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Abstract

Chinese Simmental beef cattle are the most economically important cattle breed in China.

Estimated breeding values for growth, carcass, and meat quality traits are commonly used

as selection criteria in animal breeding. The objective of this study was to evaluate the accu-

racy of alternative statistical methods for the estimation of genomic breeding values. Analy-

ses of the accuracy of genomic best linear unbiased prediction (GBLUP), BayesB, and

elastic net (EN) were performed with an Illumina BovineHD BeadChip on 1,217 animals by

applying 5-fold cross-validation. Overall, the accuracies ranged from 0.17 to 0.296 for ten

traits, and the heritability estimates ranged from 0.36 to 0.63. The EN (alpha = 0.001) model

provided the most accurate prediction, which was also slightly higher (0.2–2%) than that of

GBLUP for most traits, such as average daily weight gain (ADG) and carcass weight (CW).

BayesB was less accurate for each trait than were EN (alpha = 0.001) and GBLUP. These

findings indicate the importance of using an appropriate variable selection method for the

genomic selection of traits and suggest the influence of the genetic architecture of the traits

we analyzed.

Introduction

Chinese Simmental beef cattle play an important role in the Chinese beef industry because of

their high adaptability and the rapid growth of their young with sufficient feeding. The beef is

also well marbled and tender, contributing to its marketability. The primary objective of beef

production is to improve beef quality and yield grades. Estimated breeding values of economi-

cal traits, such as carcass weight (CW), eye muscle area (EMA), and marbling score (MS), are

generally considered to be the major selection criteria in beef cattle breeding. The average

daily weight gain (ADG) is also important as an indicator of growth.

In China, small holders manage a large proportion of young bulls, in some cases keeping

fewer than 100 cattle. Considering this situation, these bulls cannot be managed well. The bulls
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often lack phenotypic or pedigree records due to the absence of unified management. In this

context, an alternative to traditional genetic evaluations is genomic selection (GS), which was

originally introduced by [1]. GS is the selection for economic quantitative traits in animals and

plants based on their genome-wide estimated breeding values (GEBVs), which are calculated

based on dense markers and do not depend on pedigree information. With the availability of

high-throughput dense genotyping of SNPs and several statistical models, GS is currently

being adopted in animal breeding. The predictive accuracy is key to the success of genomic

prediction. However, no consensus exists on the best approach, which is dependent on the

genetic architecture of traits.

The methods for genomic prediction can be classified into two groups: linear and nonlinear

methods. The commonly used linear methods include unbiased and biased prediction models.

Unbiased prediction models include genomic best linear unbiased prediction (GBLUP) and

ridge regression best linear unbiased prediction (RR-BLUP) [2], while biased prediction mod-

els are also known as regularized (penalized) linear regression models such as ridge regression

(RR) [3], the least absolute shrinkage and selection operator (LASSO) [4], and elastic net (EN)

[5]. Bayesian methods are nonlinear methods and include Bayes A/B/C/Cπ/R. They are often

implemented by MCMC (Markov chain Monte Carlo) sampling to obtain the variable of

shrinkage coverage. GBLUP is a routine genetic evaluation for livestock because it is simple

and less computationally demanding. RR-BLUP has been found to be equivalent to GBLUP

procedures [6]. The EN with alpha, an adjustable parameter, set to 0 is equivalent to RR, and

with alpha close to 1 performs very similarly to LASSO. Moreover, EN produces more cor-

rectly identified influential variables than LASSO and has a much lower false positive rate than

RR [7].

Previous studies have reported the performance of genomic prediction methods for various

traits in different breeds. These studies suggested that statistical methods may perform differ-

ently for different traits because of the large differences in the genetic architecture of complex

traits [8]. When fewer genes with large effects influence traits, Bayesian models have a small

advantage over linear models such as GBLUP, whereas GBLUP may outperform BayesB for a

trait with many loci with small effects. LASSO and EN approaches can compress the small size

effect to zero with a penalty based on functions of magnitude of effect for each SNP [9]. Previ-

ous studies have investigated the application of Bayesian methods for GS with several traits in

Chinese Simmental beef cattle [10,11]. However, the GS of bone weight (BNW), MS and car-

cass length (CL) has not been reported. Moreover, the accuracy of GS using regularized linear

regression models for many growth, carcass, and meat quality traits in Chinese Simmental

beef cattle and even other breeds of beef cattle remains largely unknown, particularly the accu-

racy of the EN method. When setting an appropriate alpha in an EN model, the results may be

better than those of Bayesian methods and GBLUP.

The aim of this study was to provide a scientific basis for the application of GS to the Chi-

nese Simmental population. A comparative evaluation of the performance of multiple methods

is essential to identify those best suited to GS for Chinese Simmental cattle. Here, we evaluated

the relative performance of five methods for GS. We expected to identify suitable methods for

estimating the predictive accuracy for various growth, carcass and meat quality traits of eco-

nomic relevance using the BovineHD SNP array in the Chinese Simmental cattle population.

Materials and methods

Ethics statement

All animals used in the study were treated following the guidelines established by the Council

of China Animal Welfare. The research was undertaken with the approval of the Committee
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on the Ethics of Animal Experiments of the Chinese Academy of Agricultural Sciences

(CAAS) (Beijing, China). The use of animals and private land in this study was approved by

the respective owners.

Animal and phenotypic data

Our resource population included 1,225 Chinese Simmental cattle born between 2008 and

2014 in Ulgai, Xilingol League and Inner Mongolia of China. After weaning, these cattle were

moved to Jinweifuren Co., Ltd. for fattening, with all animals sharing uniform feeding and

management conditions. More detailed descriptions of the breeding and management have

been described previously [12]. The cattle were slaughtered at an average age of 16–18 months.

At slaughter, the carcass trait and meat quality traits were assessed according to the Institu-

tional Meat Purchase Specifications for Fresh Beef Guidelines. Traits in this study were the fol-

lowing: ADG (kg/d), live weight (LW, kg), CW (kg), BNW (kg), tenderloin weight (TW, kg),

sirloin weight (SW, kg), EMA (cm2), CL (cm), hind leg length (HLL, cm), and MS. The ADG

was the rate of weight gain per day over the fattening duration. LW was measured before

slaughter after fasting for 24 h. CW was the remaining cold carcass measured after slaughter

and bloodletting by eliminating the hide, head, feet, tail, entrails and gut fill. The total BNW

was created to sum the weights of the carcass bones. EMA was measured at the 12th and 13th

rib interface 48 h postmortem via the dot grid method. TW, SW and CL were measured

directly from carcass anatomy. MS was visually scored on a seven-point scale depending on

the degree of marbling on the cut surface of the rib eye. The statistics used for each trait to esti-

mate variance components are presented in Table 1.

The fixed effects were used to adjust the phenotypic values of traits of interest before the

analysis:

y ¼ Xbþ y�

where y is a vector of observed phenotypic values, β is a vector of fixed effects (year of birth

and sex as a contemporary group; fattening duration and initial body weight as a covariate), X
is the design matrix of relevant observations to the corresponding fixed effects, and y� is the

random residual. The residual y� was subsequently used in the prediction models.

Table 1. Descriptive statistics of phenotypic data used in the genomic prediction.

Trait (unit) Na h2 (SE) Mean (SE) Min. Max. SD

ADG (kg) 1,216 0.44 ± 0.07 0.97 ± 0.01 0.38 2.41 0.22

LW (kg) 1,216 0.53 ± 0.07 505.26 ± 2.03 318.00 776.00 70.76

CW (kg) 1,216 0.59 ± 0.07 271.35 ± 1.31 162.60 486.00 45.65

BNW (kg) 1,214 0.60 ± 0.07 40.67 ± 0.19 20.20 80.00 6.52

SW (kg) 1,213 0.45 ± 0.07 8.67 ± 0.06 3.21 15.90 1.96

TW (kg) 1,215 0.63 ± 0.06 3.98 ± 0.71 2.20 7.84 0.71

EMA (cm2) 1,117 0.57 ± 0.07 85.21 ± 0.4 51.00 150.00 13.32

CL (cm) 1,212 0.44 ± 0.08 138.36 ± 0.20 115.00 164.00 6.91

HLL (cm) 1,214 0.52 ± 0.07 76.88 ± 0.15 50.00 92.00 5.24

MS (cm2) 1,214 0.36 ± 0.08 5.130 ± 0.03 1.00 7.00 0.97

h2 heritability, SE standard error, ADG average daily weight gain, LW live weight, CW carcass weight, BNW bone weight, SW sirloin weight, TW tenderloin weight,

EMA eye muscle area, CL carcass length, HLL hand legs length, MS marbling score
aNumber of animal with phenotypes

https://doi.org/10.1371/journal.pone.0210442.t001
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Genotyping and quality control

Genotypes were generated with the Illumina BovineHD BeadChip. Quality control of geno-

types was conducted through an iterative process using the following SNP selection criteria:

call rate (CR) higher than 0.95, minor allele frequency (MAF) higher than 0.05 and P-value for

Hardy-Weinberg equilibrium test (HWE) higher than 10−5. The samples with more than 10%

missing genotypes were excluded, which resulted in a final dataset of 1,217 cattle with 608,696

SNPs. Additionally, the imputation for sporadic missing alleles was performed using Beagle

3.3.2 [13].

Genomic prediction methods

GBLUP and BayesB: GEBVs were calculated based on the following equation:

y� ¼ 1mþ Zgþ e ð1Þ

where y� is the vector of the corrected phenotype, μ is the overall mean, and e � Nð0; Is2
eÞ is a

vector of residual error, where s2
e is the residual variance. I is an identity matrix. For GBLUP,

Z is an incidence matrix for individual effects. γ is the vector of breeding values assumed to fol-

low a multivariate normal distribution MVN � Nð0; Ks2
gÞ, where s2

g is genetic variance, K is

calculated following K ¼ 1

d

Pm
k¼1

ZkZT
k [14], and d ¼ 1

n trð
Pm

k¼1
ZkZT

k Þ. Zk is the vector of SNP

genotypes for n individuals at locus k for k = 1, . . ., m, where m is the number of markers and

n is the number of individuals. SNP genotypes are represented as 1, 0, or -1 to denote a diploid

genotype value of 11, 12, or 22, respectively. For BayesB, Z is a genotype matrix corresponding

to γ. g � Nð0; s2
gkÞ is the vector of SNP effects. The variance of the kth SNP effect, s2

gk, is

assigned an informative prior to show the presence (with probability 1 − π) and absence (with

probability π) of the marker k.

Elastic net method: y� is treated as the corrected phenotype and is described by the follow-

ing multiple regression model:

y� ¼ Zgþ e ¼
Xm

k¼1
Zkgk þ e ð2Þ

where y� is the vector of the corrected phenotype. Z is the matrix of genotype codes for

SNPs with -1, 0, and 1. γ is the vector of SNP effects. e � Nð0; Is2
eÞ is the vector of residual

error. Zk is the vector of SNP genotypes for n individuals at locus k for k = 1, . . ., m, where m is

the number of markers and n is the number of individuals. γk is the SNP effects for marker k.

The ordinary least squares (OLS) estimates the parameter γ by minimizing the residual sum of

squares:

gRSS ¼ arg ming2O
Xn

i¼1
ðy� �

Xm

k¼1
ZkgkÞ

2
ð3Þ

The LASSO [15] penalty estimates marker effects via adding an L1-norm in the OLS:

gLASSO ¼ arg ming2O
Xn

i¼1
ðy� �

Xm

k¼1
ZkgkÞ

2
þ l

Xm

k¼1
jgkj

n o
ð4Þ

The RR [3] penalty estimates marker effects via adding an L2-norm in the OLS:

gRR ¼ arg ming2O
Xn

i¼1
ðy� �

Xm

k¼1
ZkgkÞ

2
þ l

Xm

k¼1
g2

k

n o
ð5Þ

The EN [5] penalty estimates marker effects via adding a synthetic of L1-norm and

L2-norm in the OLS. Thus, EN is based on a compromise between LASSO and RR, where
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alpha is for the EN mixing parameter (0� α� 1):

gElastic net ¼ arg ming2O
Xn

i¼1
ðy� �

Xm

k¼1
ZkgkÞ

2
þ l

Xm

k¼1
ð
ð1 � aÞ

2
g2

k þ ajgkjÞ

� �

ð6Þ

The lambda in Eqs (4), (5) and (6) is a regularization parameter that controls the amount of

shrinkage. The optimal value of λ can then be found by k-fold cross-validation (CV) to identify

the minimum mean squared error (minMSE).

All analyses were conducted using R language; GBLUP was obtained by solving the mixed

model equations (MMEs). The BGLR package was used to conduct BayesB. RR, LASSO, and

EN were conducted in the glmnet R package. For BayesB, the MCMC was run for 50,000 itera-

tions with a burn in of 2,500 and thinning of 10. These numbers of iterations were sufficient in

that increasing the number did not change the results. An MCMC sampler with shorter chain

and burn-in (22,000 iterations and 2,500 burn in) was tested, but the results were discarded.

To identify the best performance of the EN method, we used penalty weights of α = 0.001,

0.01, 0.05, 0.1, 0.4, 0.7, and 1.

Estimation of genetic parameters

Genomic heritability, genetic correlation, and phenotypic correlation were analyzed using the

ASReml v3.0 software package [16]. An animal model was applied to estimate the heritability

of all traits. A pairwise bivariate animal model was applied to estimate the genetic correlation

between both traits. The model is

y1

y2

" #

¼
X1 0

0 X2

" #
b1

b2

" #

þ
Z1 0

0 Z2

" #
a1

a2

" #

þ
e1

e2

" #

ð7Þ

where y1 and y2 are vectors of trait 1 and 2, respectively; X1 and X2 are incidence matrices for

fixed effects; b1 and b2 are the vctors of the fixed effects; Z1 and Z2 are incidence matrices relat-

ing the phenotypic observations to vectors of the polygenic effects for two traits; and e1 and e2

are random residuals for two traits.

For GBLUP, the GEBVs of all genotyped individuals were predicted by solving the MMEs.

For BayesB and EN methods, the GEBV was calculated by adding all the marker effects esti-

mated from the training population. The formula was GEBV ¼
Pm

k¼1
Zkgk.

Validation population

Two validation procedures were considered for assessing the predictive accuracy of different

methods in this article. We mainly used 5-fold CV procedures. The other method is a genera-

tion validation procedure. Because phenotype records were not available for all genotyped ani-

mals for all traits, the number of animals in the training and test datasets differed among traits.

However, the test populations were the same for each method. In 5-fold CV procedures, the

population (for each trait) was randomly split into five parts of approximately equal size.

Then, the analysis was performed using each subset of the data as the validation sample and

the other 4 subsets as the training population. For EMA, the numbers of animals in training

and test populations were 893 and 224, respectively. For the other traits, the sizes of the train-

ing and validation populations depended on the traits.

In generation validation procedures, the dataset was divided into training (animals from

2008 to 2013) and test (animals from 2014) subgroups, which contained 1135 and 82 animals,

respectively. Three traits were measured in this part, including ADG, CW and MS. The
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accuracy of the genomic predictions was measured as the Pearson correlation between y� and

predicted GEBV on the test subgroup using the formula r y�test;GEBVtest

� �
¼

covðy�test ;GEBVtestÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðy�testÞvarðGEBVtestÞ
p .

Realized accuracy was calculated as
rðy�test ;GEBVtestÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trait heritability
p [17].

Results

Descriptive statistics and genetic parameters

The estimates of heritability for ten traits are presented in Table 1. Of the ten traits, the one

growth trait, ADG, had a median heritability of 0.44. Eight traits were carcass traits, including

LW, CW, BNW, SW, TW, EMA, CL and HLL, and most had high heritability that ranged

from 0.57 for EMA to 0.63 for TW. As a meat quality trait, MS had moderate heritability

(0.36). The heritabilities of the traits ADG, CW, EMA, and MS for other breeds of beef cattle

are shown in Table 2. The estimated heritabilities for CW (0.59) and TW (0.63) were higher

(+0.14) than those previously reported in Chinese Simmental beef cattle, but the heritability of

CW was similar to that of Japanese Black cattle [18]. Heritabilities for traits ADG (0.44) and

EMA (0.57) were consistent with previous reports for Chinese Simmental beef cattle (0.47)

and American Angus cattle (0.51), respectively. Heritability for trait MS (0.36) was below the

range of 0.4–0.69 reported in previous studies. The reason for such large differences in herita-

bility is partially the different populations and different marker-based relationship matrices

used for heritability estimations. The phenotypic and genetic correlations among the 10 traits

are shown in Fig 1 and S1 Table. ADG had low genetic and phenotypic correlations with both

Table 2. Summary of the genomic prediction accuracy and heritability of five traits in beef cattle from different countries.

Beef cattle (Na) Traits Heritability Prediction accuracy b Reference

Chinese Simmental (1,302) ADG 0.47 0.214 (GBLUP) [10]

CW 0.45 0.285 (PBayesB)

Chinese Simmental (1,173) TW 0.47 0.566c (BayesB) [11]

CW 0.38 0.487c (BayesB)

Hanwoo (1,183) CW 0.33 0.4 (BayesC) [25]

EMA 0.37 0.317 (BayesC)

MS 0.4–0.42 0.25 (BayesL)

Nellore (1,756) CW 0.17 0.37c (BayesLasso) [30]

EMA 0.20 0.47c (BayesLasso)

Nelore (803) ADG 0.31,0.53,0.41 0.26 (BGBLUP, BayesA, BayesCπ) [31]

American Angus (3,570) CW 0.40 0.689d (BayesC) [26]

EMA 0.51 0.698d (BayesC)

MS 0.45 0.817d (BayesC)

Japanese Black (20,436) CW 0.56 0.44 (ssGBLUP, τ3 = 1) [18]

EMA 0.42 0.42 (ssGBLUP, τ3 = 1)

MS 0.69 0.39 (ssGBLUP, τ3 = 0.5)

Multibreed (6,796) ADG 0.38 0.36c (BayesC) [32]

Trait: ADG average daily gain, CW carcass weight, TW tenderloin weight, EMA eye muscle area, MS marbling score

Methods: PBayesB Parallel BayesB, BGBLUP Bayesian GBLUP, ssGBLUP single step GBLUP
a Number of animals with phenotypes
b the highest empirical prediction accuracies in documented findings
c Realized accuracy: the prediction accuracy was divided by the square root of heritability of the trait
d The accuracy could be defined as the correlation between true genetic values and directly genomic values (DGV) divided by the square root of heritability of the traits

https://doi.org/10.1371/journal.pone.0210442.t002
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EMA and MS. Carcass traits had moderate, even high, genetic and phenotypic correlation with

one another in most cases. EMA had low genetic and phenotypic correlations with both ADG,

CL and HLL. MS also had the lowest phenotypic correlations, ranging from -0.05 for LW to

0.24 for TW, although MS had a moderate genetic correlation with most traits. Additionally, a

heat map was used to visualize the kinship among individuals (S1 Fig).

Accuracy of GEBV with LASSO and EN models in 5-fold CV

Table 3 shows the accuracy of genomic prediction using the EN method for the ten traits. All

traits were evaluated at the following penalty weights: α = 1, 0.7, 0.4, 0.1, 0.05, 0.01 and 0.001,

where α = 1 is equivalent to LASSO. We also performed RR with α = 0, but the results were

poor and included some NA, which might have been caused by nonconvergence. Thus,

Table 3 does not show the results of the RR method. There is a tendency for higher accuracies

Fig 1. Heat map of phenotypic (a) and genetic correlation (b) across ten traits.

https://doi.org/10.1371/journal.pone.0210442.g001

Table 3. Accuracies of genomic EBV of 5-fold cross-validation population using regularized regression methods for ten traits.

Trait EN(0.001) EN(0.01) EN(0.05) EN(0.1) EN(0.4) EN(0.7) EN(1)

ADG 0.251 0.244 0.221 0.221 0.191 0.186 0.185

LW 0.290 0.290 0.284 0.277 0.266 0.263 0.263

CW 0.292 0.278 0.265 0.259 0.246 0.243 0.241

BNW 0.295 0.308 0.312 0.311 0.305 0.302 0.301

SW 0.259 0.249 0.235 0.229 0.210 0.204 0.201

TW 0.296 0.299 0.297 0.293 0.279 0.276 0.274

EMA 0.281 0.263 0.251 0.248 0.243 0.240 0.238

CL 0.181 0.169 0.151 0.141 0.121 0.125 0.114

HLL 0.274 0.272 0.259 0.252 0.245 0.241 0.240

MS 0.180 0.159 0.133 0.121 0.094 0.088 0.087

EN elastic net method, ADG average daily weight gain, LW live weight, CW carcass weight, BNW bone weight, SW sirloin weight, TW tenderloin weight, EMA eye

muscle area, CL carcass length, HLL hand legs length, MS marbling score

https://doi.org/10.1371/journal.pone.0210442.t003
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to appear in the EN model with a smaller alpha setting. In particular, when setting

alpha = 0.001, the results were generally better than the others, except for the trait BNW,

which performed better with an α = 0.1. Thus, the EN method (α = 0.001) was used to compare

with the GBLUP and BayesB.

Accuracy of GEBV in the GBLUP, EN and BayesB models in 5-fold CV

Table 4 shows the genomic prediction accuracy using different methods for the ten traits and

their coefficients of variation (Cv). The average accuracy of the GEBV for the ten traits was

approximately 0.25, ranging from 0.18 to 0.30. Among the three methods, the lowest GEBV

accuracy was found in BayesB for each trait. The prediction method yielding the highest accu-

racy differed among traits. GBLUP had the highest accuracy for traits EMA, CL, and MS,

whereas EN had the highest accuracy for traits ADG, LW, BNW, SW, TW, and HLL. The com-

parable performances of the GBLUP, BayesB and EN methods suggested that the accuracy of

the EN method (α = 0.001) was slightly better (0.1 to 2.5%) than that of the GBLUP and BayesB

methods for six traits. GBLUP usually performed well, whereas the BayesB method performed

poorly. The Cvs were similar among the methods, except for trait BNW, which was higher

(+0.07) in the EN method than that of the other two methods. Additionally, we computed the

accuracy of the GEBV using the RR-BLUP method, and the results were the same as those

using GBLUP for each trait; therefore, the results are not shown in this study. We also fixed

π = 0.99 and 0.999 in the BayesB method for the CW, ADG, EMA, and MS traits (Table 5).

Table 4. Comparison of the genomic prediction accuracy (Acc) and coefficient variation (Cv) for ten traits using

three methods.

Trait GBLUP EN (0.001) BayesB (π = 0.9)

Acc Cv Acc Cv Acc Cv

ADG 0.243 0.20 0.251 0.20 0.239 0.19

LW 0.275 0.19 0.290 0.19 0.265 0.20

CW 0.290 0.17 0.292 0.17 0.282 0.18

BNW 0.295 0.18 0.295 0.25 0.294 0.19

SW 0.241 0.21 0.259 0.19 0.234 0.23

TW 0.294 0.17 0.296 0.16 0.287 0.16

EMA 0.287 0.19 0.281 0.20 0.281 0.18

CL 0.184 0.32 0.181 0.33 0.177 0.34

HLL 0.254 0.17 0.274 0.17 0.246 0.19

MS 0.184 0.29 0.180 0.28 0.171 0.32

Trait: ADG average daily weight gain, LW live weight, CW carcass weight, BNW bone weight, SW sirloin weight, TW

tenderloin weight, EMA eye muscle area, CL carcass length, HLL hand legs length, MS marbling score

Method: GBLUP genomic best linear unbiased prediction, EN elastic net method

https://doi.org/10.1371/journal.pone.0210442.t004

Table 5. Accuracies of genomic EBV of 5-fold cross-validation population using BayesB method for two traits.

Trait BayesB

π = 0.999 π = 0.99 π = 0.9

ADG 0.095 0.206 0.239

CW 0.165 0.260 0.282

EMA 0.149 0.241 0.281

MS 0.044 0.137 0.171

ADG average daily weight gain, CW carcass weight, EMA eye muscle area, MS marbling score

https://doi.org/10.1371/journal.pone.0210442.t005
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Accuracy of GEBV in the GBLUP, EN and BayesB models in generation

validation

Table 6 shows the genomic prediction accuracy using different methods for the trait ADG,

CW, and MS in generation validation. The EN method (α = 0.0001) performed the best

among the three methods for each trait. For ADG, the BayesB method had the lowest accuracy,

of 0.243 compared to 0.261 for EN and 0.250 for GBLUP. For CW, the three methods had sim-

ilar results, at approximately 0.31. The accuracy of these two traits using GBLUP was slightly

lower (0.004, 0.01 respectively) than that using the EN method. GBLUP had the lowest accu-

racy, 0.186, for measuring MS.

Discussion

The primary aim of this study was to compare the prediction ability of different methods and

identify a suitable GS model for the most economical traits in Chinese Simmental cattle. Based

on the empirical prediction accuracy results, EN (α = 0.001) and GBLUP outperformed

BayesB. Compared with those of the GBLUP and BayesB methods, EN (α = 0.001) predictions

had higher accuracy for most traits. LASSO had the lowest accuracy for most traits. In a previ-

ous study on genomic prediction, most cases showed that the accuracy of GBLUP outper-

formed that of the Bayesian method with real data, with the opposite trend for simulation data

[19,20].

Comparison of regularized linear regression models to estimate GEBV in

5-fold CV

EN, LASSO and RR are penalized least-squares methods. We used the glmnet/R package to

perform EN, LASSO and RR analyses because glmnet/R is extremely fast for use with our data-

set. In glmnet/R, the optimal value of the tuning parameter λ, which controls the degree of

shrinkage, can be obtained through CV. The λ value producing the minMSE is deemed the

optimal tuning parameter in training sets. To avoid the overfitting problem in training sets,

some scientists advise using minMSE+1SE to obtain the optimal λ [21]. We tested the min-

MSE+1SE stopping criterion, but the results were not as good as those using minMSE.

RR assumes that many predictors all have nonzero coefficients and that they obey a normal

distribution [22]. Specifically, the performance is good when there are many predictors, each

of which has a small effect. However, in our investigation, the performance of RR was unsatis-

factory. A trend occurred in which higher accuracy values appeared in the EN model with a

smaller alpha setting. Specifically, when the setting α = 0.001, the results were generally better

than those of the other scenarios, particularly the LASSO method (α = 0). For the trait BNW,

EN with α = 0.1 performed the best. These results are consistent with those of a previous study

in which EN outperformed LASSO [23]. The regularization of LASSO results in many

Table 6. Accuracies of genomic EBV of generation validation population for three traits using three method.

Trait GBLUP EN (0.0001) BayesB (π = 0.9)

ADG 0.250 0.261 0.243

CW 0.311 0.315 0.312

MS 0.186 0.191 0.190

Trait: ADG average daily weight gain, CW carcass weight, MS marbling score

Method: GBLUP genomic best linear unbiased prediction, EN elastic net method

https://doi.org/10.1371/journal.pone.0210442.t006
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regression coefficients trending toward zero; therefore, LASSO as an automatic variable selec-

tion method could select one predictor effectively among several relevant predictors [9]. The

failure of LASSO in this analysis might have been caused by one of two possible reasons: (1)

LASSO is a penalized least-squares method with constraints on the absolute values of the

regression coefficients. Due to this special penalty, LASSO leads to sparse selection of indepen-

dent variables by shrinking most of the regression coefficients to zero. It might discard the

most relevant coefficients. (2) The traits analyzed are controlled by polygenes, i.e., the infinites-

imal model applies to the traits. EN regularization does both ridge and LASSO penalties simul-

taneously; thus, the result of the EN penalty is a combination of the effects of the two methods

[5]. Because ridge penalty shrinks predictors efficiently, these coefficients are nonnull with a

large number of SNPs; therefore, it was inefficient and led many estimates to vanish. LASSO

penalty compresses the small coefficients to zero, which provides effective control for high-

dimensional variable selection, particularly in cases in which only a small subset of SNPs with

large coefficients are associated with the trait. By combining ridge and LASSO penalties, EN

can average markers that are highly related with a trait and then the averaged marker is entered

into the model. Thus, EN is an adjustable model to fit traits with different genetic structures.

Our results provide guidance for choosing the optimal parameter α.

Comparison of EN, GBLUP and BayesB models to estimate GEBV in two

validation procedures

The GBLUP method, which assumes a normal distribution of marker effects with an equal

variance and that all SNPs have a nonnull effect, performed better than the BayesB method

for each trait. Many studies show that the GBLUP model performs well for most polygenic

traits in livestock [8,24]. The worst performance of BayesB for most traits in our study is not

particularly notable. Previous studies have reported that the accuracy of BayesB differs

among traits, which depends on the genetic architecture of the traits [8]. Bayesian methods

divide the SNPs into two parts, in which a high proportion SNPs have null effect (π), while

other SNPs have large or moderate effects. Therefore, the performance is better for traits con-

trolled by a few QTLs. We also fixed π = 0.99 and 0.999 in the BayesB method for the CW,

ADG, EMA, and MS traits (Table 5), but the results were worse than those at π = 0.9 for each

trait. These results suggested that four traits are controlled by many SNPs, especially ADG

and MS. Previous studies suggest a value for π, but the challenge remains to identify the most

accurate π in a BayesB model. Other challenges were computational speed and memory con-

sumption. BayesB had no computational advantage, requiring 1.4 days for a prediction. With

GBLUP, more time (32 min) was required to construct the genomic matrix, but the average

total time for GBLUP (32.26 min) was approximately 20 min less than that with the EN

method with alpha = 0.001 (52.4 min). However, we were only required to compute the geno-

mic matrix once for a common population. Thus, GBLUP had the absolute advantage in

computing time.

In the comparison of the EN with BayesB and GBLUP, the EN model was superior to the

BayesB and GBLUP for most traits. The computational speed of EN was between those of

GBLUP and BayesB. EN is a machine learning method that uses training sets to learn parame-

ters in models and then predict the test sets with these models. Unlike GBLUP, which only out-

performed in traits controlled by large SNPs with small effects, EN performed well in two

models (the infinitesimal model and finite model) if a suitable alpha was set. Since the EN

method provided higher prediction accuracy for six of ten traits and because of its adjustabil-

ity, it was a good choice for further GS in Chinese Simmental beef cattle.
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Comparison of the traits analyzed in two validation procedures

GS in Chinese Simmental beef cattle has been evaluated since 2008, but to date, GS has been

not implemented in practical breeding. The reference population has been continuously

updated, although with a limited increase in number. Many factors hamper the development

of GS in China. A comparison of our results from the CV procedure with those in other beef

cattle (Table 2) shows that [25] reported a prediction accuracy of MS lower than that for CW

and EMS but with a higher heritability in Hanwoo beef cattle, which was the same result as in

our study. For the CW trait, other studies show that the accuracy of the Bayesian method was

higher than that of GBLUP and that of Simmental cattle in previous studies [11,26], which sug-

gests that CW is controlled by QTLs with large effect. However, our study produced a different

result. For the EMA trait, the accuracy for Hanwoo, Nellore, American Angus, and Japanese

Black was 0.317, 0.47 (realized accuracy), 0.698, and 0.42, respectively. The highest accuracy

for the EMA trait in this study was 0.287 using GBLUP, which corresponded with that of Nel-

lore using BayesLasso. For the ADG trait, the performance of prediction differed in methods

with Chinese Simmental, Nellore and multibreed cattle. The highest accuracy for the ADG

trait in our study was 0.251 using EN (α = 0.001). The accuracy values for Chinese Simmental

in a previous study, Nellore and multibreeds were 0.214, 0.26 and 0.24, respectively.

In contrast, when generation validation was used, the accuracies of three traits using three

methods were slightly higher. This might be caused by the larger training dataset and smaller

test dataset. Few reports are available about the traits TW, SW, BNW, CL, and HLL. However,

clear correlations between traits were observed, and TW and SW are also of economic interest.

These observations may indicate that the genetic architecture of these traits is different among

breeds, which could cause the different characteristics in different breeds of cattle. We suggest

that ADG, CW, EMA and MS traits are suitable for the infinitesimal model, as these traits have

small effects distributed on many loci.

The accuracy of genomic predictions is influenced by the density of the SNP panel, the heri-

tability of the trait, the training population size and the effective population size [27]. In this

study, the estimated effective population size five generations ago (Ne = 103) was consistent

with that reported by [11]. The estimates of heritability were moderate to high but with low to

moderate prediction accuracies. One of the main reasons for the limited accuracies, ranging

from 0.17 to 0.295, could be due to the small reference population size (N� 973). Another

influence factor is CV strategy to assess the predictive ability of different methods. There are

already a few studies that show that a stronger genetic relationship between the training and

test datasets results in the highest accuracy for GEBV [28,29]. The averages of the relationship

between two datasets in each validation procedure ranged from 0.08 to 0.09. This result indi-

cates that the level of relationship between the training and validation populations was rela-

tively low, which may have affected the accuracy. To improve the accuracy of the genomic

prediction in this population, the key point would be to increase the number of reference ani-

mals. Considering the cost of genotyping, we can use lower density panels (80 K or 50 K).

Another alternative method is to obtain the pedigree information and use this information

simultaneously with genotype information in one model, such as single-step GBLUP

(ssGBLUP). Therefore, the use of genomic prediction in real breeding programs for Chinese

Simmental cattle is far off since there is no reasonable reference population.

Conclusions

The performance of the statistical methods used depended on the trait analyzed. The results

showed that GBLUP and EN were clearly superior to BayesB for each trait, particularly LW

and CL. When an appropriate alpha was set in the EN model, the results were better than
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those of GBLUP for most traits, with the exception of traits EMA, CL and MS. EN and GBLUP

methods could be equally recommended for the implementation of GS for carcass traits in

Chinese Simmental cattle. In addition, the results also suggest that the genetic architecture

underlying the ADG, CW, EMA and MS traits are similar and are controlled by many SNPs.

Overall, our results can be used as a reference for implementing genomic prediction in Chi-

nese Simmental beef cattle.
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