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Landscape change and altered host abundance are major drivers of zoonotic

pathogen emergence. Conservation and biodiversity management of

landscapes and vertebrate communities can have secondary effects on

vector-borne pathogen transmission that are important to assess. Here we

review the potential implications of these activities on the risk of Lyme

borreliosis in the United Kingdom. Conservation management activities

include woodland expansion, management and restoration, deer manage-

ment, urban greening and the release and culling of non-native species.

Available evidence suggests that increasing woodland extent, implementing

biodiversity policies that encourage ecotonal habitat and urban greening can

increase the risk of Lyme borreliosis by increasing suitable habitat for hosts

and the tick vectors. However, this can depend on whether deer population

management is carried out as part of these conservation activities. Exclusion

fencing or culling deer to low densities can decrease tick abundance and

Lyme borreliosis risk. As management actions often constitute large-scale

perturbation experiments, these hold great potential to understand under-

lying drivers of tick and pathogen dynamics. We recommend integrating

monitoring of ticks and the risk of tick-borne pathogens with conservation

management activities. This would help fill knowledge gaps and the

production of best practice guidelines to reduce risks.

This article is part of the themed issue ‘Conservation, biodiversity and

infectious disease: scientific evidence and policy implications’.
1. Introduction
The management of landscapes and habitats for conservation is often driven by

policies aiming to enhance biodiversity, to improve ecosystem services or to

manage invasive species. These policy-driven land management changes

include native woodland regeneration and restoration to optimize biodiversity,

vegetation management, urban greening and the management of invasive or

pest species. However, there may be unintended consequences of these man-

agement actions, such as effects on infectious-disease risk due to changes in

wild vertebrate and vector population distribution, abundance and movement

patterns [1,2]. As most significant human and livestock pathogens can infect

many host species, changes in the host community composition can affect the
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Figure 1. Overview figure of selected conservation management activities including invasive species management, woodland regeneration, urban greening and deer
management that can affect vertebrate host communities, tick populations, pathogen transmission and the risk of Lyme borreliosis (& Diogo Guerra).
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persistence and prevalence of these pathogens [3–6]. This is

because species within a host community contribute differ-

ently to pathogen dynamics due to differences in their

abundance, infection prevalence and infectiousness [7].

In recent decades, there has been a global increase in

the incidence of many emerging and endemic vector-borne dis-

eases in humans [8,9]. Although some important vector-borne

diseases such as malaria and dengue fever are maintained in a

human-vector cycle, most vector-borne zoonotic pathogens are

maintained by vectors and multiple wild vertebrate hosts, with

humans acting as dead-end hosts [10]. Shifts in land use, altera-

tions to host populations and climate change have been

identified as the main drivers of endemic vector-borne patho-

gen emergence, which can result in invasion of the vector-

borne pathogen into new areas, or cause increased intensity

of transmission within enzootic areas [1,8,11]. Therefore, con-

servation management activities that alter the land use or

control populations of invasive or pest species are likely to

result in changes to the distribution and transmission

dynamics of vector-borne pathogens. This is due to effects on

vertebrate host communities, which provide blood meals for

vectors, and effects on the abiotic conditions for vector devel-

opment and off-host survival. For example, increased deer

populations in Europe have been linked to rising numbers of

Ixodes ricinus ticks, which transmit a number of pathogens

important for human health and livestock [11]. Management

of deer populations in areas where they are highly abundant

is often necessary as part of woodland regeneration and

biodiversity projects, with consequences for ecological

communities, tick populations and pathogen transmission

[12,13] (see §2).

Lyme borreliosis is among the most important vector-

borne zoonoses in the Northern hemisphere and has increased

in distribution and incidence across large parts of North

America and the higher altitudes and latitudes of Europe,

including the United Kingdom [14,15]. Transmitted by

Ixodid ticks, the causative agents of Lyme borreliosis are

spirochaete bacteria belonging to the Borrelia burgdorferi sensu
lato species complex. There are at least 19 genospecies of

B. burgdorferi s.l. in this group, some of which are pathogenic

to humans [16,17]. In Western Europe, I. ricinus is the primary

vector and is widely distributed across a range of ecoregions

and habitats, and feeds on many species of birds, mammals

and reptiles [18]. In the United Kingdom, four genospecies of

B. burgdorferi s.l. have been detected in questing I. ricinus
ticks [19–21]. These are small-mammal–associated B. afzelii,
bird-associated B. garinii, B. valaisiana and the generalist genos-

pecies B. burgdorferi sensu stricto which can be transmitted by

Ixodid vectors feeding on competent reservoir hosts such as

birds and small mammals [22–26]. The main route of trans-

mission of B. burgdorferi s.l. is considered to be via transtadial

transmission by ticks feeding on infected hosts that maintain

infection through to the next life stage. Co-feeding and transo-

varial transmission can contribute to transmission in some

circumstances [27–29]. The environmental risk to humans

from Lyme borreliosis is defined as the density of infected

tick vectors in the environment. The density of infected

nymphs is usually focused on as the most abundant tick

life-stage carrying the pathogen and is referred to as Lyme

borreliosis risk throughout the rest of this paper. The prob-

ability of human exposure to these infected ticks will depend

on human behaviour and how people interact with the envi-

ronment. Therefore, awareness of tick-borne disease risk as

well as mitigation strategies such as animal and habitat

management can help to reduce human exposure to ticks.

Here, we consider the effect of common conservation

management practices on the environmental risk of Lyme

borreliosis in the UK. We identify four relevant areas of conser-

vation activities: deer management, woodland management

and regeneration, control of invasive species, and urban green-

ing (figure 1). We review the evidence that these management

activities have on vector populations, host communities, patho-

gen transmission and the environmental risk of B. burgdorferi
s.l. and discuss knowledge gaps and policy implications

(table 1). While we focus on data and examples from the UK

and continental Europe, the ecological mechanisms we discuss



Table 1. Summary of the potential effects of different conservation management actions on vertebrate communities, Ixodes ricinus abundance and the risk of
Lyme borreliosis.

type of
conservation
management effect on vertebrate community? effect on tick abundance?

effect on risk of Lyme
borreliosis?
(density of infected nymphs)

deer management

(fencing or

culling)

deer management can result in

reduced deer abundance.

Subsequent increases in vegetation

from reduced browsing by deer can

result in increased densities of

competent small mammal hosts

[12,30]

tick abundance would be expected to

be reduced in the absence of

alternate hosts for adult ticks [12]

increases in competent small

mammal hosts may lead to an

increased prevalence of infection,

but reduced deer will reduce

overall tick density, therefore the

density of infected ticks (risk) will

likely fall (assuming there are few

alternative hosts for adult ticks)

woodland

regeneration

an increase in populations of small

mammals and birds (competent

hosts) is predicted based on

habitat-specific densities [31 – 33].

Deer populations (incompetent

hosts) may increase if not

controlled or excluded by fencing

[12,34]

if deer are controlled to aid tree

growth, ticks may be reduced or,

if not, ticks may increase due to

more favourable abiotic conditions

for tick survival

the prevalence of infection is likely

to increase, but the density of

infected ticks may be increased or

decreased depending on whether

deer management is carried out

invasive species

management

culling of invasive grey squirrels can

result in decreased populations of

this host. Populations of red

squirrels may increase where

present [35], populations of other

competent hosts such as small

mammals and birds may also

increase in response

invasive species management is likely

to have a limited effect in areas

with tick reproduction hosts (e.g.

deer)

unknown, but may lead to a

decreased risk in the short term.

Longer-term changes are

dependent on the response of

other competent small-mammal

and bird populations to the

removal of grey squirrels

urban greening increased urban greenspace and

connectivity will increase the

abundance of both competent and

incompetent vertebrate hosts in

urban environments

a range of vertebrates support ticks

and if larger animals (e.g. deer)

are able to access urban

greenspace then ticks can

establish. The role of cats and

dogs as tick hosts should be

investigated [36]

although tick abundance may be

lower in urban greenspace

compared to rural areas, there is

evidence that pathogen

prevalence may be higher in

those ticks (given that there is

likely to be less of a dilution

effect from large mammals) [37].

Also human exposure is likely to

be higher in urban areas
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are likely to be relevant to any geographical area affected by

Lyme borreliosis.
2. Deer management
Conservation objectives often require the close management of

large herbivores in order to improve habitat quality. Prime

examples include woodland regeneration and improvement

projects for biodiversity enhancement, which require manage-

ment of deer to avoid damage of young trees and vegetation.

Reducing grazing or browsing by deer can be achieved by
exclusion fencing or culling [12], figure 2. As deer are important

hosts of Ixodid ticks in many areas, changes in deer density can

affect tick abundance with implications for the transmission of

tick-borne pathogens [12,38].

Deer can feed large numbers of adult female ticks, which

then lay eggs and produce the next generation of immature

ticks, and deer are thus termed ‘tick reproduction hosts’ [39].

A great many studies have shown that deer can be instrumental

in maintaining tick populations, such that areas with more deer

also have more ticks [12,19,40–51] although there is some

uncertainty in the precise relationship between deer density

and tick density [52]. Some of these studies specifically tested



Figure 2. Woodland regeneration projects often incorporate exclusion fences for deer to reduce browsing (& Caroline Millins).
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the impact of deer management methods and, when deer num-

bers were reduced through culling or fencing, there were

dramatic declines in the tick population. For example, a

study examining I. ricinus tick density in response to deer man-

agement methods reported reductions of 73% on heather

moorland and 94% in woodlands due to culling, and

86–88% due to fencing moorlands and 96% reductions due

to fencing woodlands [12].

However, as deer are considered incompetent reservoir

hosts for B. burgdorferi s.l. and do not infect feeding ticks

[53–55], but see [56,57], increasing deer densities might not

necessarily result in a higher risk of Lyme borreliosis.

Mathematical models of tick-borne pathogens have predicted

a non-linear relationship between deer density and the preva-

lence of tick-borne pathogens [58–60]. According to these

models, initial increases in deer density cause increased patho-

gen prevalence, because more adult ticks feed successfully.

Ticks in their early life stages tend to feed preferentially on

small hosts that are often competent to transmit the pathogen.

However, at very high deer densities, a reduction in prevalence

is predicted because more and more immature ticks feed on

deer that are not competent to transmit, known as a ‘dilution

effect’ [38,61]. A dilution effect is defined as occurring when

the addition of one or more host species to a community

reduces the prevalence of a pathogen and decreases the

likelihood of pathogen persistence [62].

Consistent with these predictions, a large empirical study

in Italy found an increase in the prevalence of B. burgdorferi
s.l. in ticks with increasing deer density up to a threshold

of 15 deer/100 hectares (ha), after which prevalence

decreased [43]. Due to positive effects of deer density on

tick density, the risk of Lyme borreliosis (density of infected

nymphs) continued to increase up to 60 deer/100 ha before

decreasing slightly [43]. Other empirical studies have

reported variable associations between deer density and

B. burgdorferi s.l. prevalence, from positive [19] to negative

[41,63] or neutral [51,64–66]. These inconsistent effects

might be due to sampling that usually only covers part of the

range of deer and competent reservoir host densities, which

limits the chance of detecting non-linear relationships, as well

as local variation in climatic factors affecting vector popu-

lations and host–vector interactions. Despite the variable
effects of deer density on B. burgdorferi s.l. prevalence, it

remains possible that deer density may be more consistently

linked to the risk of Lyme borreliosis, apart from at exception-

ally high deer densities when a dilution effect may occur. Some

studies have reported positive effects of deer density on Lyme

borreliosis risk [43,51,67], while other studies have found no

significant effect [65,66,68]. Reported differences among

studies probably relate to variation in the density of

competent reservoir hosts between studies.

While reducing deer densities by fencing or culling will

almost certainly result in dramatically decreased tick popu-

lations when there are no suitable alternative hosts, and

may decrease the risk of Lyme, there are several important

issues concerning both fencing and intensive culling. These

include expense, ethics, public opinion and conflicting land

management objectives. For example roe deer (Capreolus
capreolus) are increasingly present in urban green space and

the peri-urban fringe and act as important tick hosts. Public

opinion and practical concerns may make it extremely diffi-

cult to manage urban deer populations by culling or

fencing. Furthermore, deer move within urban areas by

moving along green corridors, which can include peri-dom-

estic habitats such as gardens. Habituation of urban deer

populations to humans and attractive feeding areas within

these areas can increase tick densities close to human dwell-

ings and the risk of human exposure to ticks. Culling of deer

to reduce the population density is only likely to be effective

when conducted at the landscape scale, which may require

cooperation between private and public land managers [69].

As deer are iconic animals with cultural value for tourism

and hunting, intensive culls are not always desirable [12].

Managing deer populations where alternate hosts are pre-

sent is likely to be less successful in reducing tick numbers.

Livestock can act as hosts for all life stages of I. ricinus, and

other species such as mountain hares (Lepus timidus) can main-

tain I. ricinus populations by feeding all three tick life-stages in

the absence of larger vertebrates [27,70–72]. It may be difficult

to maintain fenced exclosures to prevent all deer from entering,

and may not be feasible to fence large areas. Fencing can be

unsightly and unpopular with countryside users and can pose

risks to birds of conservation importance such as capercaillie

(Tetrao urogallus) and black grouse (Tetrao tetrix) [73].
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There is also evidence that fencing can lead to shifts in host

communities, as seen with mountain hare (Lepus timidus) and

small mammal densities increasing on the inside of fenced

areas [12,30]. Such increases in competent host densities in

response to changes in vegetation could, in principle, result

in a higher prevalence of B. burgdorferi s.l. inside fenced

areas. Studies that monitor changes in small mammal commu-

nities and tick infestations as well as questing tick abundance

and B. burgdorferi s.l. prevalence in response to deer density

control are therefore needed to assess the effect of fencing on

Lyme borreliosis risk.
Phil.Trans.R.Soc.B
372:20160123
3. Woodland regeneration and management
Many parts of Europe are currently experiencing major land

use change due to woodland expansion. For Europe as a

whole, there was an increase in forested land cover of more

than 600 000 km2 between 1993 and 2006 [74]. While some

woodland expansion is unintended due to reduced pasture

management, increasing woodland cover is currently being

encouraged under international and national policies

[74–77]. Implementation of changes to land services is through

existing policies including the European Union (EU) Biodiver-

sity Action Plan, Article 10 of the Habitats Directive and

the Strategic Environmental Assessment and Environmental

Impact Assessment Directives [74]. Though, as the UK voted

to leave the EU in 2016, EU policies may soon not apply.

The primary aim of these policies is to improve ecosystem

services for climate change mitigation and to enhance biodi-

versity, water quality and human well-being. In the UK,

forested land cover is currently much reduced from historic

levels and is low in comparison with other countries globally

and across Europe [75,78]. Government policy in Scotland is

to increase woodland cover from 18% to 25% by 2050, requir-

ing the creation of 10–15 000 hectares of woodland a year,

while in England a target has been set to increase woodland

cover from 9% to 12% by 2060 [76,78,79]. A proportion of this

new woodland is planned to be close to urban areas to facili-

tate people’s access and enjoyment of the outdoors [75], see

§5 of this paper.

In addition to increased forest cover, there is a drive to

improve woodland quality in terms of biodiversity potential

and aesthetics for recreational purposes [80,81]. Existing

semi-natural broadleaf woodlands, which are important for

biodiversity and conservation, are often highly fragmented

and embedded in a landscape of agriculture, commercial con-

iferous plantations and moorland [80,82]. To aid biodiversity,

targets have been set to increase the area of semi-natural

mixed/broadleaf woodland and to reduce fragmentation by

developing ecologically functional forest habitat networks

that facilitate the colonization and movement of animals

and plants [77,83]. Re-wilding initiatives also aim to restore

habitats, and native broadleaf woodland regeneration can

form part of these projects. As a consequence, semi-natural

mixed/broadleaf woodland is now the most commonly

planted woodland type. These changes in woodland cover,

type and connectivity are predicted to result in changes to

host communities, tick populations and Lyme borreliosis risk.

As well as ecosystem-service benefits from increased wood-

land, there can be disservices such as increased numbers of

pests, such as insects, which are damaging for agriculture or

disease-transmitting vectors [78]. Although I. ricinus ticks can
be found in meadows, open hillside and heather moorland,

the highest densities of I. ricinus are typically found in wood-

land. This is due to more favourable abiotic conditions that

promote increased tick activity and survival, and due to

increased densities of hosts [12,13,27,48,84]. Desiccation is a

significant risk to I. ricinus survival as the majority of the life

cycle is spent in the environment. The saturation deficit, a pro-

duct of temperature and humidity and a measure of the drying

power of the environment, affects the likelihood of I. ricinus
host seeking or questing [85]. Decaying leaf litter, ground veg-

etation and canopy cover in woodlands tend to provide more

favourable microclimatic conditions than surrounding grass-

land, moorland or farmland, with reduced saturation deficit

allowing more frequent and prolonged questing activity [13].

Importantly, there are also generally higher densities of hosts

(especially birds, rodents and roe deer) in woodlands in com-

parison to moorland and grassland habitats, which increases

the probability of ticks obtaining a blood meal.

Based on reported habitat-specific densities, reservoir host

densities for B. burgdorferi s.l. such as rodents, shrews and birds

are predicted to increase as open habitats are converted into

woodland [31–33]. This could lead to an increased prevalence

of B. burgdorferi s.l. in questing nymphs, and, unless tick control

measures are put in place, increased densities of infected ticks

and an increased risk of Lyme borreliosis. Indeed, a study from

central France found a higher prevalence of B. burgdorferi s.l.

in I. ricinus collected from woodland habitat compared to

adjacent pasture [86]. Similarly, a study from Scotland found

densities of infected I. ricinus nymphs (a measure of the risk

of Lyme borreliosis) to be five times higher in woodland

compared to adjacent open habitats [34].

There is some evidence that the type of woodland may be

important for the risk of Lyme borreliosis. In New York State

a positive association between B. burgdorferi s.s. infection in

small mammals and woodlands with lower canopy height

and increased amounts of denser ground vegetation was

detected [87]. An association between a higher prevalence of

B. burgdorferi s.l. in questing ticks from semi-natural mixed/

broadleaved woodlands compared to coniferous plantation

was found in surveys from northern England and Scotland

[19,20]. This was suggested to be due to higher densities of

bird and rodent transmission hosts in semi-natural woodlands

compared to plantations. However, a third study from

Scotland did not find a difference in prevalence of B. burgdorferi
s.l. or risk of Lyme borreliosis in semi-natural mixed/broadleaf

woodland compared to coniferous plantations, indicating the

difficulty in generalizing between broad habitat types [66].

The distribution of woodlands across the landscape, including

levels of connectivity, fragmentation and patch size, will affect

the movement of animals, tick abundance and persistence

and risk from tick-borne pathogens. Increasing woodland

fragmentation has been found by some researchers to be associ-

ated with increased B. burgdorferi s.l. prevalence and risk [88].

This may be caused by ‘edge effects’ and an increased pro-

portion of suitable ecotonal habitat leading to higher

densities of small mammals [86,89], increased densities of roe

deer, which can maintain tick populations, and suitable

humid microclimatic conditions, which are important for tick

survival. Similar ecotonal habitat is found in woodland rides

(linear non-wooded herbaceous habitat alongside tracks in

woodlands) [13]. Management of woodland rides to maximize

biodiversity by reducing scrub encroachment and encouraging

wide ‘sunny’ rides increases browsing by deer and provides
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Figure 3. Maps of red (Sciurus vulgaris) (a) and grey squirrel (Sciurus carolinensis) (b) distribution in the United Kingdom in 1945 and 2010. (Distribution maps &
Red Squirrel Survival Trust, red squirrel photograph & Steve Ransome, grey squirrel photograph & Aileen Adam).
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habitat suitable for small mammal reservoir hosts. This combi-

nation of ecological factors could result in increased densities of

infected ticks [13]. Therefore, the creation of additional small

woodlands and management for biodiversity may lead to

higher densities of infected ticks and an increased risk of

Lyme borreliosis particularly within ecotonal habitat at

woodland edges and along woodland rides. Incorporation of

tick-targeted management such as seasonal mowing and

management of mulch/mat could be considered to mitigate

this increase [13].

The spatial arrangement and connectivity of woodland

patches is likely to affect the risk of Lyme borreliosis due to

effects on host movement patterns. Isolated and fragmented

small forest patches, such as those surrounded by agricultural

land in France, or wooded islands within a large water body

in Scotland, had a lower risk of Lyme borreliosis compared to

nearby continuous forest [90,91]. This is in contrast to reports

of increased Lyme borreliosis risk with increased forest frag-

mentation and smaller forest patch size in North America

[88]. In North America, increased Lyme borreliosis risk was

associated with decreased mammal-species diversity in smal-

ler forest patches and increased densities of a competent

reservoir host, the white footed mouse (Peromyscus leucopus).

Inclusion of the surrounding landscape in a study of the

effect of habitat fragmentation on I. ricinus abundance in

northern Spain found that ‘stepping stone’ patches of habitat

that facilitate host movement had the highest tick density,

while patches of suitable but isolated habitat away from

main movement networks had lower tick density [92]. Land-

scape structure and fragmentation of woodland may also affect

the genospecies composition of B. burgdorferi s.l. This is of public

health significance as different genospecies can have different

clinical presentations in humans [93,94]. In a study of small

wooded islands in a large lake in Scotland, only bird-associated

and generalist genospecies were present in fragmented

woodland habitat on islands, while both mammal- and bird-

associated genospecies were present nearby on the mainland

[91]. Lack of persistence of mammal-associated B. afzelii on

islands may be associated with rodent populations falling

below a critical community size during troughs in population

cycles, and restricted host movements between islands [91,95].

Natural regeneration of woodlands is often limited by graz-

ing herbivores, particularly deer [77]. It is therefore generally

essential to cull deer or exclude them by fencing in order to
protect new saplings for the creation of woodlands, as

described in §2 of this paper (figure 2). If large herbivores are

successfully excluded from regenerating woodlands, this

should mitigate the otherwise predicted increase in tick abun-

dance and the risk of Lyme borreliosis. Increasing woodland

cover without long-term strategies for deer management

could lead to an increased usage of woodlands by deer,

increased tick populations and elevated Lyme borreliosis risk.
4. Invasive-species management
Introduced and invasive species are a widespread challenge in

natural-resource management and can affect biodiversity, eco-

system function and human health [96]. Negative effects of

these species on native communities can involve predation,

direct competition and the introduction of novel parasites

[2,97]. In addition, introduced species can act as hosts for ende-

mic pathogens and change the transmission dynamics and

infection risk for native species and humans [2]. For example,

Siberian chipmunks (Tamias sibiricus barberi) introduced to

France have been found to be infected with multiple species of

B. burgdorferi s.l., to harbour more ticks and to contribute more

to the local risk of Lyme borreliosis than native rodents

[98–100]. The North American grey squirrel (Sciurus carolinensis)
is an invasive species of major conservation concern in the UK.

Following introduction to a small number of sites in the late

19th and early 20th century, this species has invaded large

parts of the UK, and now has an estimated population of over

two million [31,101] (figure 3). Introduced grey squirrels in the

UK thrive in urban parks and gardens as well as rural wood-

lands [101]. Their introduction has coincided with the decline

of the formerly widespread native red squirrel (S. vulgaris; see

figure 3)—probably the result of direct and/or apparent compe-

tition; grey squirrels are asymptomatic carriers of the squirrelpox

virus, which is highly pathogenic to red squirrels [97,102–104].

As a consequence, plans for red squirrel conservation rely on

halting the spread and reducing the range of grey squirrels

through culling. These control efforts are concentrated on

areas where the red squirrel is still present, such as large parts

of Scotland (figure 3), and have led to recovery of red squirrels

in some areas [35]. Targeted culls are also carried out in many

other parts of the UK to protect to woodlands, since grey squir-

rels cause significant damage to woodlands by stripping bark
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from young trees [101]. This can affect broadleaf/semi-natural

woodlands planted for conservation and biodiversity as well

as economically important conifer plantations.

The effect of removal of grey squirrels on Lyme borreliosis

risk will depend on their relative contribution to pathogen

transmission and the effect on the host community competence

following their removal, including changes in other reservoir

host species densities. Grey squirrels in the UK have been

found to carry relatively high numbers of immature I. ricinus,
they are commonly infected with B. burgdorferi s.l., and infected

individuals are able to transmit the pathogen to feeding larvae

[105–107]. In Scotland, grey squirrels have been found to be

infected with all genospecies found in questing ticks, and

most commonly with B. garinii, a genospecies normally associ-

ated with bird hosts [107]. In addition, this study found that

B. burgdorferi s.l. prevalence in grey squirrels rose and fell

seasonally with changes in tick activity, indicating that infec-

tion in grey squirrels might be relatively short-lived [107].

Overall, infection patterns in invasive grey squirrels suggest

that the species might be a spill-over rather than a maintenance

host for B. burgdorferi s.l. [107].

While our current understanding of the role of grey squir-

rels in Lyme borreliosis epidemiology is still incomplete,

the information available indicates that the removal of grey

squirrels by itself could result in a reduction in Lyme borre-

liosis risk, as they host immature ticks and can transmit

locally circulating strains of B. burgdorferi s.l. [105–107]. How-

ever, further studies are needed in particular focusing on the

survival of ticks fed on grey squirrels compared to native

hosts, and to measure the transmission competence of grey

squirrels for different B. burgdorferi genospecies. In the long

term, effects of grey squirrel removal will depend on

the response of the host community, particularly other reser-

voir hosts, including red squirrels, small mammals and

songbirds. Several studies have associated red squirrels

with B. burgdorferi s.s., and it is possible that the prevalence

of this genospecies could rise in local areas where popu-

lations of red squirrels increase [108–110]. There is some

evidence that grey squirrels may affect populations of song-

birds and small mammals [111], which are competent hosts

for B. garinii and B. afzelii, respectively, so the transmission

dynamics of these genospecies could also change. Dedicated

studies to determine the effects of grey squirrel removal on

tick abundance and B. burgdorferi s.l. prevalence are clearly

needed to better understand and predict the consequences

of grey squirrel culling management decisions. As B. burgdor-
feri s.l. strains detected in grey squirrels may reflect the locally

circulating strains in questing ticks, this species may be useful

as a sentinel for public health surveillance purposes [107].

Studies comparing strains in grey squirrels and in ticks at a

finer scale within local woodland areas would be of great

interest to investigate their usefulness as sentinels further.

While grey squirrels represent the most obvious example

for a potential link between invasive species management

and the risk of Lyme borreliosis in the UK, such a link might

also exist for other non-native species. For some, the effect

could be negligible. Sika (Cervus nippon) and fallow deer

(Dama dama) for example are thought to be equally non-compe-

tent to transmit B. burgdorferi s.l. and occur at similar densities

as native deer species, so their role in Lyme borreliosis epide-

miology is likely to be similar. Wild boars (Sus scrofa) have

been accidentally re-introduced to a few places in England

and can host I. ricinus [112], though their role as reservoir
hosts is uncertain. In contrast, in another introduced species

the ring-necked pheasant (Phasianus colchicus), high tick bur-

dens, B. burgdorferi s.l. infection and transmission of B. garinii
and B. valaisiana to feeding immature I. ricinus have been

demonstrated [22,25,106,113]. Over 20 million pheasants are

released for hunting each year in the UK [114]. This raises

questions about the effect of management of host densities

on the risk of Lyme borreliosis, but with pheasants being a

popular and economically important game bird rather than

a designated pest species as for grey squirrels.
5. Urban greening
There are several drivers for urban greening, including cli-

mate change mitigation to keep cities cooler, and peri-

urban woodland regeneration and restoration projects for

human well-being and biodiversity. Encroachment of towns

and cities into woodland areas and increasing urban and

peri-urban greenspace also increase the likelihood of

human–tick contact and exposure to tick-borne pathogens.

A recent review of the likely impacts of climate change on

vector-borne disease in the UK has raised concerns over the

possible indirect effects on vector-borne disease systems via

climate change mitigation [9]. In line with these predictions,

a tick surveillance scheme run by Public Health England

has found increased reports of ticks acquired in urban areas

(Hansford K, Medlock J. 2016 personal communication).

This could suggest that like other urban areas in Europe,

similar UK habitats may also be suitable for ticks and may

therefore pose a hazard to humans from tick-borne diseases.

For I. ricinus to survive in urban areas, it needs the same

ecological and environmental requirements that it has in the

countryside; having access to suitable vegetation and animal

hosts. The requirement for low saturation deficit (including a

high relative humidity of over 80%) to reduce desiccation-

associated mortality [85] restricts I. ricinus to urban parks,

forest patches and gardens. Urban areas can provide a

mosaic of ecotonal habitats, with areas of woodland, hedges,

grasslands managed as meadows for flowers and insects,

and parks all in close proximity. In some cases, expansion of

towns has brought ancient woodland, and more traditional

tick habitat, closer to the urban environment, with some

cities engulfing woodland within its limits. Urban areas are

home to many wildlife tick hosts including increasing numbers

of urban deer and red foxes (Vulpes vulpes) [115,116], but also

dogs and cats which can provide an abundant host for the

nymphal and adult tick stages [36]. The proportion of ticks

feeding on dogs and cats which are able to return to habitat

that could support their development is unknown; however,

it is likely that some engorged ticks will find suitable habitat

to develop a subsequent generation. Dogs and cats may also

carry ticks into human homes and increase human–tick

exposure. Higher temperatures in urban areas compared to

surrounding rural areas may also affect tick development

rates [117,118] and tick–host interactions.

Like many organisms, ticks also benefit from habitat con-

nectivity, and urban areas with well-connected habitats via

green corridors would probably support more ticks. Also,

urban greenspace on the margins of towns and cities, with

direct connectivity to the countryside, may also be signifi-

cantly more suitable for tick survival than fragmented

habitats. These connected spaces are also used by members
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of the public (walking or walking dogs) to navigate through

urban areas, providing opportunities for exposure to ticks

and potentially the movement of ticks between fragmented

habitat on canine hosts. Urban tick densities are likely to be

lower than those in the countryside, due to lower host den-

sity, but human exposure is likely to be much higher. The

latter factor is difficult to quantify, but it is conceivable that

low tick densities in a publicly accessible site will present a

greater risk to human health than high tick densities in a

remote woodland [37,119–121]. Behavioural research

directed towards understanding the probabilities of

human–tick contact in different environments is needed;

human disease risk cannot be estimated with any accuracy

with data relating to the environmental risk alone (i.e. density

of infected nymphs).

The first report indicating a risk of Lyme borreliosis in

urban green space in the UK identified a clinical case of

B. burgdorferi s.l. infection in a dog that had visited Richmond

and Bushy Park in London in 1988, and testing of questing

ticks from the parks found a prevalence of B. burgdorferi s.l.

of 8% [122]. Serological evidence of B. burgdorferi s.l. exposure

was later detected in park workers [123]. Many further

studies on B. burgdorferi s.l. prevalence in ticks have included

Richmond Park as a site of interest [21,124–126], but this

does not represent a typical urban area and its large popu-

lation of red deer contribute significantly to tick survival.

More recent research in cities in Southern England have

investigated tick density and the prevalence of B. burgdorferi
s.l. in more typical urban greenspace such as small parks,

vegetated pathways, housing estates bordering woodland,

urban grasslands managed as meadows, as well as wood-

lands within urban settings. Higher tick densities were

found in urban woodlands or localities (e.g. parks, grass-

lands) adjacent to woodland, particularly on the urban

fringe. Seasonal variation in B. burgdorferi s.l. prevalence

and tick densities was found and high B. burgdorferi s.l.

prevalence rates of up to 30% were detected in some of

these habitats [37] compared to a mean of 7.5% in woodland

habitat from outside urban areas in England [20]. Early find-

ings suggest that the presence and prevalence of B. burgdorferi
s.l. infected ticks across tick-infested habitats are hetero-

geneous, lending strength to the importance of connectivity

in determining B. burgdorferi s.l. prevalence as well as tick

density. Differences in habitat connectivity could impact the

ability for larger animals (e.g. deer) to access urban habitats,

thus increasing tick densities, but possibly reducing B. burg-
dorferi s.l. prevalence. There is also evidence from across

Europe that urban habitats support ticks and associated

tick-borne pathogens [127–129], with various studies com-

paring tick abundance and B. burgdorferi s.l. prevalence in

both rural and urban areas [130–135], and others looking at

variation across different urban green spaces [119,127,

132,135–137].

For increasing parts of southern England at least, ticks

appear to be emerging as an urban issue (Medlock J, Hans-

ford K. 2016 personal communication), and owing to the

complex ecology of B. burgdorferi s.l., the hazard of Lyme bor-

reliosis in such areas might be comparable to more typical,

rural habitats. Similar mitigation strategies can be employed

in both rural and urban areas to help reduce expose to ticks

but the challenge now is how we use these control measures

alongside managing greenspace for nature and the health

and well-being of the public.
6. Conclusion
There are many positive effects of conservation and biodiversity

management, including benefits to human well-being from

spending time in nature [138]. As well as these benefits, any

strategy that increases biodiversity may also increase the abun-

dance of some organisms considered to be pests, such as vectors,

and could result in a risk to public health. This review syn-

thesizes current knowledge on the effects of conservation

management of landscapes and host communities on the risk

of Lyme borreliosis in the UK. This is useful to identify knowl-

edge gaps and future research directions, and similar

approaches could be made with other infectious-disease sys-

tems. Each of the conservation management actions, including

deer management, woodland regeneration, invasive species

management and urban greening, is predicted to result in

changes to host communities and movements, tick abundance

and the risk of Lyme borreliosis (table 1). Understanding and

predicting the effects of particular management changes on

the risk posed by a vector-borne pathogen can be complex

[139]. For example, from this review, removal of a large herbi-

vore such as deer can result in cascading effects on vegetation,

small mammals and vector populations resulting in altered

pathogen transmission [12].

There is significant uncertainty in the effects of some of

these types of management considered in this review on Lyme

borreliosis risk due to a lack of empirical studies. Land use

management actions are essentially large-scale ecological exper-

iments, which are otherwise rare and difficult to conduct. As

such they provide unique opportunities to gain mechanistic

insights about ecological interactions relevant to disease trans-

mission [140]. Research studies to answer knowledge gaps

outlined in each of the main sections could be designed as part

of existing or new conservation projects in order to answer

these questions. For example, where biodiversity monitoring is

conducted to measure the success of conservation projects

such as woodland regeneration or restoration, tick surveys and

pathogen testing could be incorporated as part of these studies.

As the cycles of many vector-borne pathogens occur in

nature, interdisciplinary collaboration between veterinary

and human public health scientists with stakeholders in con-

servation and forest management is needed to assess and

minimize these environmental hazards [10,141]. Although con-

servation management decisions will necessarily consider

many factors, we suggest that inclusion of vector-borne patho-

gen dynamics and mitigation should be part of environmental

impact assessments [142]. It will be important for habitat cre-

ation projects to demonstrate that in addition to measuring

increases in biodiversity, such projects do not create pest and

vector issues. Indeed such a lack of assessment and monitoring

has blighted a number of wetland creation projects in relation

to mosquito risk [143]. Ideally, the review of information and

assessment of whether the risk of a vector-borne pathogen

will increase or decrease with a conservation management

action would be part of an interdisciplinary framework,

with involvement of stakeholders in medical and veterinary

public health, environmental management and biodiversity

enhancement to provide advice to government [10,141].

In line with efforts in relation to managing habitats for

mosquitoes [142], further research on how conservation

management impacts Lyme borreliosis risk would inform

best-practice guidelines for practitioners in how to manage

woodlands accessible by the public in order to minimize
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the exposure of people to infected ticks. This could include

guidelines on environmental management to minimize the

hazard from ticks, for example by managing the height of

ground vegetation close to paths [13]. Another important

measure would be to provide appropriate risk messaging

about ticks and tick-borne diseases, with surveys to assess

the effectiveness of these measures [79].
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