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Inferring mechanisms of response 
prioritization on social media 
under information overload
Chathika Gunaratne1, William Rand2 & Ivan Garibay  1*

Human decision-making is subject to the biological limits of cognition. The fluidity of information 
propagation over online social media often leads users to experience information overload. This in 
turn affects which information received by users are processed and gain a response to, imposing 
constraints on volumes of, and participation in, information cascades. In this study, we investigate 
properties contributing to the visibility of online social media notifications by highly active users 
experiencing information overload via cross-platform social influence. We analyze simulations 
of a coupled agent-based model of information overload and the multi-action cascade model 
of conversation with evolutionary model discovery. Evolutionary model discovery automates 
mechanistic inference on agent-based models by enabling random forest importance analysis on 
genetically programmed agent-based model rules. The mechanisms of information overload have 
shown to contribute to a multitude of global properties of online information cascades. We investigate 
nine characteristics of online messages that may contribute to the prioritization of messages for 
response. Our results indicate that recency had the largest contribution to message visibility, with 
individuals prioritizing more recent notifications. Global popularity of the conversation originator had 
the second highest contribution, and reduced message visibility. Messages that presented opportunity 
for novel user interaction, yet high reciprocity showed to have relatively moderate contribution to 
message visibility. Finally, insights from the evolutionary model discovery results helped inform 
response prioritization rules, which improved the robustness and accuracy of the model of information 
overload.

The rise of online social media as the dominant form of contemporary human communication has greatly 
changed the dynamics of information propagation. The heightened connectivity offered via social media plat-
forms exposes users to high volumes and rates of information that they are not naturally equipped to handle. The 
inflow of information may reach an intensity beyond which the user’s typical cognitive abilities are hindered. This 
state is known as information overload1. Social media platforms attempt to overcome information overload by 
providing information scaffolds in the form of notification lists, news feeds, and summaries of what they believe 
should be the focus of a user’s attention. These information scaffolds emulate a sort of working memory2–4 of 
the user’s external-self5, by allowing information received to be stored, while perceived and responded to (or 
ignored). Eventually, individuals begin to rely on these information scaffolds provided by the social media plat-
form to keep track and respond to their online counterparts.

However, despite the tools provided through the platform, users may still experience information overload. 
Importantly, information overload can characterize online conversations by constraining their volume and the 
number of participants engaged in discussion6. The responsiveness of overloaded social media users is generally 
less than the optimal responsiveness observed in their non-overloaded state. Analytical studies have supported 
this with evidence that for overloaded Twitter profiles, the decrease in responsiveness follows a power-law with 
the excess quantity of information received by the individual7 . Classical models of information diffusion, such as 
the independent cascade model8–12, linear threshold model10,13,14, and complex contagion model15–17, are unable to 
model the cognitive mechanisms of information overload, because information in these models are represented 
as a binary variable of awareness. Further, these models do not capture the properties that characterize social 
media messages and the users that create them. Yet, such properties amplify the prominence of certain received 
messages over others, and thereby their likelihood of being responded to18. Unlike in biological epidemics, only 
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messages with a relatively high degree of prominence can produce a sustained chain of responses19. Recency18–20 
and popularity of content18 have been shown to contribute to the prioritization of certain messages over others for 
response. However, identifying other factors contributing to response under information overload remains largely 
unexplored. In order to discover cognitively plausible mechanisms of information overload, models with rules 
encoding points within the space of possible interactions between these properties must be compared against 
one another. For instance, a more likely mechanism of response prioritization may involve both recency and 
poster’s popularity, rather than one or the other; i.e. a model where users respond to messages by the popularity 
of the posters of the most recently received messages, instead of one where messages are prioritized either by 
poster’s popularity or by how recently they were received.

In this study, we investigate several properties of social media messages that were hypothesized to have 
contributed to the visibility of messages received by overloaded users. In particular, we analyzed factors driving 
the response prioritization of highly active users of a cyber-vulnerability interest community engaged in cross-
platform communication over GitHub, Reddit, and Twitter. As a result, we were able to identify properties that 
contributed to message visibility by users who managed to maintain high levels of activity, despite experiencing 
constant information overload. An existing information overload model (IOM)6 and the evolutionary model 
discovery framework21 were used for this purpose. In its basic form, the IOM stores messages in an actionable 
information queue, from which the oldest messages are removed under information overload. We modified the 
basic IOM by relaxing the assumption that under information overload, older messages are lost. Instead, the IOM 
was modified to assign each message a priority, according to a utility function. We implemented IOM within an 
agent-based model of conversation, the multi-action cascade model (MACM)22. The MACM simulates the flow of 
information within a network of agents acting on conditional probabilities of social influence extracted from data 
using marginal transfer entropy23. MACM is able to simulate cross-platform social influence by abstracting plat-
form events into conversation-related actions as motivated by conversation theory24. The MACM+IOM coupled 
model was then used to simulate a month’s activity of the eight most active Twitter users in a cyber-vulnerability 
interest community, under the cross-platform, social influence of users from GitHub, Reddit, and Twitter.

Using evolutionary model discovery a framework for automated causal inference in agent-based models21,21,25, 
we tested nine factors which we hypothesized to affect the message prioritization process: conversation popularity, 
conversation size, initiator’s popularity, shared interests, reciprocity, URL popularity, URL familiarity, information 
expertise, and recency. Evolutionary model discovery performs random forest feature importance on genetically 
programmed agent-based model rules, to identify important causal factors and their optimal presence within the 
rule. Utility functions of the hypothesized factors were automatically evolved with evolutionary model discovery, 
exploring the vast space of possible rules for message prioritization, and the resulting data was analyzed by the 
random forest for factor importance.

Our findings show that messages received (1) more recently, (2) on conversations initiated by less globally 
popular users, (3) presenting a novel interaction with historically less interacted user, and (4) yet presented a 
higher chance of reciprocity were more likely to be prioritized for response under information overload. These 
simulation findings explain phenomena observed through analytical studies in the literature, in particular, the 
social factors determining message visibility for information epidemics18,19, the importance of recency in global 
information cascades19,20, and the observation that information popular on a global scale tends to be locally 
unpopular26,27.

Methodology
A data-driven, agent-based model was used to investigate message visibility as their priority for response assigned 
by social media users experiencing information overload. In particular, agents of the MACM were made to 
use the IOM to determine which messages were to be prioritized over others for response, when experiencing 
information overload. The mechanism governing the response prioritization was then explored through evo-
lutionary model discovery, a causal inference framework for agent-based models25,28,29. Through evolutionary 
model discovery, we evolve prioritization mechanisms towards those that produce simulations with the closest 
overall responsiveness to that observed in social media data, and analyze the importance of factors hypothesized 
to affect the decision to prioritize certain messages over others.

Data.  Data on the activity of users engaged in discussions and development related to cyber-vulnerabilities 
on GitHub, Reddit, and Twitter between the 1st of February, 2017 to the 1st of May, 2017 were considered for 
this experiment. Discussions were collected by querying user events on each platform that mention known CVE 
numbers (https​://cve.mitre​.org/cve/) along with events that contribute and share such events. The data was split 
into a calibration and a discovery period, from 1st of February, 2017 to the 1st of April, 2017 (458,098 unique 
events), and from 1st of April, 2017 to the 1st of May, 2017 (429,378 unique events), respectively. Each event 
in the dataset consisted of the following information: (1) time of event, (2) anonymized user identifier, (3) the 
anonymized event identifier of the immediate parent event to which this event responds to if any, (4) keywords 
identifying the information being discussed by the individual, and (5) domains of any external URLs referred 
to in the event.

Model description.  We studied response prioritization through the investigation of agents embodying the 
information overload model (IOM)6 and interacting with one-another according to the multi-action cascade 
model (MACM) of conversation22.

Modeling information overload.  In the IOM, messages encoding information regarding the online activity of 
an individual’s influencers are stored in an actionable information queue, A. Messages are stored in A in the order 

https://cve.mitre.org/cve/)
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with which they were received; i.e. older messages towards the end and newer messages towards the beginning. 
The current capacity of A, at time t, represents an individual’s attention span, Mt , as defined in30. Each message m 
has probability pm , described later, with which it may be acted upon and removed from A at a given timestep. If 
an agent receives more messages than it can process, the actionable information queue can exceed its maximum 
capacity Mmax . At this point, the user is considered to experience information overload and Mt is reduced by a 
number of units that follows a power-law with the magnitude of information overload experienced, as observed 
in other analytical studies7. The new attention span, is calculated as shown in Eqs. (1) and (2).

where R is the list of messages received this timestep and α is the rate of attention loss, a parameter of the model. 
Since Mt < Mt−1 when a user is overloaded, and the older messages are stored toward the end of A, older mes-
sages are truncated when the actionable information queue is reduced to length Mt . In other words, IOM in 
it’s basic form prioritizes on recency, i.e. message visibility is determined by the chronological order in which 
messages were received, with the oldest, not-responded-to messages having a higher likelihood of never gaining 
a response as an agent experiences information overload.

Multi‑action cascade model.  The multi-action cascade model is an information theoretic agent-based model of 
conversation6,22. According to Pask24, information is exchanged between individuals through the act of conversa-
tion. Individuals engaged in conversation continually query one-another in order to further their own under-
standing of a particular topic, or express their own understandings/opinions. Unfortunately, most diffusion of 
information models in the literature instead simulate the spread of information as the diffusion of a binary 
awareness regarding a topic. This makes it difficult to model actions taken by individuals that seek to respond to 
received information; for example, replies in Twitter.

Instead, the MACM redefines the representation of information passed in conversations, allowing for the 
‘growth’ of tree-like conversations by performing more than simple act of sharing. Conversations are structured 
as trees, with each conversation-node representing an event performed by a user through which information was 
added to the conversation. Agents can perform (1) initiation events, the creation of a root conversation-node; (2) 
contribution events, the addition of a conversation-node with new content; or (3) sharing events, the addition of a 
node with content copied from an existing node from the current conversation-tree or another conversation-tree. 
Accordingly, as the agents perform these events, messages that represent social media notifications are passed 
through the network to the neighbors. These messages are represented by a tuple of four elements, (1) the sender 
(also referred to as the influencer), (2) the action taken, (3) the node in the conversation to which the action has 
been taken, and (4) the content of the message conveyed by the individual.

A relationship can then be defined between two individuals by describing how likely a message of a par-
ticular action type is to influence another user to generate a message of a particular action type. Thus, the three 
action types allow for an influencer → influenced edge, say V influencing U, to have nine possible relation-
ships of social influence in one direction: ( Vinitation → Uinitiation , Vinitation → Ucontribution , Vinitation → Usharing , 
...,Vsharing → Usharing ). The MACM, extracts a directed network of influence probabilities from the activity data, 
by calculating the ratio between the marginal transfer entropy, from the event timeseries of V performing event x 
to the timeseries of y events by U, to the marginal entropy of the event timeseries of U performing event y, when 
Vx = 1 and Uy = 1 , as defined in Eq. (3) (1: event occurred, 0: no event occurred). In the model, when an agent 
U receives a message that V performed x, the corresponding conditional probability, P(Uy|Vx) , is then referred 
to decide whether to respond to the message with event y.

Model parameters.  As shown in Fig. 1, the distributions for P(Uy|Vx)) on the calibration dataset were long-
tailed, i.e. while many relationships demonstrated lower conditional probabilities, some strongly influential rela-
tionships existed. Additionally, the degree of social influence on contribution actions follows a longer tail and is 
more widely distributed than for initiation or sharing actions. This meant that it was inappropriate to represent 
this heterogeneity by calculating a central, representative conditional probability for all relationships. Instead, we 
calculated the conditional probabilities for each relationship in the MACM network, per Vx → Uy pair. Addi-
tionally, the IOM has two parameters α and Mmax for which 0.8 and 30 were used, respectively, as these values 
had been previously identified as optimal6.

Evolutionary model discovery of response prioritization.  We perform evolutionary model 
discovery25,28 of the MACM+IOM coupling described above to analyze the importance and optimal presence of 
a set of factors hypothesized to drive the response prioritization by overloaded social media users. Evolutionary 
model discovery has been successfully applied to the Artificial Anasazi model31,32 to uncover factors important 
to the socio-agricultural decision-making of an ancient Pueblo civilization. The framework functions in two 
stages: (1) evolving the best combination of hypothesized factors and operators to a rule of interest in a given 

(1)Mt =

{

Mt−1 − Oα
t−1, if O

α
t−1 <= Mt−1

0, otherwise

(2)Ot−1 =

{

(|At−1| + |Rt−1|)−Mmax , if |At−1| + |Rt−1| >= Mmax

0, otherwise

(3)P(Uy|Vx) =
TEVx=1Uy=1(Vx → Uy)

HUv=1(Uy)
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agent-based model with with genetic programming and (2) training a random forest on the factor presence to 
fitness data produced by the genetic program and analyzing factor importance with feature importance estima-
tion.

Genetic programming has been used in the past to develop agent rules29,33–35. However, when trying to extract 
the human decision-making processes that produce complex macro-scale patterns in data, a global optimum 
is not always easily reachable or apparent. Instead, through the statistical analysis of the data produced by the 
optimization process, inferences can be made to identify the important causal factors; in particular, the factors 
that the model is most sensitive to and their optimal presence in the agent-rule. Through random forest impor-
tance analysis on the factor-presence to fitness data, the factors most important to the prediction of the model 
fitness, can be identified, Statistical tests on the presence of the most important factors can then be performed to 
identify their optimal presence values. Finally, these insights can be used to construct more robust and accurate 
agent rules.

Message prioritization.  By sorting messages in the order in which they were received and through the trunca-
tion of older messages upon information overload, the original model essentially prioritizes the most recent 
messages, FRecn . We generalize this process of message prioritization with a utility function, u(m). Accordingly, 
the IOM originally uses the prioritization utility given in Eq. (4).

Under information overload, messages on the actionable information queue and newly received messages 
would be combined and sorted according to their u(m) scores, and messages would be dropped in increasing 
order of u(m), until Mt messages were left to form the new actionable information queue.

Hypothesized factors.  Nine factors were hypothesized to drive the response prioritization of highly active users 
under information overload: 

1.	 Conversation popularity FConvPop : Conversation popularity represents the global popularity of a particular 
information cascade. It is measured by the normalized number of users that have responded to the conversa-
tion created by the root message that was created by the original poster.

2.	 Conversation size FConvSize : Conversation size represents the global volume of a particular information 
cascade. It is measured by the normalized number of responses that have accumulated to the root message 
that was created by the original poster.

3.	 Initiators popularity FInitPop : Initiator’s popularity represents the global popularity of the conversation ini-
tiator. This is measured as the number of times messages by this individual had been responded too by any 
individual.

4.	 Common conversation interactions FIntr : Common interactions measures the number of times the individual 
has participated in a conversation which the other user has also participated in.

5.	 Absolute reciprocity FRecip : Absolute reciprocity (both positive and negative) was measured as the number 
of times the individual has responded directly to an another individual.

6.	 URL domain popularity FURLPop : URL domain popularity represents the global popularity of any URL 
domains that were mentioned by all users. It is measured as the normalized count of messages that have a 
reference to the URL domain.

7.	 URL domain familiarity FURLFam : URL domain familiarity represents the local popularity of any URL 
domains, measured as the number of references this individual has made to the URL domain in their past 
messages.

8.	 Information expertise FInfo : Information expertise represents how often this user mentions a particular piece 
of information.

(4)u(m) = FRecn(m)

Figure 1.   Probability density functions of conditional probabilities P(Uy|Vx)) . Probability densities of 
influenced individual U performing action y given influencer V performs action x over users in the calibration 
data. The long-tailed distributions illustrate the heterogeneity of P(Uy|Vx)) among all existing relationships, 
with a few relationships having high conditional probabilities of action and many having relatively lower 
probabilities of action. This heterogeneity was highest for social influence on the influenced individual’s 
contribution actions, i.e. the probability density functions for P(Uy|Vx)) , where y = contribution , had a much 
longer tails.
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9.	 Recency FRecn : Recency was measured as the reciprocal of the amount of time that had passed since the 
message was originally received by the individual.

These factors were implemented as functions in the agent-based model and used as primitives of the genetic 
program. Each function returned a normalized sub-utility score in the range (0, 1]. The genetic program evolved 
a syntax tree representation, with the factors as terminal nodes, connected by operator nodes. Recent work in 
behavioral economics36 has shown that emotional and social dimensions play a role in decision-making. Accord-
ingly, while responding based on higher FRecn alone may be explained by the notification ordering imposed by 
the social media platform, the rest of the factors above allow for the construction of behaviors that are explained 
via social theories. In particular, the factors listed above can be related to different theories. A high emphasis on 
FConvPop , FConvSize , FInitPop , or FURLPop would demonstrate observational learning as explained in social learning 
theory37–39 and also agree with status theory40,41. A high emphasis on FRecip is related to social exchange theory42. 
Emphasis on higher FInfo would indicate novelty-aversion, a low FInfo would indicate novelty-seeking behavior. 
Finally, high FIntr would display homophily, agreeing with social correlation theory43,44, while low FIntr would 
indicate heterophilous behavior. However, in our model discovery process we do not constrain rule formation 
to those that conform to established social theories, and instead allow for the evolutionary aglorithm to discover 
rules that best fit the data.

Operators.  Operators were used in the genetic program to combine the factor primitives to form utility func-
tions, included addition ( + ), subtraction (−), multiplication ( × ), and division ( ÷ ). Inclusion of × and ÷ allowed 
for the creation of more complicated factor interactions, each which had to be treated as separate factors when 
performing the factor importance analysis.

Experimental setup.  16 of the most active users in the dataset described above with the highest number of 
retweets were chosen as the most active Twitter users. Eight of these users were used for evolutionary model 
discovery (training users), while the other eight were kept for validation of the evolutionary model discovery 
results (holdout users). As described above, the conditional probabilities of influence to and from these 16 users 
and the data necessary for the 9 factors above were calculated on the calibration dataset, using a Python CUDA-
GPU implementation of the marginal transfer entropy to marginal entropy ratio calculation in Eq. (3). A mean 
of 260.625 (std dev. 98.217) non-zero relationships from influencing user profiles were discovered for the 8 train-
ing users in the calibration period.

The MACM+IOM model was implemented in NetLogo45. For each simulation in evolutionary model discov-
ery the training users were simulated, inputting their conditional probability data. The simulations were run for 
the discovery period, 1st of February, 2017 to the 1st of April, 2017. For each tick (1 tick represents 1 h), the events 
performed by the influencers of the simulated agents were injected into the agents as received information and 
processed as described above (“Modeling information overload”). Data required for the evaluation of the factors 
described above were calculated beforehand on the simulation period data and input to the NetLogo simulations 
(see Supplementary Information for summary statistics). Events were removed from the actionable information 
queue either due to overload, as explained above, or due to successful propagation after response, accordingly.

The fitness of each simulation to the data was calculated as the accuracy of the overall user responsiveness 
simulated. This was calculated as follows. Messages received by each simulated user, U, during the simulation 
period were extracted beforehand from the activity data of users influencing the simulated users during simula-
tion period. The actual number of responses to each of these messages, m, were counted from the activity data of 
each U during the simulation period, Rreal

Um
 . When the simulation was run, each m, was input into the simulation 

as received information to the corresponding simulated user, U, at its respective simulation tick. The number 
of simulated responses to each m per U was recorded, Rsim

Um
 . The root mean squared error (RMSE) between the 

simulated and actual responses to influencer messages was then calculated as shown in Eq. (5).

Thirty genetic program runs were conducted to evolve the message prioritization utility function with the 
factors and operators described above. The RMSE of responsiveness was used as the fitness function. Crossover 
rate was set to 0.8, mutation rate was set to 0.1, and a population size of 50 was used. Each run was evolved for 50 
generations. A tree representation was used, with the terminal nodes being the hypothesized factors, combined 
via primitives that represented the operators listed above. Rules were derived by simplifying the resulting trees, 
and the presence score of a factor was considered as its coefficient in the simplified rule. In order to avoid bloat46, a 
maximum depth of 10 was set for the evolved factor trees (see Supplementary Information for an example). As all 
operators used were binary, a maximum of 210 terminals were possible in a rule, allowing for rules with all 9 fac-
tors, and maximum presence score range of [−1022, 1024] . The individuals of the initial population were gener-
ated with randomly using the ramped half-and-half algorithm. The best values for α and Mmax for MACM+IOM 
on the described dataset, 0.8 and 80, were used, respectively, after calibrating the two parameters to the data6,7. 
The random forest was trained on the data produced by the genetic program with the CART (Classification and 
Regression Trees) algorithm. Gini and permutation accuracy importance47 were used to find the importance 
of the factor and factor interactions selected by the genetic program towards the prediction of the fitness of the 
simulations during the evolutionary search. Mann–Whitney U tests were used to test for significant difference 
in the permutation accuracy importance. Next, the presence of the most important factors were analyzed.

(5)RMSE =

√

1

|mall|

∑

m∈mall

(Rreal
Um

− Rsim
Um

)2
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Finally, the results were validated by testing several models with and without the important factors at their 
optimal presence, as identified by evolutionary model discovery. The eight holdout users were used for this 
purpose as a check for robustness of the results. RMSE of 100 runs of each model executed over the simulation 
training period were compared with one another.

Results
Some example rules, along with their RMSE, produced by the genetic program are shown in Table 1, where the 
20 rules that produced the lowest RMSE are provided. Most of the highest fit rules appeared to contain FRecn . 
Figure 2 shows the selection of factor primitives by the genetic program as the generations progressed, along with 
the RMSE of the respective simulations. Certain factors showed to have higher selection pressure than others; 
FRecn had a relatively stronger positive selection, along with a weaker positive selection for FIntr . FInitPop showed 
a relatively stronger tendency to be selected with negative presence.

Figure 3 displays the marginal RMSE of responsiveness under different presence values for each factor. 
Only presence values that appeared at least 100 times in the rules generated through the genetic program were 
considered here, as well for the rest of the analysis, to account for the variance caused by the stochasticity of the 
agent-based simulations and ensure a reasonable estimate of the corresponding RMSE. From observation, it is 
apparent that RMSE is lowest when presence of FURLFam and FURLPop is 0, i.e. when absent from the model. RMSE 
is lowest when FInitPop is present negatively and FRecn is present positively.

Figure 4 displays the Gini and permutation importance of nine hypothesized factors towards the random for-
est’s ability to re-predict the RMSE of the discovery data produced by the genetic program. Both techniques agreed 
on the relative ordering of importance of the hypothesized factors. FRecn shows to have the highest importance by 
far, more than twice as high as the second most important factor FInitPop . Systematic one-tailed Mann–Whitney U 
tests (Fig. 5) of the alternate hypothesis that permutation importance of A > permutation importance of B (null 
hypothesis: permutation importance of A = permutation importance of B) at original significance level = 0.05 , 
show that there is a clear statistically significant ordering of the factors according to permutation importance; 
in descending order of permutation (and gini) importance: FRecn , FInitPop , FInfo , FIntr , FRecip , FConvPop , FURLPop , 
FConvSize , FURLFam.

Figure 5 displays the results of systematic one-tailed Mann–Whitney U tests for each factor testing the null 
hypothesis: RMSE for presence A < RMSE for presence B for original significance level = 0.05 (with Bonferroni 
corrections applied to all comparisons within each factor). Green cells indicate where each Mann–Whitney U 
test passed. The optimal presence values within u(m) for each factor observed through this comparison are as 
follows: FRecn : + 3, + 4, + 5; FInitPop : − 4, − 5; FConvPop : + 4, + 5; FConvSize : + 2, + 3; FURLPop : + 2, + 3, + 4; FURLFam : 
+ 4; FInfo : − 2, FRecip : − 2, + 3, + 4; and FIntr : − 2. In other words, recency, conversation popularity, conversation 

Table 1.   Examples of rules that produced the lowest RMSE in responsiveness to the real-world data. The top 
20 rules that resulted in the lowest RMSE are provided as examples of rules produced by the genetic program 
in evolutionary model discovery. Solutions for u(m) were evolved by combining the nine factors using the 
+ , −, × , and ÷ operators. The presence value of a factor Fi is considered as its coefficient in u(m). FRecn and 
FInitPop appear in most of the optimal solutions. (Square brackets indicate interactions between factors i.e. 
multiplication or division).

Rule RMSE

u(m) = −FInitPop(m)+ FRecn(m) 7.6597

u(m) = −FInitPop(m) 7.6669

u(m) = −4FInitPop(m)+ 3FRecn(m) 7.6674

u(m) = FRecn(m) 7.6706

u(m) = FRecn(m)− 1FIntr (m) 7.6750

u(m) = −2FInitPop(m)+ FRecn(m)+ 2FRecip(m) 7.6751

u(m) = FConvPop(m)+ 2FRecn(m) 7.6751

u(m) = 2FInfo(m)− 4FInitPop(m)+ 2FRecn(m) 7.6758

u(m) = −2FInitPop(m) 7.6761

u(m) = FRecn(m) 7.6765

u(m) = −FInitPop(m)+ FRecn(m) 7.6768

u(m) = −2FInitPop(m)+ 3FRecn(m) 7.6769

u(m) = [FInitPop(m), FRecn(m)] 7.6776

u(m) = −FInitPop(m)+ FRecn(m) 7.6783

u(m) = −2FInitPop(m)+ FRecn(m)+ FIntr (m) 7.6783

u(m) = [FInitPop(m), FRecn(m)] 7.6786

u(m) = −FInitPop(m)+ FRecn(m) 7.6787

u(m) = −FInitPop(m)+ FRecn(m) 7.6792

u(m) = −2FInitPop(m)− 1FIntr (m) 7.6798

u(m) = −4FInitPop(m)+ 2FRecip(m) 7.6805
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Figure 2.   Selection of primitives by generation with the simulation RMSE produced. Causal factors that had 
higher contribution to response prioritization are expected to have higher selection pressure on the genetic 
program, exhibiting increasing negative or positive bias in presence within u(m) over generations. Results have 
been averaged over the 20 genetic program runs and red indicates lower RMSE. FInitPop , FRecn , and FIntr show a 
gradual increase the different presence values in u(m) explored by the genetic program in comparison to other 
factors considered.

Figure 3.   Marginal RMSE of responsiveness by factor presence of simulations of the models generated through 
the genetic program. FRecn shows significantly lower RMSE when positively present in u(m) and FInitPop shows 
significantly lower RMSE when negatively present in u(m). Both content URL related factors, FURLPop and 
FURLFam show significantly lower RMSE when absent from u(m). In order to reduce statistical bias, only factor 
presence values that appeared at least 100 times in the genetic program individuals are displayed.
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Figure 4.   Gini and Permutation Accuracy importance of factors hypothesized to drive response prioritization 
under information overload. FRecn is by far the most important factor for response prioritization, more than 
twice as more important than the second most important factor, FInitPop . The rest of the factors are ordered in 
descending order of importance as follows: FInfo , FIntr , FRecip , FConvPop , FURLPop , FConvSize , FURLFam.

Figure 5.   Optimal presence scores for hypothesized causal factors. P values of systematic one-tailed Mann–
Whitney U tests between presence values of the nine hypothesized factors for the alternate hypothesis: 
RMSE for presence A < RMSE for presence B (null hypothesis: RMSE for presence A = RMSE for presence B ) 
for original significance level = 0.05 with Bonferroni corrections applied for all comparisons within each factor. 
Green cells indicate agreement of the alternate hypothesis. FRecn , FConvPop , FConvSize , FURLPop , FURLFam , and FRecip 
are optimal at positive presence within u(m), while FInitPop and FInfo are optimal when present negatively within 
u(m). FIntr is optimal at both negative and positive presence values.
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size, URL popularity, URL familiarity, and reciprocity had positive effects on message prioritization, while the 
popularity of conversation initiators and information expertise had negative effects on message prioritization. 
Common conversation interactions had equal positive and negative effects on message prioritization. The mag-
nitude of the optimal presence values are seen to have some positive correlation with the factor’s importance, 
which was expected as the genetic program would have selected more strongly for factors with higher contribu-
tion to fitness. Together with the factor importance results, this indicates that, in decreasing order of importance, 
message prioritization by overloaded users was most likely driven by preference for: (1) more recent messages, 
(2) conversations initiated by less popular users, (3) novel content, (4) either senders with higher similarity or 
higher difference (over those with moderate similarity/difference), (5) senders that have shown the receiver 
higher absolute reciprocity, (6) more popular conversations, (7) more popular URLs in content, (8) larger con-
versations, and, least importantly, (9) more familiar URLs in content.

Finally, we demonstrate the robustness of these results by comparing simulations of models, derived by 
the above insights, on the holdout users. The derived models were compared against a null model for which 
all actionable information were shuffled by allocating random priorities to messages by sampling a uniform 
random distribution. Each model was run for 100 simulations. Comparisons of the RMSE of the resulting 
simulations are visualized in Figure 6, while Table 2 provides the results of one-tailed Mann–Whitney U tests 
conducted on the alternative hypothesis that each derived model produced lower median RMSE than that of 
the null model (significance level = 0.05). Models comprising of only one of the two factors with the highest 
importance, u(m) = FRecn and u(m) = FInitPop , at their optimal presence, did not have lower RMSE than the 
null model (U = 7736.0, p = 1.0> 0.05 and U = 5566, p = 0.9168 > 0.05, respectively). However, models that 
included both these factors outperform the null model; u(m) = 5FRecn − 5FInitPop :  U = 3460 , 
p = 8.4416× 10−5 < 0.05 , u(m) = 5FRecn − 5FInitPop − 2FIntr + 4FRecip : U = 3366 , p = 3.2859× 10−5 < 0.05 , 
a n d  u(m) = 5FRecn − 5FInitPop − 2FIntr + 4FRecip + 2FURLPop + 5FConvPop − 2FInfo+4FURLFam + 3FConvSize  : 

Figure 6.   100 runs of MACM-IOM with response prioritization rules inferred through evolutionary model 
discovery. Simulations of models derived from evolutionary model discovery insights are compared against a 
null model with random message prioritization. Each model was run 100 times. Only models that include both 
FRecn and FInitPop have a lower median RMSE than that of the null model.

Table 2.   Comparisons between prioritization rules derived from evolutionary model discovery insights 
against a null model. Results for Mann–Whitney U tests for the alternative hypothesis that each derived model 
had a median RMSE less than that of the null model with random priority allocation (significance level = 0.05). 
Only models that included both FRecn and FInitPop outperformed the null model.

Rule U p value

5FRecn 7736 1.0

−5FInitPop 5566 0.9168

5FRecn − 5FInitPop 3460 8.4416× 10−05

5FRecn − 5FInitPop − 2FIntr + 4FRecip 3366 3.2859× 10−05

5FRecn − 5FInitPop − 2FIntr + 4FRecip + 2FURLPop + 5FConvPop − 2FInfo + 4FURLFam + 3FConvSize 2793 3.4968× 10−08

−5FInitPop − 2FIntr + 4FRecip + 2FURLPop + 5FConvPop − 2FInfo + 4FURLFam + 3FConvSize 5626 0.9371

2FURLPop + 5FConvPop − 2FInfo + 4FURLFam + 3FConvSize 8059 1.0
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U = 2793 , p = 3.4968× 10−8 < 0.05 . When either one or both FRecn and FInitPop are absent from the rule, the 
derived model does not perform better than the null model, u(m) = −5FInitPop − 2FIntr + 4FRecip
+2FURLPop + 5FConvPop − 2FInfo + 4FURLFam + 3FConvSize  :  U = 5626  ,  0 . 9 3 7 1  a n d  u(m) = 2FURLPop
+5FConvPop − 2FInfo + 4FURLFam + 3FConvSize : U = 8059 , p = 1.0.

Conclusions
We investigated nine factors hypothesized to contribute to message visibility by online social media users under 
information overload. The Information Overload Model (IOM)6 used provides a mechanistic representation of 
how responsiveness decreases due to increased loss of actionable information under information overload. IOM 
relates the intensity of actionable information loss to the intensity of overload experienced, via a power-law, by 
calculating the number of received messages that the agent can process and respond to. Messages are ordered by 
priority, with lower priority messages being lost first when under overload. While the basic IOM assumes that 
prioritization is solely dependent on message recency, we relaxed this assumption, and tested alternate utility 
functions for calculating message priority. Using evolutionary model discovery21, we evolved this utility function 
and examined the importance of the nine hypothesized factors towards the model’s ability to replicate overall 
responsiveness observed in the data.

Our findings show that, of the factors considered, recency (positive FRecn ) is in fact the most important fac-
tor driving response prioritization. Moreover, messages received more recently are more likely to be responded 
to by highly active users, despite information overload. This result agrees with findings in the literature that 
demonstrate the importance of recency in the propagation of news online20, and in particular, within Twitter, 
where information on a user’s timeline may be ordered reverse-chronologically, i.e. starting from the most 
recent notifications to the oldest18. Interestingly, Twitter switched the default timeline ordering from reverse-
chronological to an algorithmically determined most relevant ordering in 2016, yet later allowed users to switch 
back to reverse-chronological ordering48. An interesting avenue for future work would be to analyze how effective 
Twitter’s most relevant ordering is in providing users with the information that they are most responsive to, in 
comparison to reverse-chronological ordering.

Next, we find that the popularity of the user initiating a conversation to which a message belongs (negative 
FInitPop ) is the second most important factor, which however, has a negative effect on response priority. Also, 
preference for larger conversation size (positive FConvSize ), high conversation popularity (positive FConvPop ), and 
high URL popularity (positive FURLPop ) were of relatively lower importance. Together, these observations indi-
cate that under information overload, the effects of social learning theory and status theory seem to diminish.

Instead, our results concur that overloaded users are novelty-affinitive49–52, exhibit both heterophilous and 
homophilous behavior53–56, and are more responsive within reciprocal relationships57,58. The factors encoding 
these three social theories were found to be of relatively moderate importance, after recency and low popularity 
of the conversation initiator, leading us to the above conclusion. In particular, messages with content previously 
discussed by the user were less likely to be responded to (negative Finfo ), indicating an affinity for novel infor-
mation. We found that mechanisms that either prioritized or deprioritized messages from users with common 
interests (negative or positive FIntr ) were more likely than those that did not consider common interests at all, 
indicating that both homophilic behavior, in accordance to social correlation theory, and heterophilic behavior 
were likely. Messages from senders who were historically more likely to respond back to a responding user (posi-
tive FRecip ) were more likely to gain responses under information overload as well, indicating the importance of 
reciprocity, and supporting social exchange theory.

Finally, the strong prioritization on message recency and unpopularity of the conversation initiator, by over-
loaded users, was confirmed by comparing simulations of models including and excluding these two factors, 
against those of a null model with random prioritization. Models that considered both these factors at optimal 
presence were able to outperform the null model, while those that did not contain both these factors at optimal 
presence did not. To summarize, a cognitively plausible mechanism for information overload would prioritize 
the most recently received messages, posted by less popular users, with a slight tendency to prefer novel inter-
actions that offered high absolute reciprocity, and demonstrated either homophilic or heterophilic tendencies.

Data availability
The datasets generated during and analysed during the current study are available in the Open Science Frame-
work repository, https​://osf.io/y5swr​/?view_only=baaef​2d3d1​1c4ae​ca522​3d124​c936b​fe.
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