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School of Life Science and Technology, Department of Computer Science and Technology, Harbin Institute of Technology,

Harbin, China

Background: At present, the main diagnostic methods for Alzheimer’s disease (AD) are

positron emission tomography (PET) scanning of the brain and analysis of cerebrospinal

fluid (CSF) sample, but these methods are expensive and harmful to patients. Recently,

more researchers focus on diagnosing AD by detecting biomarkers in blood, which is a

cheaper and harmless way. Therefore, identifying AD-related proteins in blood can help

treatment and diagnosis.

Methods: We proposed a hypothesis that similar diseases share similar proteins.

Diseases with similar symptoms are caused by abnormalities of similar proteins.

Assuming that the similarities between AD and other diseases obey the normal

distribution, we developed an iterative method based on disease similarity (IBDS). We

combined Elastic Network (EN) with Minimum angle regression (MAR) to find the optimal

solution. Finally, we used case studies and Summary data Mendelian Random (SMR) to

verify our method.

Results:We selected 39 diseases which are highly related to AD. They correspond 1,481

kinds of proteins. One hundred and eighty-four proteins are reported to be related to AD

in Uniprot and the number would be 284 with our method. The AUC of our method by

cross-validation is 0.9251 which is much higher than previous methods.

Conclusion: In this paper, we presented a novel method for prioritizing AD-related

proteins. Seven proteins have tissue specificity in blood among these 284 proteins, which

could be used to diagnose AD in future. Case studies and SMR have been used to prove

the relationship between these 7 proteins and AD.

Availability and Implementation: https://github.com/zty2009/Identifying-Protein-

Biomarkers-in-Blood-for-Alzheimer-s-Disease

Keywords: Alzheimer’s disease, similarity of diseases, protein, minimum angle regression, elastic network

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with insidious onset (Peng
and Zhao, 2020). Clinical manifestations of AD include memory impairment, aphasia, agnosia,
executive dysfunction, and personality and behavioral changes. At present, the only reliable
diagnostic methods for AD are positron emission tomography and cerebrospinal fluid sampling
and analysis through lumbar puncture.
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Recently, finding alternatives to diagnosing AD has become a
hot issue (Henriksen et al., 2014; Wang et al., 2018; Ren et al.,
2019; Sun et al., 2019). Ray et al. found 18 plasma proteins
have high specificity in AD patients. They then found that
these proteins were associated with Aβ and tau levels in CSF.
Then the Human Discovery Multi-Analyte Profile (MAP) has
become a popular tool to identify plasma analytes. But, these
exciting results raise a major issue that it is hard to reproduce
these protein panels (Henriksen et al., 2014). Zetterberg et al.
(2013) found that the correlation between CSF and plasma
NFL was stronger than tau. Olsson et al. (2016) confirmed
this view, and they found that the NFL was increasing in
both AD patients and MCI’s CSF. Studies have found this
phenomenon in serum and plasma samples as well (Bacioglu
et al., 2016). O’Bryant et al. (2014) used a serum-based algorithm
to distinguish AD from Parkinson’s disease and cross-validated
this algorithm. Preische et al. (2019) found that the rate of
change of serum neurofilament light chain (NFL) can be used
to distinguish mutation carriers from non-mutation carriers.
Westwood et al. (2016) used 12 years period data to find
that seven plasma proteins are significantly associated with
amyloid burden. Burnham et al. (2014) used a larger dataset and
found nine- analyte signature. Rembach et al. (2014) measured
Aβ1−40, Aβ1−42, Aβn−40, and Aβn−42 at baseline for 18 months.
They found that Aβ1−40/Aβ1−42 was decreasing and inversely
correlated with neocortical. Most recently, Akinori Nakamura
et al. claimed that they can use amyloid-β precursor protein
(APP) 669−−711/Aβ1−42 and Aβ1−40/Aβ1−42 ratios, and their
composites, to predict individual brain amyloid-β-positive or -
negative status. However, Lövheim et al. (2017) found an opposite
phenomenon that Plasma concentrations of free Aβ did not differ
between preclinical AD cases. They sampled 339 preclinical AD
cases and 339 age- and sex- matched dementia-free controls and
used Luminex xMAP technology to determine concentrations of
free plasma Aβ.

These paradoxical experimental results reflect the
unreproducibility of the experimental results. A biological
experiment always takes years and a large amount of money.
Obviously, we can’t just confine ourselves to Aβ, NFL, and
tau. We need to find more AD-related proteins that can be
abnormally expressed in the blood. Prioritizing AD-related
proteins can help researchers save a lot of time and money (Zhao
et al., 2019a).

At present, the most commonly used method to identify
disease-related protein are protein-protein interaction network
(PPI) and machine learning methods. Most PPI networks are
built based on genes’ relationship. Mukherjee et al. (2014) used
dense module searching (DMS) method to integrate gene-wide
association results into PPI network and identified candidate
genes or sub-networks for AD. Lots of researchers used PPI to
predict the function of protein and genes and identify the disease-
related proteins and genes (Cheng, 2019; Cheng et al., 2019).
In 2017, Li et al. (2017) developed a novel PPI network whose
name is InBioMap. This network contains more interactions
and better functional biological relevance. Although PPI network
has excellent performance, it mainly has two drawbacks. Firstly,
most studies of protein networks are based on static network

models. However, static protein networks are highly average and
idealized network structures. In fact, with the change of external
conditions, some proteins will be degraded, while others will
be transformed. This leads to disappearance of some protein
interactions and the formation of new protein interactions (Li
et al., 2019). The other drawback is that the link between
proteins cannot translated into the link between disease and
protein. It means that the interaction between two proteins is
ubiquitous, not specific to a disease. Machine learning methods
include Bayesian network method (Fu et al., 2017), Markov
model method (Krejci et al., 2015; Guo et al., 2017), Random
Forest method (Cheng et al., 2018b; Lv et al., 2019a,b; Xu et al.,
2019) and Support Vector Machine method (Cui et al., 2018;
Chao et al., 2019; Dao et al., 2020; Zhang et al., 2020) etc.
Barber et al. (2017) uses Simulated Annealing (SA) to select the
proteins most relevant to AD and uses Random Forest (RF)
to classify patients based on these proteins. The best model
trained in serum can significantly predict disease status with
AUC of 0.66. At the same time, training with serum data and
testing by CSF data, the AUC is 0.77. We once used Gradient
Descent (GD) and Logistic Regression (LR) to identify AD-
related proteins (Zhao et al., 2019b). But the precision of LRGD
is not very high. There are two kinds of other methods to
identify diseases-related proteins: Classification and Clustering.
Clustering method belongs to unsupervised learning, and there
are no fixed rules when pruning, which results in a lower
interpretability of the results. The classification method requires
a large number of negative samples, but for biological problems,
negative samples are usually very difficult to obtain (Cheng et al.,
2018a).

Diagnosis of AD by protein in blood is undoubtedly an
exciting task (Feng, 2019; Zhou et al., 2019). Expensive and time-
consuming biological experiments result in poor repeatability of
research, and some of the results are contradictory. Discovering
more AD potential blood proteins can not only greatly
shorten the experimental cycle, but also help people understand
the pathogenesis of AD in a deeper level. In this paper,
the identification of AD-related proteins is regarded as an
optimization problem, which avoids the problem of lack negative
dataset in classification problems. The results will be compared
with the InBioMap PPI network which published on “Nature
Method” and the LRGD which we published before.

METHODS

Work Frame
As we can see in the Figure 1, we have two hypothesizes. Due to
the hypothesis 1, we downloaded the result of Xuezhong Zhou
et al.’s paper (Zhou et al., 2014). They calculated the similarity
of different diseases by symptoms. In their paper, they said that
the clinical manifestations of the disease are related to potential
protein interactions. Since we got the similarity of diseases, we
should obtain the known proteins for each disease. We obtained
the data from UniProt (2016). Then, we could get diseases which
are related to AD and their known corresponding proteins.

Here, we could find that some diseases have more than
100 kinds of known related proteins but some diseases only
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FIGURE 1 | Work frame of IBDS.

have few. Obviously, the proteins associated with each disease
are not comprehensive enough to support the similarity of
symptoms between diseases and AD. Therefore, we propose a
second hypothesis. Obviously, the similarity of those diseases
who have hundreds of related proteins is more dependable than
those who have few proteins. Note that it does not mean that
the similarity is undependable. It means that a part of the
similarity of diseases with a small amount of known proteins
is not expressed based on our existing knowledge, so their
credibility declines. The next step is to estimate the mean and
variance of each similarity. Here, we try to create an objective
function which could map proteins to diseases’ similarities.
We will discuss this in the next section. We only have to
know here is that every protein has its own weight and these
weights could map to diseases’ similarities and the aim of
objective function is to make sure that the loss of mapping
is minimum.

After constructing the objective function we should find a
way to solve it. There are two steps. Firstly, we should design an
iterative algorithm to find out the optimal solutions. Secondly,
a reasonable method of updating protein weights needs to
be designed.

After finding the optimal solutions, the weights of proteins
could be known. We should sort the weight to find which
proteins are most relevant to AD. In order to demonstrate
the superiority of our method, we compare it with LRGD
which we published before and InBioMap which published on
“Nature Method.”

Then observe whether those proteins with significant
weight are expressed in the blood. To verify these proteins,
we did case studies and applied SMR to discuss them in
gene level and biological experiments. SMR is a method
to integrate GWAS and eQTL data together to find traits-
related SNPs.

FIGURE 2 | The distribution of similarity.

Data Collection
Firstly, the similarity of diseases based on symptoms
was downloaded from Zhou’s et al. (2014) paper on the
nature communications.

167 diseases have similarity with AD.
As we can see in the Figure 2, most of the diseases’ similarity

with AD are <0.3. Therefore, we set 0.3 as a threshold. Then,
there are 41 diseases remaining.

Next, the proteins which are related to the 41 diseases are
downloaded from Uniprot. Among these diseases, we excluded
Williams Syndrome because it is caused by gene deletion and
it is related to more than 1,300 proteins in Uniprot. We also
excluded Psychomotor Agitation and Ischemic Attack Transient
because no related proteins could be found. Then we totally got
38 diseases which are related to AD and we got their known
related proteins.

As we can see in the Table 1, we consider the similarity
between AD and itself is 1. There is a large difference in
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TABLE 1 | Statistics of AD-related diseases.

Disease Similarity Proteins

Dementia 0.97 123

Huntington disease 0.36 43

Brain diseases 0.35 189

Bipolar disorder 0.40 52

Neurotoxicity syndromes 0.33 17

Glioblastoma 0.34 138

Encephalitis, herpes simplex 0.42 9

Multiple sclerosis, chronic progressive 0.39 12

Brain injuries 0.48 5

Glioma 0.32 122

Psychotic disorders 0.30 17

Cocaine-related disorders 0.32 6

Hashimoto disease 0.35 145

Substance-related disorders 0.37 9

Memory disorders 0.84 26

Dementia, vascular 0.90 17

Neurodegenerative diseases 0.44 36

Cerebral amyloid angiopathy 0.36 7

Herpes simplex 0.30 91

Schizophrenia 0.46 118

Brain ischemia 0.36 57

Cadasil 0.33 2

Depressive disorder 0.34 7

Cognition disorders 0.89 8

Epilepsy, temporal lobe 0.63 25

Alcoholism 0.44 7

Amphetamine-related disorders 0.75 5

Genetic predisposition to disease 0.32 52

Mood disorders 0.51 19

Nerve degeneration 0.58 66

Brain neoplasms 0.31 55

Hyperhomocysteinemia 0.42 5

Frontotemporal dementia 0.31 31

Periventricular nodular heterotopia 0.34 7

Frontotemporal lobar degeneration 0.52 7

Depressive disorder, major 0.56 5

Lewy body disease 0.35 22

Atrophy 0.82 342

Alzheimer’s Disease 1 184

the number of disease-related proteins we currently know.
For example, 2 known proteins are related to Cadasil whereas
Dementia has 123. Therefore, we cannot treat the similarity
obtained as an exact number because there are some unknown
proteins associated with these diseases and may be associated
with AD and these unknown proteins may cause the similarity.
Therefore, we assume that the similarity of each disease follows
a normal distribution, and their similarity is the mean of the
distribution. It can be denoted as Disease ∼ N(similarity, σ 2).

If we sum all the number of disease-related proteins together,
the total number of proteins is 2,088. Actually, there are only

1,481 kinds of proteins. Therefore, some proteins are related to
more than one disease. This also confirms our hypothesis: similar
diseases share similar proteins.

Method
Obtain the Variance of Diseases’ Similarities
The uncertainty of diseases’ similarities is caused by the unknown
related proteins. Here, we used w to denote the probability that
protein is related to disease. For each disease, the known related
proteins are 1, then the unknown related proteins would be wi.
Standard Error (SE) emphasizes the credibility of the mean. Here
the mean is the diseases’ similarity. The SE could be calculated
as following:

σ=

√

X̄(1− X̄)

N
(1)

N would be the number of proteins which is 1,481. X̄ would be
the mean of unknown proteins’ probability.

So the variance of each disease’s similarity could be
calculated as:

σ 2=(
w(1-P)

1481
(1−

w(1-P)

1481
))/1481 (2)

w denotes the probability of each protein. P is the vector of
relationship between protein and disease. We used one-hot
encoding method to obtain P. For example, Brain Injuries is
related to 5 proteins, then there are five 1 in P and other proteins
are represented by w. It would be The position of 1 depends on
the position of the protein associated with Brain Injuries in all
1,481 proteins.

In this way, diseases with more known proteins have a smaller
variance than those with fewer known proteins.

Obtain Objective Function
Generally, the objective function of regression is as following,

L=
n

∑

i=1

(Yi −
⌢

Y i)
2

(3)

Yi is the true similarity,
⌢

Y i is the similarity of our estimation. n is
the number of related diseases.

Since Yi is no longer a number but a distribution now,
the objective function should be changed. Firstly, we should
transform each Y into Standard Normal Distribution. Therefore,
for each disease, Y should be:

Y ′
i=(Yi-µi)/σi (4)

µi denotes the similarity between ith disease and AD, σi would be
obtained by formula (2). Then the objective function should be
as following:

L=
39

∑

i=1

⌢
Y i

∫

0

Yi
′dY (5)
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So our goal is to find out the w which can
minimize L.

Design an Iterative Algorithm for Finding Optimal

Solution
Step 1. Set initial value

We totally got 184 known AD-related proteins, we assigned
weights for these 184 proteins from 0.1 to 0.9. For example, if we
assigned 0.1 to these 184 proteins, each protein’s weight would
be 0.1/184 = 0.000543. Then the rest proteins’ weight would
be 0.9/(1481–184) = 0.00069. If we got the similar results from
different initial values, the result should be more reliable.

Step 2. Iteration rule
Since we have obtained some known AD-related proteins, the

initial value of w should be very close to the final result.We do not
want the final result to fall into local optimum, so in the iterative
process, if the value of L is greater than the value of the previous
iteration, the result is accepted with a variable probability.

In the initial iterations, the results are instability, so the
probability of accepting the poorer new solutions is higher. As the
number of iterations increases, this probability becomes smaller
and smaller.

Step 3. Update weights
As we know, only few of these 1,481 proteins are related to

AD. Then, we should decrease the weight of unrelated proteins
and increase the weight of related proteins.

Since the number of features (protein) is far more than the
number of samples (diseases), so it is reasonable to use the linear
regression methods. Using Minimum angle regression (MAR)
and Elastic Network (EN), the related proteins could be selected.
For MAR, the unrelated proteins’ regression coefficient would be
0. For EN, the unrelated proteins’ regression coefficient would be
quite low.

Both methods could find the related proteins, so they could
help us update the weights of proteins. Since MAR only selects
very few of proteins each time, we use EN to update weights four
times, then use MAR once.

Note that the changes of weights will cause the changes
in variance. Therefore, the objective function changes in every
iteration. It is the reason that we do not skip the process of
iteration and use MAR and EN only.

Since MAR and EN could found the related proteins, the
weight of selected proteins will increase by a tenth of the
minimum weight. To keep the sum of weights to be 1, unselected
proteins will be subtracted some weights.

We will iterate until the value of the objective function
converges. The work flow is shown in Figure 3.

RESULTS

Result of Different Initial Values
Since the sum of initial value is assigned from 0.1 to 0.9, different
initial values would cause the different results.

We excluded the weights which are <0.001 and draw the
Figure 4. As we can see in Figure 4, if we chose the extreme value
like 0.1, 0.2, or 0.9, most protein weights are concentrated on a

FIGURE 3 | Work flow of finding optimal solution.

FIGURE 4 | Box diagrams of result with different initial values.
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FIGURE 5 | The number of potential AD-related protein with different initial

values.

certain value, so there is no box in the box diagram but a line.
The results of 0.6 and 0.7 are similar.

We also want to know how many proteins we have found
to be related to AD. In Figure 5, we set a threshold as
0.001, if the weight of protein is higher than 0.001, we
would consider it as a potential candidate protein which is
related to AD.

As we can see in the Figure 5, if we chose the initial value 0.1
or 0.2, the number of potential AD-related would be 109. It is
less than the 184 in the original dataset. Because the initial value
did not make good use of our known prior information, that
is, 184 known proteins are not distinguished significantly from
other proteins, the iteration falls into local optimum. However,
if we set the initial value as 0.9, We’re too biased toward 184
known proteins so other unknown proteins are less likely to
gain weight.

Therefore, we consider the most suitable initial value is
0.6. If the sum of known proteins’ weight is 0.6, they are
significant different from others and others unknown proteins
got a chance to update their weights. We also summarized
the results of all the initial value. We put all the results
(9∗1481) together and called it as ‘IBDS_summary initial
value’. The AUC of it was 0.9107. Then, we try to compare
our method with InBioMap and the method we published
before (LRGD). InBioMap can find related proteins based
on the input proteins and construct a protein network. We
input the 184 kinds of known proteins to it and it uses the
interaction between proteins to build a network. Then we used
Random Walk (RW) which is a routine method to traverse
the network. Then we could obtain the AD-related proteins by
InBioMap. The method we published before is used to identify
AD-related proteins too, so here we use the result of that
paper directly.

Figure 6 shows AUC results of these four methods. IBDS
performed best among these methods. In addition, the standard
error of it was also the smallest, which means IBDS is stable.

Here, we want to analysis why our method performs
better than these two methods. InBioMap only considers the
interactions between proteins to build the network. If a protein
is known to be associated with AD, although the more frequently

FIGURE 6 | The AUC results of different methods.

FIGURE 7 | The distribution of novel proteins’ tissue specificity.

TABLE 2 | Novel proteins specifically expressed in blood.

ID Name Gene

P31645 Sodium-dependent serotonin transporter SLC6A4

P02751 Fibronectin FN1

Q96P31 Fc receptor-like protein 3 FCRL3

Q99719 Septin-5 SEPT5

P17861 X-box-binding protein 1 XBP1

P00734 Prothrombin F2

P01008 Antithrombin-III SERPINC1

it interacts with another protein, the more likely the protein
is to be associated with AD, the interaction between the two
proteins may not be related to AD. Therefore, only using the
information between proteins would cause the bias. However,
although LRGD considers the similarity between diseases, the
objective function is not necessarily a convex function, so
solving with the gradient descent method is risky. In addition,
another problem is that we got the similarity of diseases by
several methods, but all the methods are based on the genes’
interaction. Since proteins cause the similarity of diseases due
to the symptoms, we should calculate the similarity of diseases
based on the similar symptoms. Therefore, in this paper,
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we chose the result of Zhou et al. which is obtained based
on symptoms.

Novel Proteins Expressed in Blood and
Case Study
We totally obtained 284 proteins which are related to AD. Among
them, there are 100 novel proteins. We obtained the related
information about these 100 novel proteins from Uniprot. Since
genes have tissue specificity (Zhao et al., 2020), we need to obtain
proteins which mainly express in blood.

As we can see in the Figure 7, 42% of proteins have not
found tissue specificity at the mRNA level. Most of the remaining
proteins have specificity expression in the brain. It is worth
noting that there are 7 proteins that are specifically expressed in
the blood.

Table 2 gives the name of these 7 proteins which have
specificity expression in blood.

TABLE 3 | The number of SNPs of seven genes in data set.

Gene eQTL GWAS P-value

SLC6A4 1 0 /

FN1 17 16 0.0021

FCRL3 1,568 709 0.0003

SEPT5 7 6 0.0241

XBP1 2,902 1,241 0.0009

F2 0 0 /

SERPINC1 411 347 0.02

P31645 has some cognitive functions, including memory and
learning. Regulation of serotonin at synapses is considered to
be the main role of several antidepressant drugs. Therefore, the
decline in P31645 expression levels is very likely to be a sign
of AD. It has been reported that hippocampal P31645 sites are
preserved or upregulated in physically aggressive AD patients
relative to controls (Liu et al., 2018).

P02751 binds to the surface of lymphocyte, which improves
the immune system and hinders the aging of the body.
The absence of P02751 can cause defects in the mesoderm,
nerve tubes and blood vessels. Lepelletier et al. (2017) have
found that P02751expression was increased in subclinical AD
and AD patients when compared to controls, in frontal and
temporal cortex.

Q96P31 promotes TLR9-induced B-cell proliferation,
activation and survival but inhibits antibody production and
suppresses plasma cell differentiation. It is difficult to analyze
the potential relationship between Q96P31 and AD from the
existing literature.

Q99719 has been reported (Chang et al., 2015) that there
is significant expression differences in hippocampus compared
with motor cortex in AD and non-AD patients.

P17861 plays a role in regulating synaptic plasticity and
memory function. Chang et al. (2015) reported that P17861
produces substantial protective effects on crucial neuronal
circuitry involved in memory function.

In the recent paper published in Science Advances, P00734 has
been considered as the most important feature to be a potential
marker of early Aβ deposition. Chen et al. (2019) found that there
is significate difference in serum P01008 between wild-type and
AD mice.

FIGURE 8 | SMR tests for association between gene FCRL3 expression and complex traits.
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In addition, we also did case studies on some other
proteins which do not specifically express in blood.
Q9NZC2 is encoded by TREM2, which has been reported
to be associated with many neurodegenerative diseases
such as Behavioral variant of frontotemporal dementia,
Early-onset autosomal dominant Alzheimer disease (Jin
et al., 2014), Progressive non-fluent aphasia, Semantic
dementia. Nagar and Al-Mubaid (2008) found that P49810
is associated with AD based on gene ontology annotations.
P49810 is coded by PSEN2 and expresses in many tissues
such as heart, brain, placenta, liver, skeletal muscle,
and kidney.

Proof From SMR
SMR is a method which can integrate GWAS and eQTL data to
identify the gene whose expression levels are associated with a
complex trait because of pleiotropy. Zhu et al. (2016) purposed
this method to identify several genes which are related to 5
complex traits. Since the paper was published, many researchers
used SMR to identify diseases-related SNPs. This method can
treat SNP as a tool variable to study the causal relationship
between gene expression and disease. We also used this method
to test AD-related genes before (Zhao et al., 2019c).

Since proteins are encoded by genes, we try to use SMR to
determine whether the genes corresponding to the seven proteins
affect AD through pleiotropy. In this paper, we used two GWAS
datasets and one eQTL dataset to identify whether these 7 genes’
expression levels are associated with AD.

eQTL data is from Lloyd-Jones et al. (2017) study. They
analyzed the mRNA levels for 36,778 transcript expression traits
(probes) from 2,765 individuals. GWAS data are from Lambert
et al. (2013) and Marioni et al. (2018). Lambert used 17,008 AD
cases and 37,154 controls. Marioni obtained genetic data from
314,278 individuals.

We did SMR test on the two GWAS datasets, respectively.
Table 3 shows the summary results, of which P-values are
the minimum P-value of the corresponding genes. We found
significant SNPs of two genes. They are FCRL3 and XBP1.

Figure 8 shows the results at FCRL3 locus for AD. Top plot,
all dots represent the P-value for SNPs from SMR test, red dots
represent the P-value which is<0.05. They are relative significant
SNPs with a total of 474. The middle picture shows the p-value
of SNPs in GWAS. If the two GWAS datasets contain a certain
SNP, we select the one with the smaller p-value. Bottom plot,
the eQTL P-values of SNPs from the Lloyd-Jones study for the
ILMN_1699599 probe tagging FCRL3.

For space reasons, the results of XBP1 are not shown here, but
a total of 10 SNPs have passed the SMR test.

CONCLUSIONS

With the prolongation of human life span, more andmore people
are suffering fromADwhich consumes the most social resources.
However, AD can only be diagnosed by autopsy and brain
biopsy which is harmful. Increasing researchers have focus on
diagnosing AD by urine and blood. Discovering more potential
AD-related proteins could help us find a low-cost way to diagnose
AD through blood.

In this paper, we propose a new method for identifying AD-
related proteins, which combines elastic network withminimum-
angle regression and finds the optimal solution by iteration.
Different from the methods of protein network, we get the
similarity of diseases according to the symptoms of diseases.
Different diseases have different distribution of similarities. We
get the variance of similarity distribution and construct a new
objective function.

To verify the effectiveness of our method, we compared our
method with two methods (LRGD and InBioMap) and did case
studies. InBioMap is based on PPI network and LRGD is method
we purposed before. The result shows our method IBDS (AUC
= 0.9274) is better than LRGD (AUC = 0.6277) and RWR-
InBioMap (AUC= 0.6967). In addition, we found 100 novel AD-
related proteins and 7 of them have tissue specificity in blood.
More importantly, some studies have confirmed that some of
these novel proteins have differences in expression between AD
patients and normal people.
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