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The diffusion approximation of the Boltzmann transport equation is most commonly used for describing the photon propagation
in turbid media. It produces satisfactory results in weakly absorbing and highly scattering media, but the accuracy lessens with the
decreasing albedo. In this paper, we presented a method to improve the accuracy of the diffusion model in strongly absorbing media
by adjusting the optical parameters. Genetic algorithm-based optimization tool is used to find the optimal optical parameters. The
diffusion model behaves more closely to the physical model with the actual optical parameters substituted by the optimized optical
parameters. The effectiveness of the proposed technique was demonstrated by the numerical experiments using the Monte Carlo
simulation data as measurements.
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1. INTRODUCTION

The optical tomography techniques such as bioluminescence
tomography (BLT), fluorescent tomography (FMT), and dif-
fusion optical tomography (DOT) have attracted increasing
research attentions in recent years. One of the common core
issues of optical imaging modalities is how to model the light
propergation in biological tissues properly. Monte Carlo sim-
ulation, which has numerous successful applications in other
fields, was introduced to study the light interaction with tis-
sue [1, 2]. Although it is a rigorous model for forward prob-
lem of photon transport [2], due to its stochastic nature, the
excessive computational requirement makes it an improper
choice for inverse problems. On the other hand, the Boltz-
mann transport equation is able to model the photon prop-
ergation deterministicly and accurately in tissue [3], but it
too has a high computational complexity. Several methods
were proposed to solve the transport equation, such as dis-
crete ordinates [4, 5] and spherical harmonics expansion [6],
but applying transport equation in 3D remains challenging
in pratice. To reduce the complexity, diffusion approxima-
tion (DA) was introduced and widely applied as a photon
propergation model in various optical tomography modali-
ties [7–9]. DA is computationally efficient and almost as ac-
curate as the transport equation in weakly absorbing media.
Unfortunately, for albedos μ′s/μa < 10, DA is no longer able

to describe the photon propagation accurately [10, 11]. The
relatively strong photon absorptions are often resulted from
the shorter wavelength of the broad emission spectrum of
a reporter gene, such as the luciferase used in BLT, which
has emission peaks between 538 to 570 nm [12]. It was re-
ported that performing BLT at a shorter wavelength helps to
reduce the ill posedness of the reconstruction [11]. There-
fore, it is important that photon propagation in strongly ab-
sorbing media could be modeled.

In this paper, we proposed an optical parameter adjust-
ment technique to alleviate the inaccuracy of DA in highly
absorbing media. In our approach, we make the diffusion
model adjustable in the sense that the optical parameters,
which are usually considered as the known properties, are
interpreted as variables. The accuracy of the model is no
longer solely controlled by the formulation of DA, but also
by the adjustable optical parameters. The optical parameters
that minimize the error between the solution of DA and the
simulated MC data make the model more accurate than use
the intrinsic optical properties directly. This technique is dis-
cussed in Section 2.

2. SIMULATION METHODS

In this section, we give a brief overview of the two simu-
lation methods used in the numerical studies: the Monte
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Figure 1: The Monte Carlo process of photon propagation in tissue.

Carlo simulation and the finite element solution of the diffu-
sion equation, and discuss the optical parameters adjustment
technique.

2.1. Monte Carlo simulation

Monte Carlo (MC) simulation models each individual pho-
ton’s physical interactions with the medium as a stochastic
process. As a large number of such stochastic processes of
photon propagation are simulated, the signal detected is sta-
tistically meaningful and very close to the physical experi-
ment counterpart. MC result can be legitimately considered
as the low-noise version of the actual physical measurement.
Therefore, we use MC method to produce measurements in
numerical experiments. The Monte Carlo process consists
of three parts: the photon absorption, the photon scattering
and the internal reflection at the boundaries, as illustrated
in Figure 1. The absorption of photon for each step can be
expressed by [2, 3, 13]

ΔW = μa
μa + μs

W , (1)

where W is the weight of the photon packet. The scatter-
ing of the photon is governed by Henyey-Greenstein (HG)
phase function, which is considered as the most appropriate
phase function for the photon propergation in tissue. The
HG phase function is given by [2, 3]

p(cos θ) = 1− g2

2
(
1 + g2 − 2g cos θ

)3/2 , (2)

where θ is the deflection angle, and g the anisotropy. The in-
ternal reflectance rate due to the refrective index mismatch at
the tissue boundary for unpolarized incident light is given by
the Fresnel’s formulas [2, 3]:

R
(
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) = 1

2

[
sin 2(ϑi − ϑt

)

sin 2(ϑi + ϑt
) +

tan 2
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)

tan 2
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)
]

, (3)

where ϑi and ϑt are the incident and transmit angles, respec-
tively. The incident and transmit angles obey the Snell’s law

sin ϑi
sin ϑt

= nt
ni

, (4)

where ni and nt are the refractive indices for both sides of the
boundary, respectively.

We programmed MCsim [14], a Monte Carlo simulator,
for the photon propagation for the numerical experiment.
Our MC simulator can handle several types of 3D geometri-
cal phantoms such as cylinders and ellipsoids. By combin-
ing cylinders and ellipsoids, which can represent different
mouse organs, the heterogeneous phantom mimicking the
real mouse is created. The MC simulation based on such
heterogeneous numerical phantom is similar to the in vivo
mouse experiment. The efficiency of the MC simulation is
enhanced through the parallel computing and fast random
array generateration.

2.2. Diffusion model

The transport equation accurately characterizes the photon
propergation in biological tissue. Due to its complexity in
3D, the diffusion approximation of the transport equation is
often used instead in tissue with high albedo. The diffusion
equation in steady state is given by [3, 8]

−∇ · (D(r)∇φ(r)
)

+ μaφ(r) = S(r), r ∈ Ω (5)

and the Robin boundary condition is applied [8, 15]:

φ(r) + 2Θ(r)D(r)n · ∇φ(r) = 0, r ∈ ∂Ω, (6)

where r is the position vector, φ the photon fluence, S the
source power density, Ω the internal region, n the normal
to the boundary ∂Ω, and Θ the boundary mismatch factor,
which is given by (1 +R)/(1−R), and R can be approximated
by R ≈ − 1.4399n−2

i + 0.7099n−1
i + 0.6681 + 0.0636ni [16].

μa and D are the absorption and diffusion coefficient, respec-
tively. D can be decomposed to the expression of μa and the
reduced scattering coefficient μ′s:

D = 1
3
(
μa + μ′s

) . (7)

To solve the diffusion equation, we apply the finite ele-
ment method and transform the problem into a system of
discrete linear equations [8]

Aφ = S, (8)

where A is the weight matrix and S the source power distri-
bution vector. We take the boundary fluence φ(r), r ∈ ∂Ω as
measurement to compare with the MC simulated measure-
ment.

2.3. Optical parameters adjustment

The simulation of photon progation in tissue not only re-
quires an appropriate model, the optical parameters μa and
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μ′s also play an important role. As we mentioned before, the
diffusion model that uses the tissue’s intrinsic optical proper-
ties as optical parameters is not suitable to describe the pho-
ton propagation in strongly absorbing media. However, in
pratice we are often only interested in how the photons prop-
agate in tissue without noticing the optical parameters used.
For example, the BLT and FMT focus on the reconstruction
of the light source distribution. Thus, the optical parameters
can be taken as variables to improve the accuracy of the DA
model. In this perspective, the accuracy improvement task
becomes a typical parameter estimation problem: finding the
best parameters that minimize the error of DA at the surface.
Therefore, by optimizing the optical parameters, the solution
of DA may fit the real measurement better and consequently
improve the accuracy of the model.

Before we can find the optimal optical parameters, we
first define the error metric, which is simply the average of
the relative errors

ε
(
μa,μ′s

) =
∑

d

∣
∣(φ − φ′)/φ

∣
∣

nd
, (9)

where ε represents the error, φ the MC simulated power den-
sity (i.e., fluence) at a detector, φ′ the diffusion model finite
element solution of surface power densities at each detector,
d the detectors, and nd the number of detectors. This sim-
ple error metric evenly weights the strong and weak signals,
therefore, the optimization result does not depend on the lo-
cation of the light source.

It is clear that the error ε can be expressed as a function of
the optical parameters μa and μ′s. The optimal optical param-
eters are found by minimizing the error, as in the following
equation:

{
μadj
a ,μ′adj

s

} = arg min
μa, μ′s

∣
∣ε
(
μa,μ′s

)∣∣. (10)

To solve this parameter estimation in (10), we use a ge-
netic algorithm (GA). The major advantages of GA over the
deterministic gradient methods are the initial values have
very little impact on the optimization result, and the solu-
tion will not trapped in a local optima [17]. Although there
is no way to know if GA reaches the exact global optima,
this stochastic optimization method always produces a suf-
ficiently good solution if a large number of generations (i.e.,
iterations) and a proper population size are applied. The op-

timized optical parameters μ
adj
a and μ

′adj
s help to improve the

accuracy of the diffusion equation (5), as shown in Section 3.

3. NUMERICAL EXPERIMENTS AND RESULTS

3.1. Optical parameter optimization

We performed the optical parameter optimization on a
sphere with 7 mm radius. In Cartesian coordinate, the cen-
ter of the sphere was the origin. In order to obtain the finite
element-based solution of diffusion approximation (DA), the
sphere was discretized into 5539 nodes and 28 607 tetrahe-
dra. For the convenience of comparing MC simulation data
with the finite element solution of DA, all 1452 surface nodes

Table 1: GA configration parameters.

Population size 50

Penerations 200

Crossover rate 80%

Mutation rate 10%

Elitism best 2

Table 2: Optical parameters optimization results. The unit was in
mm−1.

μa μ′s μadj
a μ′adj

s

0.20 1.05 0.375366 0.213276

0.35 1.05 0.423532 0.453873

were used as detectors. For the Monte Carlo simulation, each
detector integrated the escaping photons within 0.7 mm ra-
dius, while the solution of DA was produced directly at each
surface node. The measurement was normalized and served
as a description of the boundary power distribution rather
than the actual power density.

We placed a single isotropic point source 1 mm away
from the origin, and set the source power to 0.313 picowatt,
which is equal to the energy of a million photons per sec-
ond under 635 nm wavelength. At this source location, we
performed the optical parameter adjustment for two me-
dia: medium one had μa = 0.2 mm−1 and medium two had
μa = 0.35 mm−1, the μ′s = 1.05 mm−1 and the tissue re-
fractive indices are 1.37 for both materials. The albedo of
these two media were 5.25 and 3, respectively. We expected
that the solutions of DA would have noticeable inaccuracy in
these media. We used the genetic algorithm toolbox (gatool)
in MATLAB to solve (10). The important parameters used in
GA are listed in Table 1.

The resultant optimal optical parameters are listed in
Table 2.

3.2. Accuracy improvement results

Using the optimized parameters in Table 2, the results of the
accuracy improvements of DA are plotted in Figures 2 and 3,
with respect to the two media.

We tested the effectiveness of the optimized optical pa-
rameters by solving the DA with different light source lo-
cations in the sphere. The accuracy enhancement results re-
garding different light source locations are listed in Table 3.
The error metric in Table 3 was according to (9). The results
show that the accuracy improvement effect was stable for dif-
ferent light source locations, and has little dependency on the
location of the light source where the optical parameter op-
timization was performed.

To further test the effectiveness of the proposed method,
we constructed a heterogeneous phantom, as in Figure 4. The
outer cylinder had a height of 20 mm and a radius of 10 mm.
The geometrical center of the cylinder was at the origin. The
inner sphere had a radius of 4 mm and its geometrical cen-
ter was 2 mm away from the origin along the x-axis. The ab-
sorption coefficient of the cylinder and the sphere were 0.2
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Figure 2: The comparison between solutions of DA using the the unadjusted and the optimal optical parameters in a medium with μa =
0.2 mm−1 and μ′s = 1.05 mm−1. The light source was 1 mm from the origin. (a) Solution of DA with unadjusted optical parameters versus
MC data. (b) Solution of DA with optimized optical parameters versus MC data. The detector positions were sorted in the increasing order
of the fluence rate of MC data.
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Figure 3: The comparison between solutions of DA using the the unadjusted and the optimal optical parameters in a medium with μa =
0.35 mm−1 and μ′s = 1.05 mm−1. The light source was 1 mm from the origin. (a) Solution of DA with unadjusted optical parameters versus
MC data. (b) Solution of DA with optimized optical parameters versus MC data. The detector positions were sorted in the increasing order
of the fluence rate of MC data.
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Table 3: Accuracy improvements of DA regarding to different light
source locations. d is the distance from the origin, ε the error with-
out optical parameter optimization, and εadj the improved error.

d (mm)
μa = 0.2 mm−1 μa = 0.35 mm−1

ε εadj ε εadj

1 0.09 0.0406 0.2361 0.0766

2 0.1665 0.1008 0.3801 0.1393

3 0.3151 0.1066 0.5784 0.14

4 0.3944 0.1074 0.6558 0.1183

5 0.373 0.0947 0.6567 0.1608

Z

X Y

Figure 4: The finite element model of the heterogeneous phantom.

and 0.35 mm−1, respectively. The reduced scattering coeffi-
cients were 1.05 mm−1 and the refractive indices were 1.37
for both media. The light source was placed at the center of
the sphere. Using the optimized optical parameter in Table 2,
the error was reduced from 0.3951 to 0.2201.

4. DISCUSSION AND CONCLUSIONS

We have present a technique for improving the accuracy of
the diffusion model by adjusting optical parameters. Instead
of using the accurate tissue optical parameters to produce
inaccurate result in highly absorbing media, the optimized
optical parameters give better accuracy in such media. GA
is used for parameter optimization, which effectively avoid
the solution to be trapped in a local optima. Our simula-
tion results show significant error reduction for media with
different photon absorptions, and the results have little de-
pendency on the light source location. If the actual optical
parameters of the medium are known, the Monte Carlo sim-
ulation could generate the measurement data as if obtained
from the physical phantom or real mouse experiment, so
that the optical parameters optimization technique can be
performed purely numerically. In the case that the optical
properities are unknown, the proposed technique still applies
by replacing the Monte Carlo simulation by the actual physi-
cal experiment. However, we emphasize that even though the

accuracy of the normalized power distribution is improved
with this technique, the solution of DA using the optimized
optical parameters does not reflect the actual power. Thus,
the calibration process is required to convert the normalized
power distribution to the actual power. The optical parame-
ter optimization technique permits diffusion model to work
under highly absorption media, so that DA works well over
a wider range of applications. For the the in vivo optical to-
mography such as BLT and FMT, the DA photon propagation
model for each mouse organ or tissue is improved numer-
ically prior to the reconstruction, the reconstruction algo-
rithm based on the improved DA model is expected to have
improved source localization and intensity accuracy.
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