
cancers

Article

Multicenter DSC–MRI-Based Radiomics Predict IDH Mutation
in Gliomas

Georgios C. Manikis 1,* , Georgios S. Ioannidis 1 , Loizos Siakallis 2 , Katerina Nikiforaki 1, Michael Iv 3,
Diana Vozlic 4,5, Katarina Surlan-Popovic 4,5, Max Wintermark 3, Sotirios Bisdas 2,6,† and Kostas Marias 1,7,†

����������
�������

Citation: Manikis, G.C.; Ioannidis,

G.S.; Siakallis, L.; Nikiforaki, K.; Iv,

M.; Vozlic, D.; Surlan-Popovic, K.;

Wintermark, M.; Bisdas, S.; Marias, K.

Multicenter DSC–MRI-Based

Radiomics Predict IDH Mutation

in Gliomas. Cancers 2021, 13, 3965.

https://doi.org/10.3390/cancers

13163965

Academic Editor: Brigitta G. Baumert

Received: 24 June 2021

Accepted: 31 July 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH),
70013 Heraklion, Greece; geo3721@ics.forth.gr (G.S.I.); kat@ics.forth.gr (K.N.); kmarias@ics.forth.gr (K.M.)

2 Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, UCL,
London WC1N 3BG, UK; loizos.siakallis.20@ucl.ac.uk (L.S.); s.bisdas@ucl.ac.uk (S.B.)

3 Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University,
Stanford, CA 94305, USA; miv@stanford.edu (M.I.); mwinterm@stanford.edu (M.W.)

4 Department of Radiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
diana.vozlic@kclj.si (D.V.); katarina.surlan@kclj.si (K.S.-P.)

5 Department of Neuroradiology, University Medical Centre, 1000 Ljubljana, Slovenia
6 Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College

London NHS Foundation Trust, London WC1N 3BG, UK
7 Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
* Correspondence: gmanikis@ics.forth.gr; Tel.: +30-281-139-1593
† These authors contributed equally as last authors.

Simple Summary: Significant efforts have been put toward developing MRI-based radiogenomics
for IDH status subtyping predictions; however, in the vast majority of these approaches, the external
validation sets are absent. Another limitation in current studies is the lack of explainability in
radiomics models, which hampers clinical trust and translation. Motivated by these challenges, we
proposed a multicenter DSC–MRI-based radiomics study based on an independent exploratory set,
which was externally validated on two independent cohorts, for IDH mutation status prediction.
Our results demonstrated that DSC–MRI radiogenomics in gliomas, coupled with dynamic-based
image standardization techniques, hold the potential to provide (a) increased predictive performance
by offering models that generalize well, (b) reasoning behind the IDH mutation status predictions,
and (c) interpretability of the radiomics features’ impacts in model performance.

Abstract: To address the current lack of dynamic susceptibility contrast magnetic resonance imaging
(DSC–MRI)-based radiomics to predict isocitrate dehydrogenase (IDH) mutations in gliomas, we
present a multicenter study that featured an independent exploratory set for radiomics model
development and external validation using two independent cohorts. The maximum performance of
the IDH mutation status prediction on the validation set had an accuracy of 0.544 (Cohen’s kappa:
0.145, F1-score: 0.415, area under the curve-AUC: 0.639, sensitivity: 0.733, specificity: 0.491), which
significantly improved to an accuracy of 0.706 (Cohen’s kappa: 0.282, F1-score: 0.474, AUC: 0.667,
sensitivity: 0.6, specificity: 0.736) when dynamic-based standardization of the images was performed
prior to the radiomics. Model explainability using local interpretable model-agnostic explanations
(LIME) and Shapley additive explanations (SHAP) revealed potential intuitive correlations between
the IDH–wildtype increased heterogeneity and the texture complexity. These results strengthened
our hypothesis that DSC–MRI radiogenomics in gliomas hold the potential to provide increased
predictive performance from models that generalize well and provide understandable patterns
between IDH mutation status and the extracted features toward enabling the clinical translation of
radiogenomics in neuro-oncology.

Keywords: dynamic susceptibility contrast MRI; gliomas; radiomics; IDH mutation; generalizability;
explainability; external validation
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1. Introduction

Gliomas consist of a heterogeneous group of tumors and account for the majority of
malignant primary brain tumors [1]. Histological grading and classification into low- and
high-grade gliomas [2] has been limited in deciphering the heterogeneous treatment re-
sponse and survival of glioma patients [3], apart from predicting worse clinical outcomes in
patients with glioblastoma [4]. Molecular and genetic analyses yielded distinct biochemical
and genetic traits of glioma subgroups beyond histological grading [3]. Of these, isocitrate
dehydrogenase (IDH) is probably the most important in terms of prognostication [5]. The
identification of an IDH mutation in low- and high-grade gliomas and its role in gliomage-
nesis elucidate the progression of low-grade glioma (LGG) to an IDH-mutant, “secondary”
glioblastoma via a common pathway [6]. While IDH-mutant tumors are favored for their
improved clinical outcomes, their IDH-mutant counterparts are characterized by a dismal
prognosis, irrespective of histological grading [7]. Due to its propensity to stratify glioma
patients, IDH mutations were identified in the recent world health organization (WHO)
classification as a distinctive feature of glioma subgroups [3].

Characterization of the IDH mutation status has therefore become imperative prior
to treatment selection and patient stratification [8]. However, this still relies on invasive
tissue sampling and analysis, harboring inherent limitations, including post-operative
complications and sample error [9]. The non-invasive classification of gliomas based on
imaging was proposed as an alternative to this approach, leading to the identification
of imaging features as correlates to molecular subtypes. Structural features, including
calcification and T2-FLAIR mismatch and tumor enhancement, yielded promising, though
inconsistent, outcomes for the identification of IDH status [10]. This was partly attributed to
interobserver variability during the visual assessment of such features [11]. To this end, ma-
chine learning (ML) enhanced the identification of high-throughput quantitative imaging
features that were extracted from conventional and multiparametric magnetic resonance
imaging (MRI) was successfully applied for the characterization of IDH mutation status,
with promising outcomes outlined in recent radiogenomics studies [12]. Results that were
found using contrast-enhanced T1-weighted, T2-weighted, and arterial spin labeling (ASL)
images from 105 glioma patients showed an accuracy of 0.82 and an area under the curve
(AUC) of 0.77 on internal validation using an iterated cross-validation [13]. A recent review
of radiomics implications in glioma [14] produced an accuracy of 0.83 when multicenter
multiparametric MRI samples were divided randomly into training and validation sets [15],
and an accuracy of 0.99 was found when T2-weighted MRI-based radiomics were applied
to training and validation sets from a single center [16]. An accuracy of 0.917 (sensitivity:
0.857, specificity: 1) was achieved in [17] using a three-level radiomics model based on
multiparametric MRI (postcontrast T1-weighted, T2-weighted, T2-FLAIR, and diffusion-
weighted imaging) obtained from the Cancer Imaging Archive (TCIA) and validated on a
cohort of 12 patients. Finally, a random forest showed an accuracy of 0.885 ± 0.041 and an
AUC equal to 0.931 ± 0.036 when tested on multiparametric MRI data using an iterated
training/testing split from 126 patients [18]. Although several studies, as presented in a
recent review paper [12] managed to assess the value of conventional and multiparametric
MRI in predicting glioma IDH mutation status, a lack of independent sets for validating
externally related radiomics signatures was evident in most of the studies, as denoted
by the radiomics quality score (RQS) [19]. This limitation also concerns neuro-oncology
radiomics in general, where only 3.9% (2/51) of studies were found to be validated using
multicenter data [20].

Potential imaging biomarkers beyond structural features were highlighted by the long
recognized tumor vascularity’s correlation with histological grade [21], and the role of
dynamic susceptibility contrast (DSC) perfusion was noted by the recent identification of
distinct angiogenesis transcriptome signatures of IDH-mutant gliomas linked to identifiable
perfusion phenotypes [22]. However, not much research has investigated the integrative
role of DSC perfusion, as opposed to standalone structural MRI, in radiogenomics toward
the non-invasive characterization of IDH status based on distinct vascular profiles [22].
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More specifically, to the best of our knowledge, IDH status mutation prediction is limited to
a single study from [23] in which repeated cross-validations, performed on a unique cohort
of six tertiary centers, reported an accuracy of 0.72 (overall specificity: 0.77, sensitivity:
0.65). This was further confounded by variations in DSC perfusion acquisition and analysis,
despite current attempts for consensus guidelines [24]. Another limitation in current
studies is the lack of explainability in radiomics models, which hampers clinical trust and
translation to neuro-oncology clinical practice.

In an effort to address all the concerns stated above, this study aimed to explore
the potential of DSC–MRI-based radiomics to predict IDH mutation status in gliomas.
The proposed radiogenomics analysis was built using an independent exploratory set, a
dynamic-based standardization of the MR images, and an external validation from two in-
dependent cohorts. To interpret the IDH mutation status predictions, model explainability
was performed using local interpretable model-agnostic explanations (LIME) and Shap-
ley additive explanations (SHAP). To the best of our knowledge, this is the first attempt
toward validating a DSC–MRI radiogenomics study on independent external cohorts and
interpreting the corresponding IDH mutation status prediction results for gliomas.

2. Materials and Methods
2.1. Patient Population

The studied population included 160 patients (age: 58.4 ± 15.9 (mean ± SD), 70 female)
from 3 tertiary centers, each with a histopathological diagnosis of primary glioma (WHO
grades 2–4), molecular characterization of IDH mutation status (IDH-mutant = 41, IDH-
wildtype = 119) and DSC–MRI data prior to any treatment. Specifically, cohort A consisted
of 92 patients (66 out of 92 IDH-mutant), cohort B included 50 patients (39 out of 50 IDH-
mutant), and cohort C contained 14 out of 18 patients with an IDH-mutant status. We
excluded patients without a histologically confirmed diagnosis of glioma, incomplete
molecular characterization of IDH status, non-enhancing anaplastic grade III gliomas,
or patients having received any treatment prior to image acquisition. The study was
approved by each local ethics committee and all patients signed informed consent forms
prior to examination.

2.2. MRI Protocol

Patients underwent DSC–MRI from different scanners and acquisition protocols. The
imaging parameters for each cohort are presented in Table 1.

Table 1. Imaging protocol parameters for the patient population.

Cohort A Cohort B Cohort C

Scanner Type
3T Discovery MR750

(GE Healthcare, Chicago,
Illinois, United States)

3T Siemens Skyra
(Siemens Healthineers,
Erlangen, Germany)

1.5T Magnetom Avanto
(Siemens Healthineers,

Erlangen, Germany)

1.5.T Philips Achieva
(Philips Medical

Systems, Eindhoven,
Netherlands)

Acquisition type 2D Echo-Planar Imaging (EPI) with fat suppression (FS)
Magnetic field strength 3T 3T 1.5T 1.5T

Repetition time (ms) 1800 1870 1850 1525
Echo time (ms) 40 30 30 40

Echo train length 1 63 1 47
Flip angle (deg) 60 90 90 75

In-plane resolution (mm2) 1.718 × 1.718 1.719 × 1.719 1.796 × 1.796 1.75 × 1.75
Number of averages 1 1 1 1

Image slice thickness (mm) 5 5 5 5
Image slice spacing (mm) 5 5 5 5

Temporal resolution 60 × 1.87 s 60 × 2.07 s 40 × 1.53 s 60 × 1.8 s
Matrix size 128 × 128 128 × 128 128 × 128 128 × 128

2.3. Tumor Delineation

Lesion voxels of interest (VOIs) were automatically generated using Bratumia [25]
software (https://www.nitrc.org/projects/bratumia, accessed on 24 June 2021), which
uses four different contrasts (T2, T2 FLAIR, T1 before and after contrast) as input in order to

https://www.nitrc.org/projects/bratumia
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correctly identify tumor enhancement, edema, and necrosis from normal brain tissue. Two
expert neuroradiologists with 7 and 4 years of experience, respectively, visually inspected
the generated tumor voxels of interest (VOIs) and provided corrections when necessary on
a consensus basis.

2.4. Time Point Selection

After the tumor delineation, the mean signal intensity from all voxels assigned as a
lesion were used to create the signal intensity curve of each patient over time. DSC–MRI
data were inspected for an adequate number of time points to establish the baseline
(minimum 5) before the maximum signal drop resulting from the arrival of the contrast
agent to the voxels in question. Three characteristic points of interest (T_0, T_max, and T_2),
defined as the time of the first measurement after contrast detection, time of maximum
signal drop, and time of return to baseline, respectively, were selected for each specific
patient from their corresponding signal intensity curve over time (Figure 1).

Figure 1. Time points of interest of a T2 mean signal intensity curve.

2.5. Dynamic-Based Standardization of the MRI Data

Considering that the MR signal is measured in arbitrary units, it is challenging to
perform joint analyses from data originating from different clinical centers since the image
intensities exhibit inherent variability and different ranges of values. Indicative perfusion
curves from each patient cohort are presented in Figure 2a, where the differences in
the range of the exported MR image intensity values are evident. Supposing a DSC
perfusion curve over time T2(t) or the relaxation rate curve R2(t) = 1/T2(t), the first
step was the baseline correction, which was achieved by subtracting the last signal of the
baseline (T2(0), contrast agent enters the vasculature system) from each curve as follows:
∆T2(t) = T2(t) − T2(0) (Figure 2b). As a second step, due to the variability between
different protocols with respect to echo time (TE), each curve was modified to account for
the exponential signal decay in time by using Equation (1):

∆R2(t) =
1

TE
ln

T2(t)baseline
∆T2(t)

(1) (1)

where T2(t)baseline is the mean baseline of the raw signal T2(t) [26]. Moreover, signal
intensity probability density functions for all voxels annotated as a tumor per imaging



Cancers 2021, 13, 3965 5 of 16

group of patients for the maximum enhancement time point are presented for the raw
(Figure 2c) and the normalized (Figure 2d) T2(t) data.

Figure 2. Schematic representation of the normalization process. (a) Dynamic susceptibility contrast
(DSC) perfusion curves from the 3 tertiary centers. (b) ∆R2(t) curves after normalization using
equation (1). (c) Center-specific probability density functions of the raw signal intensities within the
voxels of interest (VOIs) at time point T_max. (d) Center-specific probability density functions of the
normalized signal intensities within the VOIs at time point T_max.

2.6. Radiomics Analysis Workflow

The proposed analysis workflow is illustrated in Figure 3 and presented in detail below.

2.6.1. Image Postprocessing

Initially, tumor delineations were automatically generated as reported in Section 2.3
(step A, Figure 4) and corresponding 3D images at the specific time points T_0, T_max,
and T_2 were extracted from the dynamic acquisition data (Section 2.4 and step B from
Figure 4). Subsequently, 3D images were spatially resampled and interpolated (step C,
Figure 4) to compensate for multicenter effects (e.g., differences in the acquisition protocol
and the reconstruction settings), enabling textural feature extraction in the 3D domain since
rotation-invariant 3D images are recommended. Although there is no clear suggestion of
whether to use a downsampling or upsampling interpolation, volumes in this study were
resampled to isotropic voxels of length 1 mm using the cubic B-spline interpolation method.
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Figure 3. An illustrative representation of the proposed radiomics analysis workflow.

Figure 4. A schematic diagram summarizing the proposed radiomics analysis workflow steps.

To assess the potential impact of the proposed standardization technique (Section 2.5)
on the IDH status prediction, two different versions of the extracted 3D images were
generated. In the first version (step D1, Figure 4), the signal intensities from the 3D images
(hereafter denoted as np_MRI) were z-score normalized using the mean and standard
deviation from all voxels within the VOIs drawn on the overall DSC–MRI data (VOIs
drawn across all time points to keep the dynamic changes of the tissue over time). Next,
normalized signals from np_MRI data were multiplied by a scaling factor that was set to
100 and shifted by the minimum signal intensity that was derived from np_MRI histograms
to ensure that all voxels within the VOIs had positive values. In the second version (step
D2, Figure 4), the 3D images (hereafter denoted as p_MRI) were dynamically standardized
(Section 2.5). At the next step, both np_MRI and p_MRI data underwent discretization
(step E, Figure 4) to account for differences in the voxel intensity ranges using Equation (2),
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where FBS is the fixed bin size, FBN is the fixed bin number, and meanRange is the derived
mean intensity range from the VOIs histogram of all patients within the examined cohort. In
the current analysis, FBN was set to 32 and 64 since a low number of bins is recommended
in brain MRI radiomics [27].

FBS =
1

FBN
× meanRange (2)

2.6.2. Radiomics Feature Extraction

Radiomics feature extraction (step F, Figure 4) was carried out in compliance with the
image biomarker standardization initiative (IBSI) guidelines. A total of 833 features were
automatically extracted from the segmented regions of every image (both np_MRI and
p_MRI) using pyradiomics [28] comprising features: (a) without any filter applied before
the extraction and (b) after images were decomposed using a wavelet transform (Coiflet 1)
of level 1. Among the non-wavelet features (105 features, summarized in Supplementary
Table S1): 16 first-order statistics were calculated from the histogram of the VOIs (group 1);
14 morphological features contained information about the shape and size of the lesion
(group 2); 24 s-order statistics (group 3) computed from the grey level co-occurrence matrix
(GLCM); and 14, 16, 16, and 5 third-order statistics on the gray level dependence matrix
(GLDM), gray level size zone matrix (GLSZM), gray level run length matrix (GLRLM), and
neighboring gray tone difference matrix (NGTDM), respectively (group 4). Additionally, to
address the multi-scale nature of texture, 728 features from groups 1, 3, and 4 were derived
using a set of eight sub-bands of the decomposed images (HHH, HHL, HLH, HLL, LHH,
LHL, LLH, and LLL) with different resolutions corresponding to the low- (L) and high-pass
(H) filters applied along the X-, Y, and Z-axis (91 features × 8 sub-bands). In total, 2499
(833 × 3, where three corresponds to the three time points) np_MRI (step G1, Figure 4) and
2499 p_MRI related radiomics (step G2, Figure 4) features were integrated into a single
feature vector, respectively.

2.6.3. Machine Learning Analysis Framework

A machine learning analysis pipeline was designed comprising: (a) feature-level
standardization, (b) radiomics feature reduction, (c) synthetic data generation, and (d) the
application of the ML model. Concerning (a), a univariate analysis was initially con-
ducted using the Shapiro–Wilk test to assess the normality of the radiomics features. Most
of the features achieved a p-value less than 5%, indicating a non-normal distribution.
Therefore, centering and scaling of all exported radiomics features was performed with
“RobustScaler” [29] since it is less prone to outliers and can operate on non-normal dis-
tributed data. Several feature reduction techniques performed during (b) were utilized
to decrease the high-dimensional radiomics feature vector by considering their low com-
putational complexity and their effectiveness, as reported in similar radiomics studies.
These included univariate filtering techniques (Gini Index, F-ratio, information gain, and
Spearman correlation) and a multivariate feature scoring criterion using: (a) the minimum-
redundancy maximum-relevance (mRMR), (b) mutual information maximization (MIM),
and (c) the statistical inference relief (STIR); all of these were tested with a pre-selected
number of features varying from 5 to 50. Additionally, the least absolute shrinkage and
selection operator (LASSO) regression was also examined to identify a subset of infor-
mative radiomics features (features with nonzero coefficients) using the L1 norm penalty
and a logistic regression with elastic net regularization, combining the LASSO and ridge
regression with a ratio of 0.5 between the L1 and L2 penalties.

Considering the highly unbalanced ratio between the two examined classes, different
synthetic data generation techniques based on data oversampling, undersampling, and
a combination of over- and undersampling were applied during the model training to
manage the class unbalancing. To this end, five different approaches were examined: syn-
thetic minority oversampling technique (SMOTE), adaptive synthetic (ADASYN), SMOTE
followed by cleaning using Tomek links (SMOTE-Tomek), random undersampling (RUS),
and undersampling using the Nearmiss method (NearMiss). Additionally, a no-resampling
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choice was added as an option to the analysis pipeline. For the application of the ML
model, the current study utilized a support vector machine (SVM) with a linear kernel;
a random forest (RF); a K-nearest neighbor (KNN); a logistic regression with L2, elas-
tic net, and L1 norm penalties; and adaptive boosting (AdaBoost) using a decision tree
as the base classifier. Additional ensemble learning techniques were initiated, compris-
ing a RUSBoost (an AdaBoost coupled with a random undersampling) with a decision
tree as the base classifier, a gradient boost (XGBoost), and bagged classification trees
(BAG) integrated with resampling of the majority class (IDH-mutant). When RUSBoost
and BAG were operated, no resampling was applied. Feature-level optimization was
implemented using scikit-learn [29]; radiomics feature reduction was developed using
scikit-learn [29] and ITMO FS (https://github.com/ctlab/ITMO_FS, accessed on 24 June
2021); imbalanced-learn [30] was utilized for synthetic data generation; and packages
xgboost (https://github.com/dmlc/xgboost, accessed on 24 June 2021), scikit-learn [29],
and imbalanced-learn [30] contributed in the development of the ML models.

2.6.4. Performance Validation and Explainability of the Predictions

The ML analysis framework (Section 2.6.3) was initially applied to both the np_MRI
and p_MRI data from cohort A (exploratory set) and subsequently validated externally
using np_MRI and p_MRI data from cohorts B and C (validation set). An internal validation
according to a stratified five-fold repeated cross-validation with two hundred repeats was
conducted during the training phase using the exploratory set (step H, Figure 4). Identical
results regarding the samples of each fold were subsequently used from every possible
combination of the analysis steps in both cases (np_MRI and p_MRI). An average estimate
of Cohen’s kappa metric was then obtained at the validation phase (within the internal
validation) as a criterion to determine the highest performance among all combinations.
Cohen’s kappa was chosen as the preferable performance metric to select the optimal ML
analysis combination since it considers class unbalancing in the prediction accuracy. To
eliminate any bias during training, the feature-level standardization, radiomics feature
reduction, and synthetic data generation from Section 2.6.3 were applied exclusively at
the training phase. In all cases, the ML models defined in Section 2.6.3 were initialized
using the default parameters. For both the np_MRI and p_MRI data, the combination
that showed the highest performance with respect to the Cohen’s kappa (steps I1 and
I2 from Figure 4) was then tested in the independent test set (step J, Figure 4). Model
performance was also assessed using the F1-score, accuracy, AUC, sensitivity, specificity,
positive and negative predictive value (PPV and NPV). The IDH-wildtype was considered
as the positive class. Apart from constructing generalizable ML models, the explainability
and interpretability of their decisions are the key milestones of increased impact toward
improving the clinical translation of radiogenomics studies. To this end, the present study
developed a postprocessing phase using SHAP [31] and LIME [32] methodologies to
provide reasoning behind the IDH mutation status predictions and interpret the impact of
each radiomics feature in the model’s performance (step K, Figure 4). According to LIME,
once a model is trained on the exploratory set, feature permutation importance (reported
as mean ± SD) is then computed on the validation set by shuffling all corresponding
features individually. In our analysis, this yielded a top-down radiomics feature order
in decreasing importance, which was related to the reshuffling of each particular feature
from the ordered list. To further illustrate the interpretability of the radiomics analysis
pipeline that showed the highest predictive performance regarding the IDH status, a SHAP
explainer was designed on the exploratory set and the distribution of features’ impact on
the predictions was then calculated based on the validation set and displayed using the
SHAP summary plot.

3. Results

A multicenter radiogenomics study was conducted using imaging data that was
acquired from different vendors, who used different magnetic strengths and acquisition

https://github.com/ctlab/ITMO_FS
https://github.com/dmlc/xgboost
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protocols. Overall, cohort A included 60 males and 32 females with a mean and standard
deviation (SD) age of 57 (15.1) years, cohort B was composed of 28 males and 22 females
(age in years: mean = 58, SD = 17.1), and 9 males and 9 females belonged to cohort C
with a mean age of 55.7 years and a standard deviation equal to 15 years. No statistically
significant changes were observed between the ages of the three investigated cohorts. A
high-class imbalance of the IDH status of the patients was evident in all examined cohorts,
as depicted in Figure 5.

Figure 5. Distribution of the isocitrate dehydrogenase (IDH) status across the three examined centers.
Numbers of total IDH-mutant and IDH-wildtype statuses from each clinical center are shown in white.

Several combinations of all techniques reported in Section 2.6.3 were developed using
a total of 2499 radiomics features from cohort A and validated on cohorts B and C using
Cohen’s kappa metric. Combinations having a mean Cohen’s kappa equal to or lower than
the baseline (i.e., a zero value in the case of random model’s accuracy) were discarded from
the validation phase. In the case of the radiomics analysis on the np_MRI, the best model
training performance was obtained when the features were:

1. Normalized with “RobustScaler”;
2. Reduced to the 15 most significant features using univariate filtering according to the

Gini Index;
3. Subjected to synthetic minority oversampling based on the ADASYN;
4. Providing input to an elastic net logistic regression model, yielding a mean Cohen’s

kappa of 0.193 (SD: 0.096) using the exploratory set and 0.145 when validated externally.

The p_MRI radiomics analysis performance was found to be significantly higher,
yielding a Cohen’s kappa for the exploratory and the validation set equal to 0.303 ± 0.125
(mean ± SD) and 0.282, respectively. Among all possible combinations, the optimal p_MRI
radiomics analysis pipeline was constructed from “RobustScaler”, which is a multivariate
feature scoring criterion that is based on MIM; an ADASYN synthetic minority oversam-
pling; and a logistic regression classifier with an L2 penalty. Increased performance was
also evident on any calculated performance metric, except from the sensitivity (Table 2 and
Figure 6).

Table 2. Performance of np_MRI and p_MRI radiomics in isocitrate dehydrogenase (IDH) mutation
status prediction.

Performance Metrics
Exploratory Set Validation Set

np_MRI p_MRI np_MRI p_MRI

Cohen’s kappa 0.193 ± 0.096 0.303 ± 0.125 0.145 0.282
F1-score 0.482 ± 0.163 0.533 ± 0.164 0.415 0.474

AUC 0.618 ± 0.148 0.678 ± 0.103 0.639 0.667
Accuracy 0.587 ± 0.144 0.707 ± 0.108 0.544 0.706
Sensitivity 0.689 ± 0.208 0.611 ± 0.183 0.733 0.600
Specificity 0.547 ± 0.189 0.745 ± 0.146 0.491 0.736

PPV 0.388 ± 0.150 0.508 ± 0.196 0.290 0.391
NPV 0.823 ± 0.158 0.834 ± 0.095 0.868 0.868

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Additionally, only subtle changes were presented between the exploratory and valida-
tion performances, as illustrated by a notable overlap on their polygon areas drawn using
their corresponding radar plots (Figure 6).

Of the 2499 p_MRI-based radiomics features, 20 features were found to be significant;
all of them contributed to the prediction performance according to the L2 regularization of
the logistic regression (Figure 7).

Figure 6. From left to right: Radar plots illustrating the IDH mutation status prediction performance during the model
development (internal validation using the exploratory set) and validation (external validation set) phases from np_MRI
and p_MRI data.

Figure 7. Feature ranking of the 20 selected radiomics features after feature reduction based on the regression coefficient profiles.
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The descriptive statistics of the 20 selected features (Figure 8) depict the contribution
of solely wavelet-based radiomics features extracted from images at time point T_0.

Figure 8. Feature distributions according to the group of the calculated radiomics features.

Global model interpretability of the optimal p_MRI-based radiomics analysis pipeline
with regard to the prediction performance was obtained using LIME (Figure 9). Summary
plot of the corresponding SHAP values is shown in Figure 10.

Figure 9. A top-down radiomics feature order in decreasing importance using local interpretable
model-agnostic explanations (LIME). All radiomics features were shuffled individually and the
permutation importance (reported as mean ± SD) was computed on the external validation set.

Assessment of the methodological quality of the presented radiomics study was
conducted using the radiomics quality score (RQS), reaching a total of 14 out of 36 points
(38.9%). Details are given in Table S2.
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Figure 10. Shapley additive explanations (SHAP) summary plot. All important radiomics feature values are displayed as
dots using a pseudocoloring (blue to red), low or zero contributors are near a SHAP value of zero, a long distance from zero
denotes a higher influence of a specific feature in the prediction performance, where decreased or increased values favored
the negative (IDH-mutant) or positive (IDH-wildtype) classes, respectively.

4. Discussion

This study investigated the prognostic value of DSC–MRI radiogenomics in gliomas
regarding IDH mutation status prediction. Data from three different clinical centers (cohorts
A, B, and C) were involved in the study; ML models were developed using cohort A and
validated externally to demonstrate their generalizability on the independent cohorts B
and C.

4.1. The Role of DSC–MRI Standardization

Radiogenomics IDH mutation status prediction is a promising but also challenging
task that needs careful consideration when designing all the required steps of the analysis
workflow. When initiating a multicenter radiomics study, the lack of a direct or modeled
relationship between tissue and the MR signal intensities can yield a radiomics feature
extraction from images that varies between different vendors and acquisition protocols.
Published studies on phantoms have reported intensity-related bias that was measured to
approach 100% in quantitative (pseudo-perfusion data) phantom studies due to the inability
to correct for all image acquisition factors using postprocessing tools [33]. To address this
issue, a dynamic-based MRI standardization was performed on perfusion data (p_MRI)
obtained from T_0, T_max, and T_2 prior to radiomics and compared to the commonly
used image postprocessing techniques (np_MRI). The performance results, outlined in
the following text, showed that the radiomics from the proposed standardization method
outperformed that of commonly-used techniques.

4.2. Performance of IDH Status Prediction and Informative Radiomics Features

A total of 2499 np_MRI and p_MRI based radiomics features, in compliance with
IBSI guidelines, were calculated and subjected to the proposed analysis pipeline, reveal-
ing increased performance when using the proposed image standardization technique.
Specifically, by applying a logistic regression with an L2 norm to the selected p_MRI-based
radiomics features of the validation set, apart from the sensitivity in which a decrease
of 18.14% was evident (np_MRI: 0.733, p_MRI: 0.600), we achieved a percentage change
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increase of 94.48% in the Cohen’s kappa metric (np_MRI: 0.145, p_MRI: 0.282), 14.22% in
the F1-score (np_MRI: 0.415, p_MRI: 0.474), 4.38% in the AUC (np_MRI: 0.639, p_MRI:
0.667), 29.78% in the accuracy (np_MRI: 0.544, p_MRI: 0.706), and 49.90% in the specificity
(np_MRI: 0.491, p_MRI: 0.736). Especially in the case of specificity, the np_MRI-based
radiomics performance in the validation phase was lower than the baseline of 50%.

Feature selection on p_MRI data revealed a vital role of time point T_0 when making
IDH status predictions since all 20 significant prognostic factors were calculated from im-
ages at that time point of the perfusion curve. This observation is in accordance with recent
studies highlighting the importance of the initial components of the signal time–intensity
curve for IDH status determination [34]. Signal deviation in these regions correlates to
predictable vascularity phenotypes of IDH-mutant and IDH-wildtype tumors [35], as
determined by IDH-specific vascular gene signatures [36]. Specifically, Choi et al. [34]
demonstrated that the curve components between T_0 and T_max performed best for the
identification of IDH-mutant versus IDH-wildtype gliomas by applying an explainable
recurrent neural network to attribute attention weights to specific parts of the T2* signal
time–intensity curve. IDH-wildtype tumors were characterized by a steeper downslope
and larger signal drop in contrast to their IDH-mutant counterparts, which was compatible
with the increased tumor angiogenesis in this group [22]. In the same study, the upslope of
the signal drop (between T_max and T_2) and post-bolus plateau (beyond T_2) revealed a
less steep and attenuated signal recovery in IDH-wildtype tumors, which likely reflected
the increased permeability due to immature and leaky tumor vessels [22,34]. The latter
observation was less apparent in our analysis, potentially due to the higher percentage
of IDH-wildtype tumors in our patient population, which commonly confounds relevant
studies and is in accordance with tumor epidemiology [1]. Such minuscule time-dependent
differentiating traits between the two tumor groups regarding MR perfusion are potentially
enhanced by MR data decomposition based on wavelet transform.

Another important observation was that all 20 significant predictors were calculated
from decomposed MRI data after the wavelet transform. The inclusion of multi-resolution
radiomics introduces band-pass frequency filtering encompassing smooth and detailed
parts of the images. This result indicates that wavelet image decomposition enhanced the
discriminatory power of radiomics, possibly due to the noise suppression and identification
of frequency bands that better capture the actual imaging phenotype variability within the
heterogeneous dataset. Our results confirmed the scale-dependent nature of texture and
highlight its importance in multicenter studies, even if image standardization is included.
Of the 20 selected wavelet-based features, 5 were from the first-order group and 15 were
texture features (2 GLCM, 6 GLDM, 3 GLRLM, 2 GLSZM, and 2 NGTDM). Apparently,
no shape descriptors were found to be important in the prediction. These results are
in accordance with recent literature, highlighting the strong impact of the texture-based
features in glioma IDH mutation status prediction [12]. According to the L2 logistic
regression coefficient profiles, the feature ranking of these 20 radiomics features during
the model development identified a significant predictive role of texture features that are
sensitive to gray level variability, texture complexity, and non-uniformity. The most highly
ranked radiomics features were found to be “dependence count variance” from GLDM,
“difference entropy” from GLCM, and first-order “variance”.

4.3. Radiomics-Based ML Models’ Explainability

In light of the above observation, we applied model explainability mechanisms on the
external validation phase using LIME and SHAP to evaluate and interpret the influence
of the selected radiomics features in the radiomics analysis result. LIME verified the
aforementioned results with a slight change in the features’ importance ranking, again with
“dependence count variance” as the radiomics feature that most affected the predictive
performance. Strongly associated with LIME, SHAP summary plot results indicated, among
others, “dependence count variance” from GLDM, “difference entropy” from GLCM, and
first-order “variance” as the strongest indicators of IDH status mutation prediction. The
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texture feature “dependence count variance” is sensitive to variability in voxel group sizes
of similar intensity, implying increased complexity of the texture as its value increases,
“difference entropy” is a texture disorder parameter that is analogous to the increase in
the VOI’s signal intensity distribution differences, and “variance” reflects how gray levels
are spread out about the mean. The first-order radiomic feature “robust mean absolute
deviation” was also an important factor; it is associated with an increased contrast of
high and low gray values between the 10th and 90th percentiles of the glioma histogram
when the value increases. These characteristics of the dominant predictive radiomics can
be explained using the more heterogeneous profile/nature of the IDH-wildtype glioma
cases [22,34]. An analogous pattern was illustrated in the SHAP summary plot, where
increased values of the top four features favored the IDH-wildtype mutation status (positive
class) against the IDH-mutant status (negative class).

4.4. Limitations and Future Work

Several limitations were identified in the study, including the lack of radiomics features
robustness assessment using a test–retest study. This is an important part of the radiomics
quality score (RQS) questionnaire; however, this was not feasible due to the dynamic nature
of the acquired data and the retrospective collection from all centers. Another important
issue is the limited number of time points that were used to select data from the perfusion
curve. Extending our current study, future work will focus on investigating the added
value that might arise when changes in radiomics features between specific time points
(i.e., similar to delta-radiomics) will be included in the analysis pipeline. Additionally, the
next step will be to involve both radiomics features extracted from raw DSC–MRI data and
the derived parametric maps (e.g., cerebral blood flow). A comparative study between the
proposed dynamic-based standardization technique and efficient feature-based methods
(i.e., radiomics features harmonization using ComBat [37]) will be an important task in our
future work. Despite the promising results, the high imbalance favoring the IDH status
mutation in the examined cohorts, and hence a small number of IDH-wildtype patients,
both for the developing and validating the proposed radiomics analysis pipeline, was a
major limitation of this study, calling for extended studies with more participating centers.

5. Conclusions

In conclusion, the proposed study highlighted the impact of DSC–MRI radiogenomics
in gliomas for IDH status subtyping. Increased accuracy was observed when dynamic-
based standardization of the acquired imaging data was performed prior to radiomics and
the generalizability of the proposed radiomics analysis was confirmed using two inde-
pendent validation sets. Model explainability mechanisms discovered intuitive patterns
between the IDH mutation status and radiomics features, which enhances the potential
clinical value of the proposed DSC–MRI-based radiogenomics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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