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Objective. To determine whether arm circumference-to-height ratio (AHtR) predicts adolescents’ cardiometabolic risk and how its
predictive statistics compare to those of body mass index (BMI) percentile. Methods. Pooled data for adolescents (N� 12,269,
12–18 years) from the National Health and Nutrition Examination Survey, U.S., 1999–2014, were analyzed. For each of the eight
cardiometabolic variables, borderline-risk and high-risk were considered unhealthy, and being unhealthy on any variable was
considered “unhealthy overall” in terms of cardiometabolic risk. Area under the curve and R2 were used to compare BMI
percentile and AHtR for accuracy in predicting risk. Results. Female AHtR≥ 0.19 and BMI percentile≥ 94 and male AHtR≥ 0.16
and BMI percentile≥ 64 predicted a probability of >0.7 being unhealthy overall. AHtR predicted overall risk and unhealthy levels
of six variables more accurately than BMI percentile. Significant differences were overall risk (χ2 � 4.18; p � 0.041), total
cholesterol (χ2 � 8.68; p � 0.003), glycated hemoglobin (χ2 � 5.24; p � 0.022), and systolic pressure (χ2 � 5.10; p � 0.024). AHtR
had higher accuracy in predicting high-density cholesterol, fasting glucose, glycated hemoglobin, and systolic/diastolic pressures
plus higher specificity in predicting all variables except triglycerides. BMI percentile had higher sensitivity for all variables.
Sensitivity and accuracy were higher for males. No significant race/ethnicity differences were observed. Conclusions. Without
needing adjustment for age and weight, AHtR can predict some cardiometabolic risk factors of adolescents, especially of males,
more accurately than BMI percentile, thus facilitating population risk estimation and early interventions. Further research is
required to validate these findings in younger children.

1. Introduction

Child and adolescent overweight and obesity signifi-
cantly increase the risk of premature mortality, morbidity
(e.g., diabetes, asthma, and hypertension), and related out-
comes [1]. Further, obesity tracks from childhood to adult-
hood more strongly than any other risk factor [2]. Risk factor
clustering, both biological and behavioral, is the greatest

predictor of accelerated atherosclerotic processes; such
clustering during childhood and adolescence can persist into
adulthood [3]. Although exact criteria are unclear, the ability
to detect clustering of obesity and cardiometabolic risk factors
in childhood and adolescence is important for early initiation
of behavioral and medical interventions [4–6], which may
include simple and inexpensive lifestylemodifications, such as
increased daily sleep [7].
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Unfortunately, self-reported anthropometric data from
adolescents are often inaccurate [8]. In the past, this pre-
sented a meaningful problem, since these self-report risk
factor data for a wide variety of potentially preventable
chronic health issues were insufficient to effectively inform
public health interventions. )us, there was a need to
identify a measure of obesity and overweight that is accurate,
simple, and cost-effective [9]. BMI has emerged as the most
commonly measured parameter, worldwide, for objectively
assessing general obesity plus potential-related disease risk at
all ages and establishing treatment, research, and evaluation
priorities. Research has revealed that BMI is correlated with
fat mass and percentage of body fat at 0.90 and 0.69, re-
spectively, so it is highly correlated with waist circumference
and moderately correlated with other measures of adiposity.
)us, BMI can be used to predict adiposity-related car-
diometabolic risk in situations in which a high level of
precision is not required [10]. However, there are several
known barriers to the use of BMI. Calculation and plotting
of child and adolescent BMI have been identified by some
school-based healthcare professionals as prohibitive [11],
especially on a large scale, due to the difficulty of the numeric
conversions and time required to perform the calculations.
In pediatric primary care, some physicians have expressed
concern that parents will not understand the BMI measure
or even that it may be misleading for certain body types [12],
and a survey of the American Academy of Pediatrics fel-
lowship found that pediatric primary care physicians, too,
are less likely to calculate BMI in the absence of an assistive
tool [13]. Some concurrent research has attempted to mit-
igate these barriers, for example, by using color-coded BMI
charts to improve metric comprehension among parents
[14]. Researchers from the World Health Organization re-
cently acknowledged some issues with BMI, but noted that
in absence of an alternative viable standard, BMI-for-age is
currently the sole means used to identify individuals who are
overweight or obese [15].

Alternative but far less prevalent measures include waist
circumference and waist-to-height ratio, which are strong
predictors of cardiometabolic risk in children [16], likely
because these measure visceral fat (central obesity), which
releases fatty acids, hormones, and inflammatory agents,
ultimately increase cardiometabolic risk. Although un-
common in epidemiological studies, mid-upper-arm cir-
cumference of pediatric populations is included in some
large-scale surveys, such as National Health and Nutrition
Examination Survey (NHANES), United States. Mecha-
nisms of measurement including the Quaker arm circum-
ference measuring stick (QUAC-stick), which was
introduced in the 1960s to measure children’s height at 1–9
years in order to indicate nutritional status and facilitate
comparisons between countries [17]. Although the ratio of
muscle mass to fat mass in mid-upper-arm circumference
varies by sex and age [18], children’s mid-upper-arm cir-
cumference, concurrent with triceps skinfold thickness, has
been used for community-wide nutritional assessment [19].
Mid-upper-arm circumference is commonly used to quickly
identify moderate to severe acute undernutrition among
6–60 month olds in resource-limited settings [20].

Moreover, in pediatric emergencies, mid-upper-arm cir-
cumference is widely used as a proxy of body weight when
adjusting ventilator/equipment settings and fluid/medication
doses [20, 21].

While mid-upper-arm circumference-for-age reference
tables were recently developed for 1–20 year olds US pop-
ulation [22], little research on use of mid-upper-arm cir-
cumference for determining overweight and obesity in
children and adolescents exists [23–25]. Although mid-
upper-arm circumference for height reference charts are
available for 0.5–10 year olds [26], only one study has utilized
mid-upper-arm circumference-to-height ratio (hereafter re-
ferred to as arm-to-height ratio or AHtR) to evaluate over-
weight and obesity in children [25]. Further, no studies have
examined the potential of mid-upper-arm circumference or
AHtR to predict cardiometabolic risk of children/adolescents.
Given the relative simplicity of producing these measure-
ments compared to BMI calculation, there is a potential value
in validating AHtR as an alternative to BMI in time- or
resource-limited environments, or even for pediatric patients
whose parents have low numeric literacy. As a proof of
concept, this study used pooled NHANES data across 8 cycles
to (a) determine the suitability of utilizing AHtR to predict
adolescents’ cardiometabolic risk and (b) compare AHtR’s
predictive accuracy with corresponding BMI parameters.

2. Materials and Methods

2.1. Study Setting and Dates. )e analyses were based on
pooled, publicly available NHANES data collected from
1999 to 2000 through 2013-2014 (8 cycles), which covered
a nationally representative sample from 15 US counties.
NHANES uniquely combines demographic, socioeconomic,
and health-related interview information with physical ex-
amination and laboratory data.

2.2. Participants. In each two-year cycle, NHANES surveyed
approximately 5,000 noninstitutionalized persons, using
complex, multistage, stratified, clustered, and random sam-
pling designs that oversampled Hispanics and non-Hispanic
Blacks. Certain NHANES variables are limited to ages 12 and
above, while some measures are obtained from only a sub-
sample (e.g., morning fasting sample). )erefore, the age
range in this study was confined to adolescence (ages 12–18)
and excluded pregnant females. Individuals aged 12–18 years
were included only if they had valid height records, at least
one additional anthropometric variable required for calcu-
lating BMI (i.e., weight) and AHtR (i.e., mid-upper-arm
circumference) plus at least one of eight cardiometabolic
variables. A total of 12,269 adolescents met these standards
and were included; 5,005 records contained all eight variables.
Between 1999 and 2014, unweighted response rates for ad-
olescents ranged from 76% to 89% in the interviewed sample
and 74%–87% in the examined sample.

2.3.1. Demographic Variables. Age, gender, race/ethnicity,
and antihypertensive, lipid-lowering, and antidiabetic
medication use were self-reported.
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2.3.2. Anthropometric Variables. BMI and AHtR were cal-
culated using height, weight, and mid-upper-arm circum-
ference measurements from NHANES physicals. Using
anthropometry protocols, mid-upper-arm circumference
was taken on participants aged two months and older at the
right upper arm mid-point mark. )e examiner faced the
right side of the upright standing participant whose
shoulders were relaxed with arms hanging loosely without
muscle flexing. Measurement was taken to the nearest 0.1 cm
using a measuring tape, ensuring it did not compress the
skin yet fit snugly. Mid-upper-arm circumference was di-
vided by height to obtain “unitless” AHtR.

BMI percentiles were computed utilizing a CDC-
provided SAS syntax for z-scores and percentiles based
on sex and age according to 2000 CDC growth charts [27].
For participants aged 2–19, NHANES reported age in
months before 2011-2012 and, thereafter, in years [28]. If
age in months was unavailable, age in years was multiplied
by 12, and then 6 was added, to prevent upwards biased
z-scores; prior studies yielded negligible discrepancies with
this approach [29]. Per established standards, healthy-
weight was defined as BMI< 85th percentile, overweight
as ≥85th to <95th percentile, obesity as ≥ 95th percentile
to <120% of the 95th percentile, and severe obesity as
≥120% of the 95th percentile or a BMI> 35, regardless of
age [30].

2.3.3. Cardiometabolic Variables. Standard cutoffs in the
Expert Panel Report 2012 of the National Heart, Lung, and
Blood Institute were utilized for high-density lipoprotein
cholesterol, low-density lipoprotein cholesterol, tri-
glycerides, total cholesterol, and fasting plasma glucose;
systolic and diastolic blood pressures were categorized based
on age- and height-specific percentiles [2]. American
Academy of Pediatrics (AAP) and American Diabetes As-
sociation (ADA) standard cutoffs were utilized for glycated
hemoglobin [31]. Accordingly, healthy ranges for measures
were (1) high-density lipoprotein cholesterol >45mg/dL; (2)
low-density lipoprotein cholesterol <110mg/dL; (3) tri-
glycerides <90mg/dL; (4) total cholesterol <170mg/dL; (5)
fasting plasma glucose <100mg/dL; (6) glycated hemoglobin
<5.7%; (7) systolic blood pressure <90th percentile; and (8)
diastolic blood pressure <90th percentile. In 18 year olds,
systolic blood pressure <120mmHg and diastolic blood
pressure <80mmHg were considered healthy [32].
Borderline-risk and high-risk range measurements were
considered unhealthy. Adolescents were categorized as
healthy for “overall cardiometabolic risk” if their scores fell
within the healthy range for all cardiometabolic variables.
Being unhealthy on any one variable was considered un-
healthy on “overall cardiometabolic risk.”

2.4. Statistical Analysis. To assess BMI and AHtR outliers,
each variable was converted to a normal distribution based
on the best Box-Cox transformation. Z-scores were cal-
culated after adjusting for age and sex. One outlier was
removed, and 66 participants reporting lipid-lowering,
antidiabetic, or antihypertensive medication use were

reclassified from healthy to unhealthy. Data were combined
across the eight survey cycles with sample weights com-
bined as per survey guidelines. Combined weights were
calculated for participants whose data were collected in
NHANES mobile examination centers; separate weights
were applied for participants in the fasting subsample who
provided measures of fasting plasma glucose, low-density
lipoprotein cholesterol, and triglycerides.

Binary logistic regression was performed on each
cardiometabolic risk outcome (0 � healthy; 1 � unhealthy)
as predicted by BMI percentile or AHtR, including a main
effect and interaction with sex and race/ethnicity. A re-
ceiver operating characteristic (ROC) curve was calculated
for each model, with area under the curve (AUC) used to
compare the ability of BMI and AHtR to accurately predict
unhealthy cardiometabolic variable levels (i.e., borderline-
risk and high-risk levels); an AUC of one indicates
a perfect predictor and ≤0.5 indicates a worthless predictor
[33]. Chi-square tests were used to evaluate the statistical
significance of AUC differences between AHtR and BMI
percentiles after incorporating Bonferroni’s adjustment
for multiple comparisons. R2 and Max-rescaled R2 were
also used as measures of model fit for comparison [34].
Another model tested overall cardiometabolic risk by
combining all eight cardiometabolic measures to identify
whether individuals were in the healthy range on all
measures or in the unhealthy range (i.e., borderline-risk or
high-risk) on any of the eight measures.

Youden’s Index, J (sensitivity + specificity− 100), iden-
tified the optimum age-invariant cutoff of AHtR separately
for males and females (Figure 1), which best classified ad-
olescents as healthy/unhealthy on overall cardiometabolic
risk. Youden’s Index is commonly used as a summary
measure of the ROC curve because it can identify the
maximum potential effectiveness of a biomarker [35]. For
comparison, cardiometabolic cutoffs were identified for age-
dependent BMI percentiles, separately for males and fe-
males, utilizing a similar approach. Based on these AHtR and
BMI percentile cutoffs, participants were classified as
high/low risk. For comparison with the current standard,
individual risk level (high/low) was also determined based
on whether the individual was above or below the con-
ventional 85th percentile of BMI (i.e., overweight).

SAS 9.4 SURVEYFREQ was used to calculate weighted
frequencies based on survey weights, accounting for
NHANES design effects of clustering and stratification with
percentages based on weighted frequencies. Frequency and
percentages for individuals aged 12–18 with healthy and
unhealthy levels of each cardiometabolic variable within
each BMI and AHtR level were cross-tabulated. Analyses
included all adolescents plus males and females separately.

Logistic regression was repeated with each binary
anthropometric indicator (high/low risk) to predict binary
cardiometabolic outcomes (healthy/unhealthy). Alto-
gether and separately for sex and race/ethnicity, classifi-
cation was characterized and compared using sensitivity,
specificity, positive predictive value, negative predictive
value, accuracy ((true positives + true negatives)%), and J-
statistic.
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3. Results

Among 12,268 adolescents with calculated BMI, 62.7%
(females 62.4%, males 63.0%; Hispanics 59.0%, Blacks 60.8%,
Whites 68.1%, and other races 69.7%), were below the 85th
percentile of the reference population reported by the CDC
in 2000 [27]. Further, 16.43%, 12.71%, and 8.18%met criteria
for overweight, obesity, and severe obesity, respectively.
Table 1 provides AUC, R2, andMax-rescaled R2 as evaluation

metrics for classifying cardiometabolic variables
(healthy/unhealthy levels) based on AHtR and BMI per-
centiles. For all three parameters, AHtR predicted overall
cardiometabolic risk (i.e., unhealthy level of any car-
diometabolic variable) and unhealthy levels of six car-
diometabolic variables (total cholesterol, high-density
lipoprotein cholesterol, low-density lipoprotein cholesterol,
glycated hemoglobin, systolic blood pressure, and diastolic
blood pressure) more accurately than BMI percentiles. Four
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Figure 1: Changes in general obesity measures and corresponding cardiometabolic risk probabilities, ages 12–18 by sex, N� 12,268.
(a) Probability of unacceptable outcomes, for females, (b) probability of unacceptable outcomes, for males, (c) BMI percentile and unhealthy
level of each variable, for females, and (d) BMI percentile and unhealthy level of each variable, for females. CR� cardiometabolic risk;
TC� total cholesterol; LDL-C� low-density lipoprotein cholesterol; HDL-C� high-density lipoprotein cholesterol; TG � triglycerides;
SBP � systolic blood pressure; DBP � diastolic blood pressure; HbA1c � glycated hemoglobin; FPG � fasting plasma glucose;
“Any” � unhealthy level on any of the eight CR variables (indicates “overall” CR). Unhealthy level of each CR variable includes both
borderline-risk and high-risk levels, defined according to National Heart, Lung, and Blood Institute Expert Panel Report 2012, American
Academy of Pediatrics, and American Diabetes Association. Arm-to-height ratio ≥ 0.19 in females and ≥ 0.16 in males regardless of age were
identified as the best CR cutoffs, indicating ≥0.71 probability of having unhealthy level in any of the eight CR variables. BMI≥ 94th percentile
in females and ≥64th percentile inmales at a given age were identified as the best CR cutoffs, indicating ≥0.73 probability of having unhealthy
level in any of the eight CR variables.
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AUC differences between AHtR and BMI percentile were
significant: overall cardiometabolic risk (χ2 � 4.18;
p � 0.041), total cholesterol (χ2 � 8.68; p � 0.003), glycated
hemoglobin (χ2 � 5.24; p � 0.022), and systolic blood
pressure (χ2 � 5.10; p � 0.024). However, only total cho-
lesterol remained significant after adjustment for multiple
comparisons (p � 0.038). With triglycerides and fasting
plasma glucose, R2 and Max-rescaled R2 were better for
AHtR, but AUC was better for BMI percentile, with a sta-
tistically nonsignificant difference.

)e effect of AHtR on cardiometabolic risk did not de-
pend on age, i.e., the interaction was not statistically signif-
icant. )e AHtR age-invariant cutoff was ≥0.19 for females
and ≥0.16 for males, with a ≥0.71 probability of being un-
healthy on any of the eight cardiometabolic variables (Fig-
ure 1). Among 12,140 adolescents with calculated AHtR,
54.88% were below cutoff (males 36.52%, females 74.23%;
Hispanics 52.08%, Whites 58.91%, Blacks 53.01%, and other
races 62.64%). Comparable cardiometabolic cutoffs of BMI
percentiles were ≥94th for females and ≥64th for males, with
a ≥0.73 probability of being unhealthy on any of the eight
cardiometabolic variables. Among 12,268 adolescents with
calculated BMI percentiles, 54.99% were below cutoff (males
34.01%, females 77.05%; Hispanics 52.84%, Whites 59.07%,
Blacks 52.14%, and other races 63.05%). Figure 1 plots
changes in each cardiometabolic variable and overall car-
diometabolic risk against changes in AHtR and BMI per-
centile by sex. Compared to BMI percentile, greater AHtR
slopes were observed, with more curve around the cutoff,
especially in males. Table 2 demonstrates weighted percent-
ages of adolescents, in aggregate and by sex, with unhealthy
levels of each cardiometabolic variable within each level of
anthropometric variable. Of all cardiometabolic variables,
unhealthy levels of lipid-panel variables (total cholesterol,
high-density lipoprotein cholesterol, low-density lipoprotein
cholesterol, and triglycerides) contributed most to the in-
creased overall cardiometabolic risk.

Table 3 presents sensitivity, specificity, positive predictive
value, negative predictive value, accuracy, and J-statistic

for overall cardiometabolic risk classification (healthy/
unhealthy), using each binary anthropometric indicator
(high/low risk), in all adolescents and separately by sex. For
cardiometabolic cutoffs of AHtR and BMI percentile, male
sensitivity and accuracy were higher, while female specificity
was higher. For all adolescents and separately for males,
sensitivity, negative predictive value, accuracy, and J-statistic
were highest with use of the age-invariant AHtR cutoff. For
females, sensitivity, negative predictive value, accuracy, and J-
statistic were highest with the use of BMI 85th percentile,
while specificity and positive predictive value were highest
with BMI 94th percentile (cardiometabolic cutoff). For all
individuals and separately for males, specificity and positive
predictive values were highest with the use of BMI 85th
percentile.

Table 3 also demonstrates the sensitivity, specificity,
positive predictive value, negative predictive value, accuracy,
and J-statistic for classification of each binary car-
diometabolic variable in all adolescents, using each binary
anthropometric indicator. While AHtR had the highest
accuracy for high-density lipoprotein cholesterol, fasting
plasma glucose, glycated hemoglobin, systolic blood pres-
sure, and diastolic blood pressure as well as highest speci-
ficity for all cardiometabolic variables except for
triglycerides, BMI 85th percentile had the highest accuracy
for total cholesterol, low-density lipoprotein cholesterol, and
triglycerides. )e cardiometabolic cutoff of BMI percentile
had the highest sensitivity for all cardiometabolic variables.
Appendices 1 and 2 provide corresponding results for fe-
males and males, respectively, by race/ethnicity.

4. Discussion

)e current study comparing AHtR to BMI percentile is
a “proof of concept” for AHtR’s ability to predict adolescent
cardiometabolic risk. In a prior Chinese study, AHtR≥ 0.15
in both sexes was associated with elevated BMI, with sen-
sitivities of 86.0% and 85.4% plus specificities of 91.5% and
87.8% for males and females, respectively [25]. In the current

Table 1: Evaluation metrics for ability of general obesity measures to predict cardiometabolic risk, ages 12–18, N� 12,268.

Cardiometabolic risk
variables

General obesity measures
AUC difference between arm-to-height ratio and

BMI percentile
Arm-to-height ratio

(sex-specific)
BMI percentile (age- and

sex-specific)
R2 Max-rescaled R2 AUC R2 Max-rescaled R2 AUC

Overall risk 0.058 0.083 0.647 0.044 0.063 0.638 χ2 � 4.18; p � 0.041
TC 0.018 0.025 0.585 0.012 0.017 0.577 χ2 � 8.68; p � 0.003
LDL-C 0.021 0.033 0.607 0.014 0.022 0.595 χ2 � 3.62; p � 0.057
HDL-C 0.098 0.136 0.691 0.088 0.122 0.689 χ2 �1.18; p � 0.278
TG 0.053 0.075 0.646 0.049 0.069 0.648 χ2 � 0.24; p � 0.621
SBP 0.082 0.143 0.728 0.072 0.126 0.722 χ2 � 5.10; p � 0.024
DBP 0.001 0.004 0.545 0.001 0.003 0.538 χ2 � 0.35; p � 0.556
HbA1C 0.016 0.048 0.646 0.010 0.029 0.634 χ2 � 5.24; p � 0.022
FPG 0.034 0.058 0.640 0.031 0.052 0.642 χ2 � 0.70; p � 0.403
AUC� area under the curve; TC� total cholesterol; LDL-C� low-density lipoprotein cholesterol; HDL-C� high-density lipoprotein cholesterol;
TG� triglycerides; SBP� systolic blood pressure; DBP� diastolic blood pressure; HbA1c� glycated hemoglobin; FPG� fasting plasma glucose; unhealthy
level of each cardiometabolic risk variable includes both borderline-risk and high-risk levels, defined according to National Heart, Lung, and Blood Institute
Expert Panel Report 2012, American Academy of Pediatrics, and American Diabetes Association. Overall risk indicates unhealthy level on any of the eight CR
variables.
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study, AHtR≥ 0.19 in males and AHtR≥ 0.16 in females
predicted a ≥0.71 probability of being unhealthy on overall
cardiometabolic risk, with higher sensitivity and classifica-
tion accuracy for males. BMI≥ 94th percentile in females and
BMI≥ 64th percentile in males predicted comparable risk.
)e observed sex difference is in agreement with the prior
nationally representative studies. May et al. found that
adolescent males were more likely than females to have one
(36% vs 28%), two (10% vs 7%), or more than two (4% vs
0.8%) cardiometabolic risk factors, whereas a consistent
dose-response increase in the prevalence of cardiometabolic
risk factors was observed by weight categories [36]. A sex
difference was also observed consistently across racial/ethnic
groups. For example, Hispanic/Latino males had a greater
prevalence of diabetes (21% vs 12%) and hypertension (9%
vs 3%) and were more likely to have prediabetes (OR� 2)
than their female counterparts [37]. Although the current
study did not find considerable difference by race/ethnicity,
cross-national validation of these results is warranted.

One meaningful impetus for this study was the research
literature suggesting that BMI is not a perfect measure of

general obesity [38]—specifically, the findings that health-
care providers indicated that the complexity of BMI was
a barrier to its regular use [11–13]. BMI involves commonly
understood body weight and height, but is somewhat
complicated to calculate. For children and adolescents, as-
sessors interpret age-sex specific BMI percentile charts,
requiring additional numeric skills. Importantly, BMI has
moved to the forefront of recommended metrics due to its
accuracy, simplicity, and low cost [7]. )us, the finding that
AHtR performed similarly to BMI in calculating car-
diometabolic risk factors in adolescents in this sample may
suggest its potential use as a complementary measure of
general obesity in situations where one or more barriers to
using BMI are present. In contrast, many other measures of
total adiposity, such as dual-energy x-ray absorptiometry,
are more difficult than BMI to obtain in ordinary survey and
clinical settings, and most importantly, in homes, precluding
self-monitoring. Further, measuring central obesity using
waist circumference per guidelines by minimizing the effects
of clothing, respiration, and stomach content and palpating
iliac crest and costal margin accurately may prove difficult

Table 2: Weighted percent∗ for unhealthy levels of cardiometabolic risk variables within levels of general obesity measures, N� 12,268.

Gender Predictor Categories Overall
CR TC LDL-

C
HDL-
C TG SBP DBP HbA1C FPG

All
adolescents

Conventional cutoffs of BMI
percentile

Healthy 63.7 27.6 15.6 25.6 24.8 9.3 3.0 3.5 14.5
Overweight 75.2 34.6 23.2 43.6 36.5 17.0 2.8 3.5 16.9

Obese 84.8 40.4 26.7 56.1 49.3 22.9 5.3 4.5 21.9
Severe
obese 89.3 41.7 35.2 71.3 59.8 31.7 4.4 12.9 30.2

CR cutoffs of BMI percentile Low risk 61.7 29.9 17.1 23.8 24.8 7.5 3.0 3.2 11.7
High risk 80.8 33.2 22.7 50.5 41.5 21.9 3.7 5.6 24.1

CR cutoffs of arm-to-height ratio Low risk 61.5 28.8 16.0 24.2 25.1 7.4 2.9 3.3 13.1
High risk 81.0 34.7 24.2 50.2 41.1 22.3 3.9 5.6 22.2

Females

Conventional cutoffs of BMI
percentile

Healthy 59.4 32.6 17.2 19.6 24.9 4.5 3.0 2.6 9.2
Overweight 67.3 35.7 21.9 35.9 33.3 8.7 2.3 3.4 8.0

Obese 80.1 41.7 25.1 45.0 42.0 10.0 5.1 4.8 13.8
Severe
obese 86.2 39.5 30.1 63.3 49.8 23.5 3.0 10.5 20.4

CR cutoffs of BMI percentile Low risk 60.8 33.2 18.5 22.6 26.2 5.3 2.8 2.8 9.3
High risk 80.6 40.3 25.2 49.8 43.8 14.3 4.3 6.5 15.1

CR cutoffs of arm-to-height ratio Low risk 60.7 32.8 18.3 22.2 26.8 5.2 2.9 2.7 9.7
High risk 78.7 40.6 25.2 47.5 39.7 13.3 3.8 6.0 13.0

Males

Conventional cutoffs of BMI
percentile

Healthy 67.9 22.9 14.0 31.4 24.8 14.0 3.0 4.4 19.7
Overweight 82.8 33.5 24.5 50.7 39.6 24.8 3.3 3.5 25.3

Obese 89.1 39.3 28.3 65.9 56.0 33.9 5.5 4.3 29.4
Severe
obese 91.9 43.7 39.6 78.2 68.1 38.8 5.5 14.9 38.4

CR cutoffs of BMI percentile Low risk 63.5 22.6 14.1 26.3 21.9 12.3 3.5 4.3 16.6
High risk 80.9 31.1 22.0 50.7 40.8 24.1 3.6 5.4 26.7

CR cutoffs of arm-to-height ratio Low risk 63.2 21.1 11.8 28.0 22.1 11.5 3.0 4.2 19.3
High risk 81.8 32.5 23.9 51.1 41.6 25.4 3.9 5.5 25.4

CR� cardiometabolic risk; TC� total cholesterol; LDL-C� low-density lipoprotein cholesterol; HDL-C� high-density lipoprotein cholesterol; TG� tri-
glycerides; SBP� systolic blood pressure; DBP� diastolic blood pressure; HbA1c� glycated hemoglobin; FPG� fasting plasma glucose. Overall CR indicates
unhealthy level on any of the eight CR variables. Unhealthy level of each CR variable includes both borderline-risk and high-risk levels, defined according to
National Heart, Lung, and Blood Institute Expert Panel Report 2012, American Academy of Pediatrics, and American Diabetes Association. Conventionally,
BMI< 85th percentile was considered healthy; ≥85th to <95th percentile, overweight; ≥95th percentile to <120% of 95th percentile, obese; ≥120% of 95th

percentile or BMI> 35 regardless of age was severe obese. For CR, BMI≥ 94th percentile in females and BMI≥ 64th percentile in males, at a given age, as well as
arm-to-height≥ 0.19 in females and arm-to-height≥ 0.16 in males, regardless of age, were considered high-risk. ∗Sample weights were utilized across the eight
survey cycles as per survey guidelines. Combined weights were calculated for participants whose data were collected in mobile examination centers; separate
weights were applied for participants in the fasting subsample who provided measures of FPG, LDL-C, and TG.
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[39]. It may also raise ethical and cultural concerns due to
intrusiveness, especially in the context of surveillance
programs.

Compared to BMI percentile, use of AHtR for car-
diometabolic risk prediction may be advantageous in some
situations because it is (1) not age-dependent—does not
require percentile charts; (2) not weight-dependent—does
not require weighing scales, does not require daily scale
calibration [40], and is not sensitive to short-term weight
fluctuations; (3) a ratio of two lengths, hence, interpretable
without unit conversion; and (4) easier to calcu-
late—requires less time and effort. As a measure, AHtR also
has limitations. Its prediction accuracy is lower than BMI for
females. Additionally, as with other circumference measures

[41], mid-upper-arm circumference has no uniformly ac-
cepted measurement approach and is susceptible to mea-
surement errors. While prior studies revealed significant
correlations between mid-upper-arm circumference and
height [25, 42], this study considered adolescents’ height as
an empirically established alternative to age for evaluating
obesity [16].

AHtR also has advantages over mid-upper-arm cir-
cumference. For US children and adolescents aged 1–20
years, mid-upper-arm circumference-for-age reference
charts, including arm muscle area (AMA) and arm fat area
(AFA), are available [22]. However, height status had
complex independent relationships with arm measures,
irrespective of the ranking by age and sex [22]. Mei et al.

Table 3: Characteristics of overall and specific cardiometabolic risk classifications, usingmeasures of general obesity, ages 12–18,N� 12,268.

CR Predictor Sensitivity Specificity PPV NPV True
+

False
+

True
−

False
− Total Accuracy

(%) J

Overall all
adolescents

BMI≥ 85th percentile 42.78 77.73 82.16 36.17 1511 328 1145 2021 5005 53.07 20.51
CR cutoffs, BMI percentile 51.08 70.67 80.68 37.59 1774 432 1041 1758 5005 56.24 21.75
CR cutoffs, arm-to-height 52.01 70.67 80.96 38.05 1837 432 1041 1695 5005 57.50 22.68

Overall
female

BMI≥ 85th percentile 43.88 74.85 76.97 41.05 685 205 610 876 2376 54.50 18.73
CR cutoffs, BMI percentile 27.80 88.22 81.89 38.95 434 96 719 1127 2376 48.53 16.02
CR cutoffs, arm-to-height 30.17 84.05 78.37 38.59 471 130 685 1090 2376 48.65 14.22

Overall male
BMI≥ 85th percentile 41.91 81.31 87.04 31.85 826 123 535 1145 2629 51.77 23.22

CR cutoffs, BMI percentile 67.99 48.94 79.95 33.79 1340 336 322 631 2629 63.22 16.93
CR cutoffs, arm-to-height 69.30 54.1 81.89 37.04 1366 302 356 605 2629 65.50 23.40

TC
BMI≥ 85th percentile 45.33 66.02 39.15 71.46 1646 2558 4969 1985 11158 59.28 11.35

CR cutoffs, BMI percentile 45.47 61.68 36.41 70.10 1651 2884 4643 1980 11158 56.41 7.15
CR cutoffs, arm-to-height 41.86 66.60 37.68 70.37 1520 2514 5013 2111 11158 58.55 8.46

LDL-C
BMI≥ 85th percentile 49.85 66.59 26.69 84.47 505 1387 2764 508 5164 63.30 16.44

CR cutoffs, BMI percentile 49.85 62.25 24.37 83.57 505 1567 2584 508 5164 59.82 12.10
CR cutoffs, arm-to-height 46.69 66.59 25.43 83.66 473 1387 2764 540 5164 62.68 13.28

HDL-C
BMI≥ 85th percentile 55.62 71.54 50.12 75.82 2107 2097 5272 1681 11157 66.14 27.17

CR cutoffs, BMI percentile 59.64 69.13 49.82 76.91 2259 2275 5094 1529 11157 65.90 28.76
CR cutoffs, arm-to-height 54.80 73.43 51.46 75.97 2076 1958 5411 1712 11157 67.11 28.23

TG
BMI≥ 85th percentile 53.16 70.74 45.12 76.95 882 1073 2594 777 5326 65.26 23.90

CR cutoffs, BMI percentile 54.97 66.65 42.72 76.59 912 1223 2444 747 5326 63.01 21.62
CR cutoffs, arm-to-height 50.63 70.55 43.75 75.95 840 1080 2587 819 5326 64.34 21.18

SBP
BMI≥ 85th percentile 58.18 66.48 23.48 89.99 1046 3409 6760 752 11967 65.23 24.65

CR cutoffs, BMI percentile 67.19 64.54 25.09 91.75 1208 3606 6563 590 11967 64.94 31.73
CR cutoffs, arm-to-height 62.24 69.01 26.21 91.18 1119 3151 7018 679 11967 68.00 31.25

DBP
BMI≥ 85th percentile 39.49 62.95 3.53 96.81 156 4266 7247 239 11908 62.17 2.44

CR cutoffs, BMI percentile 43.80 60.04 3.62 96.89 173 4601 6912 222 11908 59.50 3.83
CR cutoffs, arm-to-height 41.77 64.65 3.90 97.00 165 4070 7443 230 11908 63.89 6.42

HbA1C
BMI≥ 85th percentile 51.32 63.22 7.30 95.83 310 3934 6762 294 11300 62.58 14.54

CR cutoffs, BMI percentile 57.45 60.42 7.58 96.18 347 4233 6463 257 11300 60.27 17.87
CR cutoffs, arm-to-height 51.82 64.86 7.69 95.97 313 3759 6937 291 11300 64.16 16.68

FPG
BMI≥ 85th percentile 45.45 65.18 20.54 85.79 405 1567 2933 486 5391 61.92 10.63

CR cutoffs, BMI percentile 56.00 63.31 23.21 87.90 499 1651 2849 392 5391 62.10 19.32
CR cutoffs, arm-to-height 49.16 66.76 22.65 86.90 438 1496 3004 453 5391 63.85 15.91

CR� cardiometabolic risk; TC� total cholesterol; LDL-C� low-density lipoprotein cholesterol; HDL-C� high-density lipoprotein cholesterol; TG� tri-
glycerides; SBP� systolic blood pressure; DBP� diastolic blood pressure; HbA1c� glycated hemoglobin; FPG� fasting plasma glucose. Unhealthy level of
each CR variable includes both borderline-risk and high-risk levels, defined according to National Heart, Lung, and Blood Institute Expert Panel Report 2012,
American Academy of Pediatrics, and American Diabetes Association. PPV� positive predictive value; NPV�negative predictive value; true +�number of
true positives; false +� number of false positives; true −� number of true negatives; false −�number of false negatives; accuracy� percent of (true positives
+ true negatives); J� sensitivity + specificity− 100 (i.e., Youden’s Index). Conventionally, BMI≥ 85th percentile (overweight) was considered high risk.
For CR, BMI≥ 94th percentile in females and BMI≥ 64th percentile in males, at a given age, as well as arm-to-height≥ 0.19 in females and arm-to-height≥ 0.16
in males, regardless of age, were considered high risk.
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indicated that it is difficult to assess a child’s age in some
circumstances [26]. Even if the age is known, use of age-
based mid-upper-arm circumference percentile charts may
be complicated, due to lack of resources, knowledge, and
skills. AHtR may be a good alternative in such circum-
stances. Recent studies demonstrated a steady increase of
adolescent mid-upper-arm circumference with age, al-
though increases in mid-upper-arm circumference com-
ponents had age- and sex-related differences [22]. Upper-
arm fat mass gains were slower in males from 12 to 15 years
of age, compared to more-intense increases among females
throughout adolescence. However, upper-arm muscle mass
had sharper gains with age in males than in females [22].
Accordingly, the identification of sex-specific AHtR cutoffs
in this study was consistent with prior research.

As children with overweight or obesity are more likely to
have unhealthy levels of cardiometabolic risk [43, 44], in-
clusion of varying degrees of obesity may increase the ac-
curacy of cardiometabolic risk prediction [43]. Numerous
studies have evaluated the association between obesity and
other biological risk factors [2], with some suggesting that
BMI is imperfect for predicting cardiometabolic risk, con-
sidering metabolically obese healthy-weight subjects [45]
and metabolically healthy subjects with obesity [46]. Con-
versely, some researchers have argued that BMI performed
better than body fat mass in predicting cardiometabolic risk
[47]. Furthermore, central obesity had a stronger association
with cardiometabolic risk in children than general obesity
[16]. While predictive accuracy is a major concern in de-
termining the suitability of anthropometric indicators for
cardiometabolic risk prediction in survey and clinical set-
tings, low-cost and simplicity also can be crucial. )is study
revealed that, compared to BMI percentile, AHtR classified
overall cardiometabolic risk and several cardiometabolic
variables better in males. )ese results were consistent with
prior studies which revealed that mid-upper-arm circum-
ference correlates more with systolic blood pressure than
with diastolic blood pressure [48], although empirical evi-
dence is unavailable for other risk factors.

)is study had several overarching limitations. Children
under 12 years were excluded because some cardiometabolic
variables were unavailable for them, limiting the conclusions
that can be drawn about the appropriateness of AHtR for
that population. )is study did not compare measures of
central obesity or body fat mass with AHtR and BMI per-
centile, because the focus was general obesity; however,
numerous studies have compared those measures with BMI
percentile [43, 44]. Also, this study did not analyze corre-
lations of AHtR with other anthropometric parameters and
age, as it was designed to identify a meaningful sex-specific
AHtR cutoff that predicts a higher cardiometabolic risk,
a concept which is similar to widely used cutoff value 0.5 for
waist-to-height ratio. )e optimal AHtR and BMI percentile
cutoffs for the cardiometabolic risk assessment were not
cross-validated in an independent sample. Due to the cross-
sectional design, this study was unable to examine changes
in anthropometric variables and cardiometabolic risks over
the 16-year-period, establish causality between obesity and
cardiometabolic risk, or determine associated morbidity and

mortality. In addition, NHANES deliberately oversampled
Black and Hispanic adolescents. Only Whites, Blacks, and
Hispanics were included in the analysis because the number
of other racial/ethnic group participants was insufficient.
Underweight adolescents (BMI< 5th percentile; n � 726)
were merged with healthy range for BMI, considering that
the focus of this study was obesity. Further, for multifactorial
conditions, such as obesity and cardiometabolic abnor-
malities, acceptance of any given parameter solely as “un-
healthy” may not describe the whole picture, as there can be
several interparameter relations. Similarly, the coexistence of
multiple cardiometabolic risk factors should be treated as
worse than having just one, and ideally, different levels of
risk (e.g., one risk factor and two risk factors) should be
assessed. Finally, some individuals had missing values for
one or more cardiometabolic or anthropometric variables.

Behavioral interventions that effectively reduce the
weight of children with overweight demonstrate gradually
smaller effects at greater obesity levels [5], with interventions
displaying an inverse correlation between effectiveness and
age [6]. Furthermore, children with obesity have greater risk
of developing cardiometabolic abnormalities early in life [4].
)is study indicated that, as a simple and low-cost measure
of general obesity, AHtR can reasonably predict car-
diometabolic risk in adolescents and has a higher predictive
accuracy than BMI percentile in males, thus allowing for
early interventions. )is may be especially pertinent in
contexts where one or more barriers to BMI computation
exist. Further research is required to validate these findings
in younger children. Attention should be paid to include
AHtR (or mid-upper-arm circumference in addition to
height) in adolescent anthropometric surveys, school-based
surveillance programs, and clinical evaluations, whenever
cardiometabolic risk prediction is considered worthwhile,
but invasive procedures are not feasible or permissible.
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