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Abstract

Objectives

To describe a flexible common data model (CDM) approach that can be efficiently tailored to

study-specific needs to facilitate pooled patient-level analysis and aggregated/meta-analy-

sis of routinely collected retrospective patient data from disparate data sources; and to detail

the application of this CDM approach to the DISCOVER CKD retrospective cohort, a longitu-

dinal database of routinely collected (secondary) patient data of individuals with chronic kid-

ney disease (CKD).

Methods

The flexible CDM approach incorporated three independent, exchangeable components

that preceded data mapping and data model implementation: (1) standardized code lists

(unifying medical events from different coding systems); (2) laboratory unit harmonization

tables; and (3) base cohort definitions. Events between different coding vocabularies were

not mapped code-to-code; for each data source, code lists of labels were curated at the

entity/event level. A study team of epidemiologists, clinicians, informaticists, and data scien-

tists were included within the validation of each component.

Results

Applying the CDM to the DISCOVER CKD retrospective cohort, secondary data from

1,857,593 patients with CKD were harmonized from five data sources, across three coun-

tries, into a discrete database for rapid real-world evidence generation.

Conclusions

This flexible CDM approach facilitates evidence generation from real-world data within the

DISCOVER CKD retrospective cohort, providing novel insights into the epidemiology of
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CKD that may expedite improvements in diagnosis, prognosis, early intervention, and dis-

ease management. The adaptable architecture of this CDM approach ensures scalable,

fast, and efficient application within other therapy areas to facilitate the combined analysis of

different types of secondary data from multiple, heterogeneous sources.

Introduction

Chronic kidney disease (CKD), characterized by a gradual loss of kidney function over time, is

a major cause of morbidity, loss of quality of life, and death globally, with a prevalence of

approximately 1 in 10 people that is increasing as the prevalence of associated conditions such

as diabetes mellitus, cardiovascular disease, and hypertension also continue to grow [1]. Preva-

lence of complications such as anemia and hyperkalemia increase with the severity of CKD

and can be life threatening, necessitating costly long-term pharmacological interventions to

improve outcomes [2–5].

Developing initiatives to improve outcomes of patients with CKD and associated comor-

bidities and complications has been identified as a global priority [1, 6–11]. The DISCOVER

CKD program is a unique, large-scale, multinational, longitudinal study of patients with a spe-

cific multimorbid health condition (CKD), comprising real-world data (RWD) including

independent prospective and retrospective patient cohorts [12]. Through the generation of pri-

mary and secondary RWD, the DISCOVER CKD program aims to provide novel insights into

the epidemiology of CKD, describing aspects including patient characteristics, disease progres-

sion, clinical outcomes, the patient journey–including comorbidity and pharmacotherapy bur-

den, practice patterns, and clinical management of CKD [13].

The retrospective cohort of DISCOVER CKD comprises secondary data from >1.8 million

patients, extracted from several established, anonymized electronic health record and claims

databases that AstraZeneca has licensed for internal analysis or through external collabora-

tions. Databases included at time of development are listed in Table 1, with the addition of

more data sources planned. Data extracted include patient demographics, prescriptions, pro-

cedures, healthcare resource utilization and encounters, medical history, and laboratory

Table 1. Established databases included in DISCOVER CKD.

Status (CDM) Database name Country Database type Coverage Reference

Included in CDM for 2020

analyses

TriNetX [14] USA EHR Inpatient and outpatient Topaloglu U, et al. JCO Clin Cancer
Informatics 2018;2:1–10.

Explorys (LCED) [15] USA EHR and

claims

Inpatient and outpatient https://www.ibm.com/watson-health/

about/explorys

DOPPS [16] USA EHR Hemodialysis Pisoni RL, et al. Am J Kidney Dis 2004;44:7.

CPRD [17] UK EHR Primary care, inpatient and

outpatient, ER

Herrett E, et al. Int J Epidemiol
2015;44:827–836.

JMDV [18] Japan EHR and

claims

Inpatient and outpatient Tanaka S, et al. J Pharm Heal Care Sci
2015;1:16.

Upcoming (2021) J-CKD DB (Kawasaki Medical

School) [19]

Japan EHR Inpatient and outpatient Nakagawa N, et al. Sci Rep 2020;10:7351.

CDM, common data model; CPRD, Clinical Practice Research Datalink; DOPPS, Dialysis Outcomes and Practice Patterns Study; EHR, electronic health record; ER,

emergency room; J-CKD DB, Japan Chronic Kidney Disease Database; JMDV, Japan Medical Data Vision; LCED, Limited Claims and Electronic Health Record

Database.

https://doi.org/10.1371/journal.pone.0274131.t001
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values. A comprehensive list of all variables (>170) and detailed study objectives of DIS-

COVER CKD have been reported previously [12].

To facilitate studies including multiple diverse data sources, many RWD analyses utilize a

common data model to standardize terminologies [20]. Typically, between sources of RWD,

medical events are recorded in many different coding systems (for example, International

Classification of Diseases [ICD]-9, ICD-10, UK Read Code) which necessitates standardiza-

tion. In addition, differences, such as those in settings, and in regional and local clinical prac-

tices [21], may result in heterogeneity in reporting of laboratory units, which requires

extensive pre-work to ensure that data are standardized before being consolidated. In terms of

the multiple secondary datasets included for analysis within the DISCOVER CKD retrospec-

tive cohort, data structure and coding systems were disparate, from different settings and pop-

ulations, and required consolidation into a discrete and standardized database. Pre-work was

also necessary to consolidate the varying clinically acceptable definitions of patients with CKD

from within each source database, to identify patients meeting inclusion/exclusion criteria out-

lined in the DISCOVER CKD study protocol (detailed previously) [12]. As such, the DIS-

COVER CKD program required a common data model (CDM) approach.

CDMs create common value sets to standardize disparate data structures, support scalabil-

ity, streamline multi-database analysis, and enhance data interoperability. The intended result

is the generation of robust real-world evidence (RWE) [20]. CDMs for the harmonization of

healthcare data have been developed previously; notable industry standard examples include

Informatics for Integrating Biology and the Bedside (i2b2) [22], The Observational Outcomes

Medical Partnership (OMOP) CDM, managed by Observational Health Data Sciences and

Informatics (OHDSI) [23], Sentinel, launched by the US Food and Drug Administration

(FDA) [24, 25], and the Patient-Centered Outcomes Research Network (PCORnet) [26, 27].

Industry standard CDMs, such as the OMOP CDM, have been used previously to combine

databases for observational studies. They are typically used to convert the entire data source

population through the mapping of all events in a given data source code-to-code. However,

in DISCOVER CKD, the volume of planned studies posed an opportunity to create a template

for study-specific analysis datasets, serving as a study-specific CDM or harmonized analytical

dataset. The use of the CDM described in this paper is specific to the DISCOVER CKD study

and complementary to the source data format. The source dataset can be OMOP format or

other industry standard formats, and the study-specific CDM in this paper would harmonize

the medical events to the study semantics, improving efficiency of the data scientists’ study ini-

tiation workflow.

Objectives

The objective of this report is to describe the development of a flexible CDM that could achieve

the following goals:

• Facilitate pooled, patient-level analysis (where possible) in addition to aggregated/meta-anal-

ysis of a multinational, retrospective (secondary), longitudinal database of routinely collected

patient data from disparate data sources, to support the realization of DISCOVER CKD

research objectives.

• Achieve core user needs of ease of use, speed, and scalability through the generation of a sin-

gle, harmonized data source that increases workflow efficiency.

• Be effectively refreshed, adapted, updated, and expanded with new data sources in a stream-

lined and well-documented manner, ensuring applicability for future use within DISCOVER

CKD and other therapy areas.
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Materials and methods

Development of a flexible CDM approach

Three key components of the flexible CDM were designed to function in an independent man-

ner, to address the needs of the DISCOVER CKD program, and to be easily updated for future

application to other therapy areas: (1) standardized code lists (to unify medical events from

different coding systems); (2) laboratory unit harmonization tables (comprising conversion

factors to standardize laboratory units); and (3) base cohort definitions (selection criteria to

define source databases patients for inclusion; Fig 1). These components were developed as

separate entities to be easily replaced or extended as required for novel applications (Fig 2).

For example, base cohorts could easily be replaced, and new codes or standardized terms

(medical events/encounters) could be added to the code lists. Once completed, extract, trans-

form, load (ETL) logic, coding, and procedures were applied to the components to initiate the

data model. The ETL process remained constant per data source, while the three independent

components were exchanged.

Development of standardized code lists

The DISCOVER CKD protocol comprised >150 entity types, spanning diagnosis, prescrip-

tions, procedures, and laboratory values, requiring code lists across different coding systems.

The target data standards for DISCOVER CKD are summarized in S1 Table. Relevant code

lists were generated by the study team (S2 Table) and externally validated by a clinical coder.

Coding systems were searched for terms related to each entity and irrelevant codes were

excluded. Clinicians on the study team verified the final code lists in an additional confirma-

tion step, with any discrepancies resolved through cross-functional discussion and consensus.

Following verification, code lists were loaded into a single database table (S3 Table), hereon

referred to as the reference code lists table. A singular reference table of code lists ensured that

scripts loaded into the data model could be kept as simple as possible. Code lists were harmo-

nized for all entity types included in the protocol, across all data sources, to ensure studies on

the CDM had reliable standardized entity names for analysis. For example, entity codes for

type 2 diabetes—ICD-10 code E11.34 and Read code C100112—were both labeled as ‘type 2

diabetes’.

Fig 1. DISCOVER CKD CDM architecture. Blue dashed line denotes potential data sources that could be added to the flexible CDM. CDM, common data

model; CKD, chronic kidney disease; CPRD, Clinical Practice Research Datalink; DOPPS, Dialysis Outcomes and Practice Patterns Study; ETL, extract,

transform, load; JMDV, Japan Medical Data Vision; LCED, Limited Claims and Electronic Health Record Dataset; OMOP, Observational Outcomes Medical

Partnership.

https://doi.org/10.1371/journal.pone.0274131.g001
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One-to-one mapping was not performed as it was not possible to reach complete harmoni-

zation between different coding systems. All medical events were standardized at the entity

level, while interpretation of events was undertaken at analysis. Contextual considerations by

data source and country were required. For example, CKD hospitalization events had to be

interpreted with consideration to country-specific differences; in Japan, a patient could be hos-

pitalized to test for CKD, resulting in a CKD hospitalization event which was not due to CKD.

Harmonization of laboratory units

The DISCOVER CKD retrospective patient cohort includes data on several biochemical labo-

ratory measures commonly collected in clinical practice. Different reporting standards

between data sources (such as the laboratories in hospitals, practices, or clinics) resulted in dif-

fering laboratory units. For example, data sources showed up to six different units for creati-

nine: μmol/L, mmol/L, mol/L, microU/L, mg/dL, mmol, mg/L, and g/L.

Standard units for each laboratory measure, to be reported in DISCOVER CKD studies and

analyses, were selected and confirmed within the study team. Clinically plausible lower and

upper range values for each laboratory measure were also confirmed with medical input to

ensure that implausible laboratory values were not included. Units for each laboratory were

harmonized using relevant conversion factors [28, 29]. Implementation of standardization for

each data source, and for each laboratory unit, required two principal steps (Fig 3): (1) manual

mapping to DISCOVER CKD acceptable units; and (2) conversion to DISCOVER CKD stan-

dardized units. Acceptable units were defined as any unit that was valid for the laboratory mea-

sure and could be converted to the standardized unit. For data sources containing significant

laboratory records with an unknown unit, where possible, frequency distributions were used

Fig 2. Simplified entity relationship diagram. �Prescription dose and dose standardization are pending. CDM, common data model; CKD, chronic

kidney disease; ID, identification; Rx, prescription.

https://doi.org/10.1371/journal.pone.0274131.g002
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to map and assign the closest logical unit matching the distribution of laboratory values. For

example, if hemoglobin values were given without a known unit, but values within the data

source ranged from 3 to 22 with an appropriate distribution, the unit g/dL was applied. Rele-

vant conversion factors [28, 29] for each laboratory unit were loaded as a reference table.

Using programmed conversion factors, the acceptable unit, across data sources, was converted

to the standardized unit as part of the data-load to the CDM. The final laboratory table in the

CDM maintains both the raw unit and value, and the standardized unit and value.

Base cohort definition

The standardized code list table was utilized to derive the DISCOVER CKD base cohort for

each data source. Base cohorts were stored in separate tables per data source, where each data

source was given a unique name (stored in a variable called data_source_name). Base cohorts

were then combined to create a cohort of all patients with CKD in DISCOVER CKD in one

table, in line with data governance policies applying to each data source. The two-step process

of creating data source-specific base cohorts prior to combination into a cross-data source

base cohort was adopted to ensure that individual data sources could be refreshed with new

data, without the need to refresh base cohorts of all data sources.

Briefly, patients with CKD were identified within each database for the DISCOVER CKD

base cohort by meeting any of three criteria: (1) documented diagnostic code (e.g. ICD-10) for

CKD stages 3A through to kidney failure; (2) two estimated glomerular filtration rate (eGFR)

measures [30] of<75 mL/min/1.73 m2 recorded>90 days apart (maximum, 730 days) from

January 1, 2008; or (3) a code for chronic (duration, >30 days) renal replacement therapy

(hemodialysis and peritoneal dialysis). The CKD Epidemiology Collaboration (CKD-EPI)

equation without race was used to calculate eGFR; for Japanese data, eGFR was calculated

from serum creatinine using the revised equations by Matsuo et al. (2009) modified for the

Fig 3. Example laboratory unit harmonization: Creatinine units. Acceptable units were defined as any unit that was valid for the laboratory and could be

converted to the standardized unit. CKD, chronic kidney disease.

https://doi.org/10.1371/journal.pone.0274131.g003
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standard physique [12, 31]. Once a study-specific cohort is identified, data can be imported

into any statistical software for analysis.

Data mapping and data model implementation

Standardized medical entities are held in seven core tables outlined in Fig 2, with an additional

table for patient demographics. Mapping between the source data and the CDM was docu-

mented for each data source. Source columns and tables, the target column and table, and the

logic used to transform the source entity to the entity in the CDM were documented at a col-

umn level to enhance traceability and quality control. Harmonization of entity descriptors,

such as diagnosis type or inpatient/outpatient events in the relevant core tables, was included

as a pertinent document step for the maintenance and extension of the CDM. ‘Record identi-

fier’ and ‘last updated information’ columns were included in the target (CDM) core tables for

traceability. Record identifiers, such as encounter ID and record ID associated with the medi-

cal entity, were retained in the CDM to enable matching of an entity in the CDM to the respec-

tive entity in the source data. This enables easy extension of the CDM to include data points

specific to the data source that are currently not included, such as cost. These columns were

also key for data quality checks during study implementation. Last updated information com-

prised two columns to record which user performed the upload and when the medical entity

was loaded into the CDM.

Once the mapping document was complete, technical validation was undertaken by data

scientists who had a working knowledge of the data sources prior to implementation of ETL

logic to initiate the data model. The ETL process outlines the database functions implemented

in the following steps: taking data from the original source (‘extraction’); standardizing dispa-

rate datasets using the CDM components described above (‘transformation’); and loading into

the end database (to comprise the DISCOVER CKD retrospective cohort; ‘loading’). Face

validity of the data output was confirmed systematically by the study team once all data were

loaded to ensure the pooled baseline covariates of patients with CKD were reasonable and in

line with existing literature. These validation steps ensure that the DISCOVER CKD secondary

data output is of high quality and suitable for analyses.

Data management and procedures

Datasets were stored in the Amazon Redshift cloud data warehouse. Python Jupyter Note-

books were used to maintain the readability of all documented steps and initiated Structured

Query Language (SQL) scripts. Papermill (Python) was utilized to execute notebooks and SQL

scripts, and to organize the steps to build, refresh, and add new data sources [32]. Code was

maintained on an internal Bitbucket repository. ETL logic to initiate the data model was

implemented in SQL.

All data in the flexible CDM were loaded per local data requirements. For Dialysis Out-

comes and Practice Patterns Study (DOPPS), AstraZeneca licensed a deidentified limited data

set from Arbor Research Collaborative for Health (Michigan, USA) pursuant to a data use and

licensing agreement between the parties.

Ethics approval

The DISCOVER CKD master protocol and statistical analysis plan were reviewed by the Astra-

Zeneca team and collaborating scientific committee, and submitted for review and approval to

AstraZeneca’s internal governance. Extraction of clinical data was conducted in accordance

with country-specific data privacy laws, governance, ethical approvals (where applicable), and

patient consent (where applicable); only anonymized data were utilized for DISCOVER CKD.
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For the UK Clinical Practice Research Datalink (CPRD), the DISCOVER CKD protocol was

approved by an Independent Scientific Advisory Committee (ISAC protocol number:

19_226A4). Institutional Review Board approval was not required as the study did not involve

the collection, use, or transmittal of individual identifiable data.

Results

Secondary data and analyses in DISCOVER CKD: 2020 analytical output

At the time of development of the DISCOVER CKD retrospective cohort, the CDM approach

was used to harmonize secondary data from 1,857,593 patients with CKD from five data

sources across three countries (UK CPRD, US DOPPS, US Limited Claims and Electronic

Health Record Dataset [LCED] 2019, US TriNetX, and Japan Medical Data Vision) into a dis-

crete database for RWE generation (Table 1; S1 Fig). DOPPS has subsequently been removed

from DISCOVER CKD future analyses in line with data use and licensing agreements; other

secondary datasets from DISCOVER CKD are planned for future inclusion in the CDM.

Standardized secondary data metrics, and the resultant baseline covariates of the population

included in DISCOVER CKD, overall and by database, are summarized in Table 2. Due to

data privacy restrictions, data derived from LCED could not be pooled with data from other

databases for analysis of the overall DISCOVER CKD cohort.

Table 2. Secondary data and baseline covariates of patients included in DISCOVER CKD.

Overall TriNetX Explorys (LCED) DOPPS CPRD JMDV

Secondary data

Database size,a GB 76.8 53.1 16.9 7.1 15.4 8.1

Total records, n 1,042,035,868b 417,339,825 181,577,200 3,852,045 250,747,268 46,344,726

Procedure events 22,756,095b 10,962,854 5,129,753 16,626 3,512,078 4,143,808

Coded outcomes, n 21 20 19 1 18 14

Diagnosis events 168,815,184 84,116,926 73,572,637 108,890 7,865,001 3,151,730

Coded outcomes, n 63 57 57 18 60 56

Drug prescription events 364,318,203b 46,335,922 25,870,962 452,163 124,011,918 23,449,842

Medication classes, n 57 42 46 20 46 38

Laboratory/biochemistry measurements 458,706,628 271,238,863 68,540,692 3,209,992 102,051,746 15,104,149

Classes, n 44 31 33 21 35 19

Baseline covariatesc

Mean age at index, years (SD) 68.5 (13.69) 65.87 (13.41) 69.93 (13.98) - 72.03 (12.76) 75.99 (12.76)

Female, n (%) 417,512 (55.7) 264,633 (56.3) 49,845 (54.7) 8109 (42.7) 104,650 (58.0) 40,120 (50.0)

Mean BMI, kg/m2 (SD) 28.89 (5.67) 28.88 (5.37) 30.19 (7.24) - 28.91 (6.26) -

Mean baseline eGFR, mL/min/1.73 m2 (SD) 49.45 (15.56) 48.3 (16.48) 52.07 (14.75) - 53.7 (11.08) 49.16 (14.76)

CKD stage 2 or functional decline, n (%) 139,973 (18.7) 99,497 (21.2) 31,458 (34.6) - 4683 (2.6) 35,793 (44.6)

CKD stages 3–5, n (%) 273,092 (36.4) 13,4612 (28.6) 49,579 (54.5) 18,982 (100.0) 80,650 (44.7) 38,848 (48.4)

Diabetes mellitus, type 2, n (%) 224,656 (30.0) 162,293 (34.5) 36,232 (39.8) 18 (0.1) 33,771 (18.7) 28,574 (35.6)

Hypertension, n (%) 483,061 (64.4) 311,769 (66.3) 76,185 (83.7) 15,058 (79.3) 98,554 (54.6) 57,680 (71.9)

Heart failure, n (%) 138,400 (18.5) 71,987 (15.3) 18,287 (20.1) 4588 (24.2) 12,528 (6.9) 49,297 (61.5)

aOverall database size is smaller than the sum of contributing sources due to data compression inside the Amazon Redshift cloud data warehouse.
bOverall events contain additional composite events generated following harmonization of data sources into the DISCOVER CKD retrospective cohort.
cOverall baseline covariates exclude LCED, which could not be pooled due to data privacy restrictions.

BMI, body mass index; CKD, chronic kidney disease; CPRD, Clinical Practice Research Datalink; DOPPS, Dialysis Outcomes and Practice Patterns Study; eGFR,

estimated glomerular filtration rate; JMDV, Japan Medical Data Vision; LCED, Limited Claims and Electronic Health Record Dataset; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0274131.t002
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The flexible CDM was developed in 2020 and, in the same year, data from pooled and

meta-analyses of DISCOVER CKD were disseminated in 12 poster presentations at global con-

gresses, with a further eight poster presentations in 2021. Several manuscripts are currently

under development based on secondary data derived from this patient cohort, covering CKD

and complications including anemia and hyperkalemia across CKD subgroups in multiple

countries.

Discussion

RWE generated from routinely collected data is increasingly being sought by decision-makers.

Creating datasets suitable for the generation of RWE from longitudinal healthcare databases

involves extensive data processing; reporting the study parameters utilized, such as the meth-

ods and decisions undertaken in the CDM approach, can improve reproducibility, rigor, and

confidence in the RWE generated from such databases [33, 34]. The flexible CDM approach

described here was developed initially for the implementation and analysis of a closed cohort

specific to the needs of, and criteria for, the retrospective cohort of the DISCOVER CKD pro-

gram, for large-scale analyses of patients with CKD where results are obtained more rapidly

than with the conventional approach of working on each study independently. The rapid gen-

eration of diverse, extensive RWE from patients with CKD from the DISCOVER CKD pro-

gram throughout 2020 and onwards has only been possible using such an approach.

Incorporating the principles of speed, ease of use, adaptability, and scalability, this flexible

CDM approach may provide a more agile harmonization of secondary data than other existing

CDMs could offer. Adaptability and scalability were achieved by designing CDM components

to function independently of one another. Storing individual data sources separately in a feder-

ated approach (i.e. a unified approach to base cohort tables) streamlines future modifications

to the CDM, as users need only refresh, replace, or update the components of interest. For

example, if a data license is due to expire, it is possible for the user to remove specific data

from the refresh without impacting other data in the CDM, as demonstrated with the removal

of DOPPS from future analyses of the DISCOVER CKD retrospective cohort.

The quality of the curation of underlying data is a consideration when determining the

value of RWE derived from a CDM [20]. To achieve high-quality RWE from the given output,

CDM development requires expertise within several areas: significant knowledge of the data,

understanding of epidemiologic study design, and competency within RWE analysis principles

[20]. Through the inclusion of epidemiologists, clinicians, informaticists, and data scientists

within validation steps throughout CDM development, analyses derived from this flexible

CDM approach should prove to be of high quality, sufficient for the generation of RWE from

the DISCOVER CKD retrospective cohort.

There were some challenges in the development of this CDM approach. The time and effort

required to create and refine correct code lists, and to obtain permission from data owners to

conduct this study, were considerable. Establishing a setup in which updates to code lists could

occur during study implementation, without detriment to the study, was key. Code was writ-

ten with the assumption that it would need to be rerun, and efforts were made to facilitate

rerunning and reloading the model, such that this demanded minimal effort from the pro-

grammer or data scientist.

This CDM approach offers a solution to increase RWE insights through the DISCOVER

CKD program, integrating data from >1.8 million patients with CKD for analysis. Novel

insights gleaned from real-world, routine-care data on epidemiology, patient burden, practice

patterns, and patient outcomes [35–38] can help to improve the understanding of CKD, and

DISCOVER CKD may therefore facilitate improvements in diagnosis, prognosis, early
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intervention, and disease management. In addition, implementation of an effective, transpar-

ent, and adaptable CDM approach can maximize the evidence gained from RWD.

Future work

The approach to building a CDM as described here may act as a standard to help improve

scale and efficiency of analyses within future studies, by harmonizing different data sources in

future multi-database studies (across various therapeutic areas) or by facilitating the build of

disease-specific secondary registries available for ad hoc analysis and studies. Furthermore, as

the value of RWE is increasingly being recognized by regulatory bodies worldwide, such as the

United States FDA [39] and UK Medicines & Healthcare products Regulatory Agency

(MHRA) [40], such evidence may contribute to future regulatory decision making.

Strengths

There are several strengths of the flexible CDM described in this study, and relating to the

application of this CDM for analysis of the DISCOVER CKD retrospective cohort. The mea-

sures described above detail an approach to building a CDM suitable for adaptation for use

within other therapy areas (allowing other groups to answer important research questions),

and that is scalable such that it can accommodate new data sources and provide coverage of

additional types of data (for example, costs), allowing a longevity of impact and evidence gen-

eration that may not have been achieved otherwise. These measures will also facilitate the

application of this CDM approach to other therapy areas with fewer pre-work requirements.

In addition, novel RWD types (such as those derived from sensors and devices used for

patient-reported outcomes) could easily be incorporated into the CDM approach at a level

suitable to the study. For example, novel RWD types could be added as a new entity and loaded

into an existing table (i.e. ‘observations’), or a new table could be added to the CDM. Although

the current version of the CDM houses data in one place, the federated approach to data man-

agement ensures flexibility around restrictive data licensing policies; data sources can be con-

verted to CDM format separately whilst remaining in the source location [41]. Likewise,

individual participant data could be stored across multiple locations, and the CDM could be

adapted for each data source and applied in situ, with analyses designed and run separately or

in parallel as required.

Finally, data loss may be less common within this built-for-purpose CDM approach com-

pared with industry standard CDMs that map vocabularies code-to-code. Each data source has

its own curated code list of labels at the entity/event level; specific events in one coding stan-

dard (i.e. ICD-10) are not linked to those in another standard (i.e. Read code) approach. There

was no data loss in medical diagnosis, procedures, and prescription events; only laboratory

events with values that fell outside the acceptable range, or units that could not be verified,

were excluded. Exclusion of data was limited to<1% of laboratory data, which comprised

invalid values without units.

Limitations

The approach described here also has some limitations. Although this CDM approach has

been designed for adaptation to other therapy areas, the transformation rules applied to labo-

ratory value conversions have been developed for use within the CKD therapy area and may

not be appropriate for all circumstances. Collaboration with epidemiologists, clinicians, infor-

maticists, and data scientists with specific knowledge of the therapy area is essential. Some

databases did not allow for pooling of data due to data privacy restrictions. Although suffi-

cient-quality RWE can inform decision making, RWD, including that incorporated into the
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CDM for DISCOVER CKD, has inherent limitations that have previously been described in

detail.

Conclusions

The flexible CDM approach used for the DISCOVER CKD study provides a scalable, fast, and

efficient platform to harmonize secondary data from multiple heterogeneous sources, facilitat-

ing analysis of a large retrospective cohort of patients to provide novel insights into the epide-

miology of CKD by describing real-world patient characteristics, disease progression, clinical

outcomes, the patient journey, practice patterns, and clinical management of patients with

CKD. Furthermore, owing to its flexible and adaptable architecture, this CDM approach may

be applied to other therapy areas to facilitate the combined analysis of different types of sec-

ondary data.
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