24 32 0.351 0.557 0.486

cluster12 6 16 22 0.264 0.371 0.334

TA B L E  1  Statistics of cells number and 
corresponding proportion
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of pseudotime trajectory for cardiomyocytes, cell from normal tissue 
and ASD tissues mainly distributed in both ends of the pseudotime 
branch. Expression pattern FABP4 were relatively stable along the 

pseudotime. Expression of FOS was increased along the pseudotime, 
with an increase at state 5 and 6 (cells from normal tissues), while 
expression of NPPA was decreased along the pseudotime, especially 
at state 5 and 6 (cells from normal tissues). Figure 5B showed the pat-
tern of pseudotime trajectory for endothelial cells. Cells from normal 
tissue are mainly distributed at the initiation of pseudotime branch-
ing, and cells from ASD tissue are distributed at different pseudotime 
branching. Expression of FABP4 and FOS showed a decrease along the 
pseudotime, suggesting a decreased level in ASD tissue, while NPPA 
showed an increase expression in ASD tissue. Figure 5C showed the 
pattern of pseudotime trajectory for smooth muscle cells. Cells from 
normal tissue distributed along the pseudotime, mainly at both the 
initiation and end of pseudotime branching. At the end of pseudotime 

F I G U R E  2  Heatmaps and functional enrichment analysis for DEGs. (A) Heatmaps showing DEGs in cardiomyocytes, endothelial cells, 
fibroblasts, macrophages and smooth muscle cell clusters between ASD and normal samples. The top 10 upregulated and downregulated 
genes are listed on right side. (B) Bubble diagram showing the top 10 GO_BP terms and KEGG pathways for the DEGs in the five cell types 
between ASD and normal samples. Vertical axes show enriched terms, and horizontal axes represent the genes in different cell clusters. 
Larger node size represents the larger ratio of enriched genes/total genes

TA B L E  2  Statistics of DEGs between ASD and normal samples 
for different cell types

Cell type Up Down Total

Cardiomyocytes 42 157 199

Endothelial cells 35 275 310

Smooth muscle cell 32 218 250

Fibroblast 57 100 157

Macrophage 7 141 148
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branching (state 7), normal samples and ASD samples showed equal 
proportions. FABP4 and FOS showed relatively stable expression, 
while NPPA showed an increase expression along the pseudotime. 
In general, through pseudotime trajectory analysis, we successfully 
constructed the cell trajectory in ASD and identified the trajectory 
change process of key genes in different states. These findings pro-
vide a basis for us to thoroughly understand the important regulatory 
role of different genes in the cellular changes in ASD.

3.7  |  Immunohistochemical staining

A proportion of cardiomyocytes were decreased in ASD samples 
compared with normal samples, while ASD samples showed a higher 
proportion of fibroblasts than normal samples. Therefore, cardio-
myocytes and fibroblasts were considered important cell types. 

We determined marker gene expression by immunohistochemical 
staining for these two cell types. As shown in Figure 6A, the expres-
sion of DCN (fibroblast marker) showed a trend towards an increase 
without statistical significance in the ASD group compared with 
the normal group. The expression level of FABP4 (cardiomyocyte 
marker) was significantly decreased in the ASD group compared 
to the normal group, which indicates a relatively smaller number of 
cardiomyocytes in the ASD group compared to the normal group. 
We then performed ANP dose-dependent stimulation from 10−8 M 
to 10−5  M in H9C2 cells. ANP-induced stimulation decreased the 
expression of FABP4 at the concentration of 10−5  M and 10−6  M, 
while the c-Fos level was reduced at concentrations from 10−8 M to 
10−6  M (Figure  6B). Therefore, the stimulation of 10−6  M ANP in-
duced the reduction of both FABP4 and c-Fos, which was consistent 
with the result from single-cell sequencing analysis. The annexin V-
FITC assay showed that ANP stimulation also aggravated the apop-
tosis of cardiomyocytes (Figure 6D). Further, we designed siRNA for 
ANP and remarkably reduced the expression of ANP in H9C2 cells 
(Figure  6C). The knockdown of ANP decreased the percentage of 
cells in apoptosis (Figure 6E).

4  |  DISCUSSION

The heart is the central organ of the circulatory system, and its nor-
mal development plays an important role in sustaining life. ASD is a 

F I G U R E  3  Differential biological processes in gene set variation analysis (GSVA). Heatmaps showing the differential biological processes 
in the GSVA analysis for the five cell types between ASD and normal samples

TA B L E  3  Statistics of nodes and interactions in PPI network for 
different cell types

Cell type Node Edge Module(score ≥5)

Cardiomyocytes 121 519 5

Endothelial cells 190 919 8

Smooth muscle cell 149 552 6

Fibroblast 107 606 3

Macrophage 124 2659 3
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F I G U R E  4  PPI network and module analysis for DEGs in cardiomyocytes and fibroblasts. (A) Boxplots showing the expression of FABP4, 
FOS and NPPA in cardiomyocytes between normal and ASD samples; (B and D) PPI network showing the interactions among DEGs in 
cardiomyocytes and fibroblasts. Circle nodes represent upregulated genes, and rhombus nodes represent downregulated genes. Nodes with 
the same colour represent the genes in one module (score >5). Red module, module 1; orange module, module 2; yellow module, module 3; 
green module, module 4; blue module, module 5. (C and E) Bubble diagrams showing the significantly enriched KEGG pathways for genes in 
each module
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serious cardiac problem but understanding of the pathogenesis and 
pathways of this disease is still limited. In this study, we performed 
a comprehensive study of single-cell RNA sequencing data from 
cells derived from ASD and normal control tissues. A total of 18,411 
genes in 6587 cells were investigated, and five major cell types were 

identified, including cardiomyocytes, endothelial cells, fibroblasts, 
macrophages and smooth muscle cells.

Compared to normal tissue, the proportion of cardiomyocytes 
significantly decreased, while the proportion of fibroblasts sig-
nificantly increased in ASD tissue. Immunohistochemical staining 

F I G U R E  5  Pseudotime analysis of gene expression in ASD and normal. (A) Cardiomyocytes trajectories by state, pseudotime and groups; 
expression changes of FABP4, FOS and NPPA along the pseudotime (right side). (B) trajectories of endothelial cells by state, pseudotime 
and groups; expression changes of FABP4, FOS and NPPA along the pseudotime (right side); (C) trajectories of smooth muscle cell by state, 
pseudotime and groups; expression changes of FABP4, FOS and NPPA along the pseudotime (right side)

F I G U R E  6  Immunohistochemical staining and in vitro assay. (A) Representative images (400×) and quantitative statistics of protein 
expression of DCN (fibroblast marker) and FABP4 (cardiomyocyte marker) determined by immunohistochemical staining. Scale bar, 200 µm; 
n = 9, **p < 0.01, compared with the normal group. (B) Expression of FABP4 and FOS (c-fos) was measured in ANP-induced cells at different 
concentrations for 12 h. n = 3, **p < 0.01, *p < 0.05, compared with 0 M ANP. (C) The expression of Nppa (ANP) was measured after the 
transfection of si-ANP; n = 3, **p < 0.01, compared with the negative control (N. C.). (D) representative images and quantitative statistics 
of 10−6 M ANP-induced apoptosis by annexin V-FITC assay; n = 3, **p < 0.01, compared with 0 M ANP. (E) representative images and 
quantitative statistics of annexin V-FITC assay in ANP knockdown study; n = 3, **p < 0.01, compared with the negative control (N. C.)
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of fibroblast markers and cardiomyocyte markers also confirmed 
this finding. Cui et al. tracked the development of the human 
heart by single-cell transcriptome analysis and suggested that 
cardiomyocytes make up the largest population in the human foe-
tal heart. Their second-level clustering results revealed that car-
diomyocytes are mainly distributed in the ventricles and atria.22 
In addition, Jie et al. observed cardiomyocyte apoptosis in all re-
cruited ASD patients, but not in controls.39 In addition, ASD leads 
to chronic atrial stretching, and this mechanical stretch causes 
elevated expression of AngII and TGF-beta 1, as well as collagen 
synthesis in cardiac fibroblasts. It also stimulates cardiomyocyte 
signalling by activating angiotensin II type 1 (AT1) receptors and 
mitogen-activated protein kinase, with direct fibroblast-activating 
effects,40–42 which leads to a lower percentage of atrial cardio-
myocytes, and a larger concentration of fibroblasts.43 In addition, 
ligand-receptor interaction analysis showed that there was more 
cell crosstalk among cardiomyocytes and fibroblasts, including 
cardiomyocyte HSPG2-fibroblast PTPRS, cardiomyocyte A2 M-
fibroblast LRP1 and fibroblast COL1A2-cardiomyocyte CD36. 
This also explained the importance of cardiomyocytes and fibro-
blasts in ASD. Therefore, we speculated that apoptosis of cardio-
myocytes and an increase in fibroblasts might play an important 
role in the pathogenesis of ASD.

We further investigated the differences in molecular expression 
between ASD and normal samples for the five cell types. Endothelial 
cells showed most DEGs, while macrophages showed less DEGs be-
tween ASD and normal samples. There were similarities and differ-
ences in the functional enrichment results of DEGs for these five 
cell types. The DEGs for cardiomyocytes were primarily involved in 
viral myocarditis, cell adhesion molecules, and regulation of lipoly-
sis in adipocytes (e.g., FABP4, NPPA, etc.). The DEGs for fibroblasts 
were primarily involved in focal adhesion, ECM-receptor interaction 
and apoptosis. The DEGs for smooth muscle cells were implicated in 
blood vessel morphogenesis and development.

For cluster 9–12 with cell proportions less than 1%, we also 
use the R package ‘Seurat’ to analyse marker genes. Then, Gene 
Ontology (GO_BP) terms and KEGG pathways were analysed for 
DEGs identified in each cell type using the online Metascape tool. 
After the term that meets the above parameters is obtained, fur-
ther clustering is carried out according to the genetic similarity 
(similarity of >0.3) in each term, and the most significant term 
(p-value) in the cluster is selected to represent the cluster. The 
top 20 terms (ranked by p-value) were displayed in bar diagram 
(Figure S6). Although it's hard to identify the definite information 
about the type of cells. According to GO and KEGG analysis, we in-
ferred that Cluster 9 may participate in immune-related response, 
and Cluster 11 functions as nervous system regulation. Cluster 
10 located in the crowd of cardiomyocytes, endothelial cells and 
smooth muscle cells, with the function of angiogenesis and cell-
substrate adhesion. Cluster 12 was nearby Cluster 0 and 1 (car-
diomyocytes), indicating that they may have certain similarities. 
GO analysis enhanced the inference that Cluster 12 was related to 
muscle system regulation.

Cardiomyocyte marker gene FABP4 showed interaction with 
FOS, while FOS showed an interaction with NPPA, which has been 
reported to play an important role in heart development.34,35 NPPA 
(Natriuretic Peptide A) is an important gene in heart development 
and encodes proteins that belong to the natriuretic peptide fam-
ily. Proteins of this family play an important role in the mediation 
of cardio-renal homeostasis and are implicated in vascular remod-
elling and the regulation of energy metabolism. In addition, studies 
have also demonstrated that NPPA is implicated in the inhibition of 
cardiac remodelling and cardiac hypertrophy by inducing cardio-
myocyte apoptosis and reducing the growth of cardiomyocytes and 
fibroblasts.34,44 Cardiomyocytes express FABP4 (fatty acid-binding 
protein 4), which is implicated in the regulation of heart function 
and directly contributes to cardiac metabolism and physiopathol-
ogy.45 High expression of FABP4 promotes the development of car-
diac hypertrophy by activating ERK signalling.46 In addition, FABP4 
was found to be detrimental to cardiomyocyte survival. Sun et al. 
showed that inhibition of FABP4 could protect cardiomyocytes from 
apoptosis caused by hypoxia.47 These genes were all differentially 
expressed in ASD and normal samples in this study. Similarly, in-
vitro assays have shown that Nppa participates in the regulation of 
cardiomyocyte apoptosis, with the altered expression of FABP4 and 
FOS. Therefore, we conclude that these genes might be implicated 
in the physiopathology of ASD development.

There are some previously reported ASD related biomarkers, 
such as ACTC1, Alk3 and Whsc1. Alpha-cardiac actin (ACTC1), which 
is essential for cardiac contraction, has been reported that reduced 
ACTC1 levels may lead to ASD.48,49 We found that ACTC1 was down-
regulated in cardiomyocytes, endothelial cells, fibroblast cells and 
smooth muscle cells of ASD samples in our sequencing data (Figure 
S7). BMP receptor Alk3 plays an essential role in BMP signalling, which 
may contribute to human congenital heart diseases. In our results, Alk3 
(BMPR1A) was downregulated in endothelial cells (Figure S7). It has 
been reported that conditional endothelial depletion of Alk3 severely 
impairs cushion morphogenesis during mammalian cardiogenesis.50 
Alk3-mediated BMP signalling is required for endocardial formation 
and survival of AV cushion mesenchymal cells.51 These pieces of evi-
dence indicated that Alk3 induced endothelial dysfunction might be a 
key reason for ASD formation. Wolf–Hirschhorn Syndrome Candidate 
1 (Whsc1) deletion of mice showed various atrial and ventricular sep-
tal defects.52 It is consistent with our result that Whsc1 was downreg-
ulated in cardiomyocytes, endothelial cells, and smooth muscle cells 
(Figure S7). Whsc1 can interact with Nkx2.5 to repress transcription 
of NKX2-5 target genes such as Nppa. Nppa is aberrantly expressed in 
Whsc1 deleted hearts. Our results also confirmed the change of Nppa 
in ASD. Therefore, our study proved these reported conclusions and 
provided a new viewpoint of single cell.

Our study had some limitations. The major limitation is the small 
sample size, which could have led to large batch effects, and the reli-
ability of the results may have been reduced to some extent. However, 
collecting human cardiac tissue poses great challenges in China, as in-
fants’ and children's bodies are rarely donated for scientific research. 
The lack of human tissue that contains disease characteristics limits 
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scRNA-seq investigation of human disease, including ASD. This was 
not the only challenge during our study. In addition, studies of heart 
development using scRNA-seq have mostly been based on animal 
models and less on human cardiac tissue. Furthermore, normal atrial 
septal tissue should ideally be used as a normal control. However, the 
patient had a serious atrial septal defect, and ventricular muscle tis-
sue was collected as the normal control, considering that the lesion 
might affect atrial muscle. Only one marker gene for cardiomyocytes 
and fibroblasts was investigated by immunohistochemical staining. 
We preliminarily analysed several genes in cardiomyocytes. Further 
experiments should be carried out on different cell types.

In conclusion, we characterized cell subsets in ASD and normal 
samples, and five major cell types, including cardiomyocytes, endo-
thelial cells, fibroblasts, macrophages and smooth muscle cells, were 
identified. ASD samples showed a decreased proportion of cardio-
myocytes and an increased proportion of fibroblasts, and there was 
more cellular crosstalk between cardiomyocytes and fibroblasts. 
There were similarities and differences in DEGs and their functions 
between ASD and normal samples for these cell types. These find-
ings increase the understanding of the underlying mechanisms of 
ASD at both the cellular and molecular level, and highlight potential 
targets for the treatment of ASD.
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