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Background. Retinoic acid-inducible gene-I (RIG-I) has crucial effects on various cancers, while RIG-I’s detailed roles and
mechanism in colorectal cancer (CRC) are uncovered. Methods. qRT-PCR was used to detect the expression of RIG-I in CRC,
adjacent nontumor specimens, and five cell lines. CCK-8, colony formation, and flow cytometry assays were conducted to
study CRC cell viabilities. Extracellular acidification rates, lactate analysis, and ATP analysis were conducted to study the cell
viabilities and glucose metabolism of CRC cells. Western blot is used to determine the proteins of NF-κBp65 in the nucleus
and cytoplasm. Results. This study revealed the upregulation of RIG-I in CRC tissues and cells and that high RIG-I expression
was correlated with poor prognosis of CRC patients. In addition, silencing RIG-I inhibited cell viability as well as colony
formation and promoted cell apoptosis in CRC cells, while RIG-I knockdown suppressed transplanted tumor growth and
facilitated apoptosis in nude mice. Moreover, silencing RIG-I inhibited glucose metabolism by decreasing extracellular
acidification rate, lactate production, adenosine triphosphate, and content of hypoxia-inducible factor 1α and pyruvate kinase
isoform. 2.2-Deoxy-D-glucose, a glycolysis inhibitor, reduced the growth of CRC cells and promoted apoptosis in vitro and
in vivo. In addition, RIG-I knockdown decreased NF-κB nuclear translocation. Besides, inhibiting NF-κB effectively eliminated
RIG-I overexpression roles in cell viability and glucose metabolism in CRC cells. Conclusion. In summary, this study revealed
that RIG-I mediated CRC cell proliferation, apoptosis, and glucose metabolism at least partly by NF-κB signaling pathway.

1. Introduction

Colorectal cancer (CRC) is one of the most frequent malig-
nancies with the second highest cancer-associated mortality
worldwide [1, 2]. CRC’s tumorigenesis and development are
correlated with genotypes, diet custom, inflammatory
response, etc. [1]. Despite great progress in CRC treatment,
approximately 50% of sufferers are present with or develop
liver metastases of CRC [3, 4]. The high metastatic ability
and inconspicuous early symptoms might contribute to high

mortality and CRC incidence [5, 6]. Additionally, targeted
therapies such as mediating immunity and glycolysis exhibit
probable therapeutic advantages for CRC [7, 8]. Therefore,
in treating CRC, it is essential to explore the detailed mech-
anisms by which the targeted genes regulate CRC growth
and glycolysis.

Retinoic acid-inducible gene-I (RIG-I), a viral RNA
receptor, facilitates viral RNA recognition and antiviral
innate immunity [9]. Besides, RIG-I has been proven to
exert inhibitory roles in various cancers. For example, RIG-
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I suppresses the migration and invasion of hepatocellular
carcinoma cells by regulating MMP9 and predicts HCC
patient prognosis [10]. Wolf et al. concluded that a high level
of RIG-I is correlated with poor prognosis of ovarian cancer
patients and associated with immunosuppression [11]. Tang
et al. revealed that RIG-I-like receptor signaling pathway pro-
motes proliferation, migration, and invasion and inhibits apo-
ptosis of non-small-cell lung cancer [12]. In addition,
increasing evidences confirmed that RIG-I activates proapopto-
tic signaling in human melanoma cells [13], mediates the mito-
chondrial apoptosis in colonic cancer [14], and monitors gut
microbiota [15]. However, RIG-I’s specific roles in CRC modu-
lation such as cell proliferation and apoptosis are still uncovered.

Aberrant metabolism has been deemed as a crucial sym-
bol of diverse cancer cells [16], which attracted scientists’
attention in the recent years. The oxidative phosphorylation
of the mitochondria is usually identified as the normal cells’
energy source. Cancer cells, however, typically meet their
energy needs through aerobic glycolysis, known as the War-
burg effect [17]. It is reported that aerobic glycolysis is one of
the important reasons for cancer cells’ growth advantage
[18], and various anticancer agents exert roles by mediating
aerobic glycolysis [19]. Oncogenes like hypoxia-inducible
factor 1α (HIF-1α) are able to promote glycolytic process
to satisfy the energy demands of rapidly growing cancer cells
[20, 21]. The level of various genes including pyruvate kinase
isoform 2 (PKM2) can accelerate glucose metabolism and
therefore promote the conversion between glucose and lac-
tate [22, 23]. Moreover, RIG-I activation promotes glycoly-
sis, lactate levels, and expression of glycolytic enzyme
hexokinase (HK2) and lactate dehydrogenase (LDHA) in
human monocyte-derived dendritic cells [24]. Nevertheless,
to our knowledge, the effect of RIG-I on glycolysis in cancer
has not been uncovered.

This finding firstly revealed that RIG-I expression level
was increased in CRC tissues and cells and that a lower level
was correlated with better prognosis of CRC patients. Addi-
tionally, silencing RIG-I inhibited CRC cell viability and
promoted CRC cell apoptosis in vivo and in vitro. Moreover,
this finding verified that by facilitating glucose metabolism
mediated via NF-κB signaling pathway, RIG-I exerted its
roles in CRC. Therefore, this investigation provides a prom-
ising therapeutic target for CRC’s future treatment.

2. Materials and Methods

2.1. Patient Information. Twenty-five pairs of patient CRC tis-
sues and corresponding adjacent control samples were collected
in accordance with the guidelines of the Ethics Committee of
the Sixth Affiliated Hospital of Wenzhou Medical University,
all patients agreed to provide written informed consents, and
the entire research was carried out in accordance with the
1975Declaration of Helsinki provisions. The CRC tissuemicro-
array including 100 CRC tissues and 20 normal tissues was pur-
chased from Shanghai Outdo Biotech (China).

2.2. Immunohistochemistry (IHC). The 100 CRC tissues and
the 20 paired adjacent normal colorectal tissues were col-
lected, fixed, and placed into paraffin and were cut into sec-

tions, which were then treated with anti-RIG-I antibody
(ab214360, Abcam, UK) and HRP-conjugated anti-IgG anti-
body (SA00001-2, Proteintech, USA). Two pathologists who
were blinded to the patients’ basic information indepen-
dently conducted immunohistochemical assessment. In
scoring immunoreactivity, H-score system was employed
according to the proportion of positive CRC cells ranging
0~ 4 and the staining intensity ranging 0~ 3, thus giving a
score 0~ 12.

2.3. Cell Culture. Human CRC cell lines (CACO2, RKO,
HT29, SW480, and SW1116) were purchased from the cell
bank of Shanghai Biology Institute (Chinese Academy of
Science) and cultured in atmosphere with 5% CO2 at 37

°C.
Cells were cultured using a Minimum Essential Medium
(MEM, BC-M-020, Biochannel, China) or Roswell Park
Memorial Institute (RPMI-1640, BC-M-023, Biochannel,
China) medium with 10% fetal bovine serum (FBS, BC-SE-
FBS01, Biochannel, China) and 5000U/mL penicillin/strep-
tomycin (15070063, Gibco, USA).

2.4. Gene Silencing/Overexpression Systems. Previous articles
were the bases for the steps for plasmid construction, lentivi-
rus packaging, and concentration determination [25]. In
brief, shRNAs targeting RIG-I were synthesized (shRIG-I-
1, GCCAGAATCTTAGTGAGAA; shRIG-I-2, GGAACT
GGAGCAAGTTGTT; and shRIG-I-3, GCAATCTTGTC
ATCCTTTA) and constructed into pLKO.1 plasmid
(Addgene). In RIG-I overexpression, the full sequence was
amplified and constructed into pLVX-Puro plasmids (Clon-
tech, USA). 293T cells were maintained until about 90%
density and transfected with pLKO.1-RIG-I or pLVX-
Puro-shRIG-I, psPAX2, and pMD2G by utilizing Lipofecta-
mine 2000 (11668030, Invitrogen, USA). Forty-eight hours
after the transfection, the recombinant lentivirus in the cell
supernatant was collected by centrifugation at 5,000 × g for
5min, and the purification and titration of recombinant len-
tivirus were performed. CRC cells were placed in a 6-well
plate and infected with the recombinant lentivirus-
transducing units at a multiplicity of infection of 10 in the
presence of 8μg/ml polybrene (Sigma-Aldrich; Merck
KGaA) for 24 h at 37°C.

2.5. CCK-8. CACO2, SW1116, and SW480 cells were placed
in a 96-well plate (136102, Thermo Scientific, USA) at a den-
sity of 3 × 103 cells per well at 37°C overnight. After 0-, 12-,
24-, and 48-h treatment, Cell Counting Kit-8 (CCK-8,
96992, Sigma-Aldrich, USA) solution (10μL) was supple-
mented into every well and incubated for 1 h. Finally, using
a microplate reader, the viability of CRC cells was repre-
sented by the recorded value of OD450 nm.

2.6. Colony Formation Assay. The treated cells (CACO2,
SW1116, and SW480) were seeded in a 6-well plate
(140675, Thermo Scientific, USA, 1 × 103 cell/well) and cul-
tured for 14 days, while colonies were fixed using 4% para-
formaldehyde (158127, Sigma-Aldrich, USA). After 15min,
0.5% crystal violet (32675, Sigma-Aldrich, USA) was used
to stain colonies for 30min, and those with 50 cells or more
were counted as previously described [26].
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2.7. Flow Cytometry Analysis. CACO2 and SW1116 cells
were cultured in a 6-well plate (140675, Thermo Scientific,
USA, 3 × 105 cell/well), remained on the plate until the con-
fluence was up to 50%, and were collected 24h after treat-
ment. The staining procedures followed two steps: (1) 4°C
15-min incubation with 5μl fluorescein isothiocyanate-
labeled recombinant annexinV (Annexin-V-FITC) and (2)
another 15-min incubation with 5μl propidium iodide, all
from Beyotime Biotechnology (C1062S, China). An Accuri™
C6 flow cytometer (BD Biosciences, USA) was then used to
examine cell apoptosis as previously described [26].

2.8. Extracellular Acidification Rate (ECAR) Analysis. As an
indicator of glycolysis, real-time extracellular acidification
rates (ECARs) were detected with a Seahorse XF24 Extracel-
lular Flux Analyzer (XF24/96, Seahorse, USA) according to
previous study [27]. In brief, CACO2, SW1116, and
SW480 cells were seeded in a 6-well plate (140675, Thermo
Scientific, USA, 4 × 104 cell/well) overnight. Next, cells were
transfected with specific vectors or infected with specific len-
tiviral particles, in which 10mM glucose, 1μM oligomycin,
and 50mM 2-DG contained in a Glycolysis Stress Test Kit
(103020-100, Agilent, USA) were then added. Finally, ECAR
was measured according to the manufacturer’s protocol.

2.9. Measurement of Lactate and ATP. CACO2, SW1116,
and SW480 cells were grown in a 6-well plate (5 × 105 cell/
well) for 24 h at 37°C 48h after treatment. The cells’ lactate
release and ATP content were determined by Lactic Acid
Assay Kit (MAK064, Sigma-Aldrich, USA) and ATP Assay
Kit (MAK190, Sigma-Aldrich, USA), respectively, following
the manufacturer’s instruction.

2.10. RNA Isolation and Quantitative RT-PCR (RT-qPCR).
TRIzol (15596018, Invitrogen, USA) was employed as
described in the manufacturer’s procedures to isolate RNA
from CRC tissues and cell lines. A First Strand cDNA Syn-
thesis Kit (K1621, Thermo Scientific, USA) was used to pro-
duce cDNA with 1μg RNA, and the cDNA was further used
in quantitative PCR. The RT-qPCR analysis was then con-
ducted employing the SYBR® Green Kit (902905, Applied
Biosystems, USA) in an ABI 7300 Real-Time PCR System
(Applied Biosystem, USA). β-Actin was introduced to be
the control sample. All primers are RIG-I-F: 5′-TTCCCA
CAAGGACAAAAG-3′, RIG-I-R: 5′-CCAGAAATGCC
TGTAACTC-3′; β-actin-F: 5′-GATGACCCAGATCATG
TTTGAG-3′, β-actin-R: 5′-TAATGTCACGCACGATTTC
C-3′. The 2−ΔΔCT method was used to calculate the relative
expression level of specific mRNA.
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Figure 1: RIG-I expression was increased in CRC patients and associated with poor survival outcome. (a) RIG-I expression in paired
adjacent normal colorectal tissues (n = 25) and tumor tissues (n = 25) from CRC patients was measured using RT-qPCR. (b)
Representative IHC images and (c) scores of RIG-I in CRC tissue microarrays. Scale bar: 100μm. (d) Survival analysis and comparison
between people with high and low RIG-I expression in CRC tissue microarrays. ∗∗∗P < 0:001 vs. normal.

3Disease Markers



2.11. Western Blot Analysis. Twenty-five micrograms of the
total proteins in CRC tissues and cell lines that were har-
vested was loaded and separated by 10% SDS-PAGE gel.
The cytosolic fraction and nuclear extracts were prepared
using the NE-PER™ Nuclear and Cytoplasmic Extraction
Reagents (Thermo Fisher Scientific) following the manufac-
turer’s protocol. Isolated proteins were moved to PVDF
membranes (88518, Thermo Scientific, USA) followed by
1-h blocking at room temperature in 5% nonfat milk
(LP0033B, Thermo Scientific, USA) contained in 1 × TBST
buffer (28360, Thermo Scientific, USA). Next, the mem-
branes were incubated at 4°C with primary antibody for a
night (RIG-I, ab180675; HIF-1α, ab216842; PKM2,
ab85555; LDHA, ab52488; Lamin B1, ab229025; and β-actin,
ab8226 all from Abcam, UK; GLUT1, Biorbyt, St Louis, MO,
USA, orb157188; NF-κBp65, Cell Signaling Tech, #8242).
Lastly, 1 × TBST was employed to wash the above mem-
branes twice, and ECL (WBULS0100, Millipore, USA) was
used to treat them for visualizing specific protein bands.
The quantitative analysis for each protein band was per-
formed by ImageJ software (USA).

2.12. In Vivo Model. Male BALB/c nude mice (5-week-old,
male) were obtained from Shanghai Laboratory Animal
Company, Shanghai, China. The use of mice was authorized
by the Ethics Committee of the Sixth Affiliated Hospital of
Wenzhou Medical University. A tumor-bearing model was
constructed by subcutaneously injecting CACO2 transduced
with RIG-I shRNA vector or SW480 cells. 2-DG was admin-
istered at 500mg/kg body weight by intraperitoneal route
every other day (n = 6/group), and the tumor volume was
recorded every 3 days for 33 days. At 33 days, mice were
sacrificed and tumor size was photographed and weighed.
Additionally, terminal deoxynucleotidyl transferase dUTP
nick-end labeling (TUNEL, A23210, Invitrogen, USA) was
employed to detect the transplantation tumor’s apoptosis
rate.

2.13. Statistical Analysis. Data were presented as mean ± SD
from triplicates of independent experiments. GraphPad
Prism 8.4.2 was used to conduct statistical analysis (Graph-
Pad Software, USA) utilizing unpaired Student’s t-test
between the two groups. One-way ANOVA followed by
posttest was performed to compare multiple groups. P <
0:05 was considered statistically significant.

3. Results

3.1. RIG-I Expression Was Increased in CRC Patients and
Was Associated with Poor Survival Outcome. RT-qPCR assay
was performed to measure RIG-I expression level in CRC
tissues. The data illustrated that RIG-I expression was
increased in CRC tissues compared with that in paired adja-
cent normal colorectal tissues (n = 25, Figure 1(a)), and IHC
staining of RIG-I employing CRC tissue microarrays further
confirmed this finding (Figure 1(b)). Besides, RIG-I IHC
score was remarkably higher in tumor tissues than that in
paired adjacent normal colorectal tissues (Figure 1(c)), and
these findings revealed that RIG-I was highly expressed in

CRC tissues at mRNA and protein levels. We analyzed the
correlation between the RIG-I protein expression and clini-
copathological parameters in those diagnosed with CRC to
confirm the effects of RIG-I on CRC. As shown in Table 1,
the high content of RIG-I was related to tumor size, TNM
classification, and distant metastasis, while high RIG-I
expression was not significantly associated with gender and
age. These clinical data proved that RIG-I upregulation is
related to CRC development. Moreover, a 60-month survival
curve of 100 CRC patients showed that high RIG-I expres-
sion was involved in the shorter survival time
(Figure 1(d)). Thus, RIG-I is probably an oncogene in CRC.

3.2. RIG-I Knockdown Inhibited Cell Viability and Colony
Formation and Promoted Cell Apoptosis in CRC Cell Lines.
Subsequently, we estimated the RIG-I expression content
in HIEC (normal intestinal epithelial cell line) and CRC cell
lines CACO2, RKO, HT29, SW480, and SW1116. The data
proved that RIG-I expression level increased in CRC cells
compared to that in HIEC cells (Figures 2(a) and 2(b)).
CACO2 and SW1116 cells were chosen for RIG-I silencing
to explore RIG-I roles in CRC cells. The shRIG-Is were
transduced into CACO2 and SW1116 cells, and RIG-I
knockdown efficiency was determined using RT-qPCR and
Western blot analysis (Supplementary Figures S1A and
S1B), and we chose shRIG-I-1 and shRIG-I-3 in conducting
the experiments. CCK-8 assay was used to estimate the
effects of RIG-I on the growth of CRC cells. The results dem-
onstrated that silencing RIG-I inhibited CACO2 and
SW1116 cell viabilities (Figure 2(c)), and colony formation
was further confirmed in CACO2 and SW1116 cells

Table 1: Correlation between the RIG-I protein expression and
clinicopathological parameters in patients with colorectal cancer.

Clinicopathological
parameter

Protein expression of
RIG-I

P-value
High
n = 59ð Þ

Low
n = 41ð Þ

Gender 0.989

Male 29 25

Female 30 26

Age (years) 0.281

<60 21 19

≥60 38 22

Tumor size (cm) 0.002

≤4 18 25

>4 41 16

TNM classification 0.002

I 6 10

II 14 20

III 30 8

IV 9 3

Distant metastasis 0.010

Yes 31 11

No 28 30

Differences between groups were determined by the chi-square test.
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Figure 2: Continued.

5Disease Markers



(Figure 2(d)). Moreover, annexin V assay demonstrated that
CACO2 and SW1116 cell apoptoses were dramatically pro-
moted by RIG-I knockdown (Figure 2(e)), which proved
that silencing RIG-I downregulated CRC cell growth and
upregulated cell apoptosis in vitro.

3.3. Rig-I Knockdown Inhibited Tumor Growth In Vivo. To
further explore RIG-I roles in tumor growth, nude mice
were subcutaneously injected with CACO2 cell silencing
RIG-I. The tumor volume (every 3 days for 33 days) as well
as weight at day 33 was obviously decreased in nude mice
injected with RIG-I-silencing cells (Figures 3(a) and 3(b)).
Next, the apoptotic rate of tumor xenograft detected using
TUNEL staining demonstrated that RIG-I knockdown sig-
nificantly promoted tumor cell apoptosis (Figure 3(c)).
Additionally, employing Western blot analysis confirmed
RIG-I knockdown efficiency (Figure 3(d)). Collectively,
these data suggested that silencing RIG-I suppressed tumor
growth and facilitated apoptosis in vivo.

3.4. RIG-I Knockdown Inhibited Glucose Metabolism in CRC
Cell Lines. Since glycolysis plays essential effects on CRC
progression [28], hence, we theorized that silencing RIG-I
exerted its antitumor roles through glucose metabolism
modulation. Additionally, ECAR is one of the products of gly-

colysis that is associated with lactic acid contents, which
reflects glycolysis capacity [29]. Therefore, RIG-I knockdown
effects on ECAR were detected in CACO2 and SW1116 cells
treated with glucose, oligomycin, or 2-DG. As expected,
shRIG-I reduced ECAR in CACO2 and SW1116 cells, indicat-
ing that silencing RIG-I inhibited glycolysis ability
(Figure 4(a)). Moreover, RIG-I silence decreased lactate pro-
duction and ATP (Figures 4(b) and 4(c)). Important enzymes’
protein levels related to glycolysis such as HIF-1α, PKM2,
GLUT1, and LDHA were remarkably reduced in shRIG-I
transduced CRC cells (Figure 4(d)). Furthermore, since the
transcription factor NF-κB is reported to be related to CRC
progression [30] and glycolysis [31], the expression level of
NF-κBp65, the most common member of NF-κB, was mea-
sured. Silencing RIG-I significantly downregulated NF-
κBp65 expression in the nucleus but upregulated it in the cyto-
plasm in both CACO2 and SW1116 cells (Figure 4(e)), indi-
cating that RIG-I knockdown suppressed NF-κB nuclear
translocation. These investigations revealed that silencing
RIG-I blocked glucose metabolism and inactivated NF-κB sig-
naling pathway in CRC cells.

3.5. The Suppressive Effects of 2-DG on CRC Cells and Tumor
Growth. To further verify whether in vitro and in vivo CRC
tumor growth was affected by glucose metabolism, CACO2
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Figure 2: RIG-I knockdown inhibited cell viability and colony formation and promoted cell apoptosis in CRC cell lines. (a) The mRNA level
of RIG-I in HIEC cells and diverse CRC cells (CACO2, RKO, HT29, SW480, and SW1116). (b) RIG-I protein level in HIEC cells and diverse
CRC cells (CACO2, RKO, HT29, SW480, and SW1116). (c) Cell viability, (d) colony formation, and (e) cell apoptosis of CACO2 and
SW1116 cells with or without RIG-I knockdown. ∗∗∗P < 0:001, ∗∗P < 0:01, ∗ P<0.05 vs. HIEC or shNC.
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and SW480 cells were treated with or without 2-DG, which then
showed that 2-DG significantly inhibited colony formation in
CACO2 and SW480 cells (Figure 5(a)). Moreover, 2-DG treat-
ment dramatically suppressed tumor growth in nude mice as
presented in Figures 5(b)–5(d). Furthermore, TUNEL staining
experiment illustrated that incorporation of 2-DG in treatment
significantly increased cell apoptosis in tumor xenograft
(Figures 5(e) and 5(f)). Taken together, these results suggested
that glucose metabolism inhibition effectively suppressed CRC
tumor growth and promoted apoptosis in vitro and in vivo.

3.6. RIG-I Overexpression Promoted Cell Viability and
Glucose Metabolism in CRC Cells via the NF-κB Signaling
Pathway. The abovementioned results verified silencing
RIG-I’s inhibition of CRC cell proliferation, glucose metabo-
lism, and NF-κB nuclear translocation. Whether RIG-I
exerts its roles in CRC by regulating NF-κB signaling path-
way attracted our attention. The plasmid with RIG-I was
transduced into SW480 cells, and RIG-I was notably overex-
pressed at both mRNA and protein levels (Supplementary
Figure S1C). SW480 cells overexpressing RIG-I were treated

with or without PDTC, a NF-κB inhibitor. The CCK-8 assay
demonstrated that RIG-I overexpression increased SW480
cell viability, while PDTC treatment effectively eliminated
RIG-I overexpression roles in SW480 cells (Figure 6(a)).
RIG-I overexpression significantly upregulated ECAR, lac-
tate production, ATP, and expression levels of HIF-1α,
PKM2, GLUT1, and LDHA, which suggested that RIG-I
overexpression accelerated glycolysis process. However,
PDTC treatment effectively counteracted RIG-I overexpres-
sion effects on glucose metabolism (Figures 6(b)–6(e)). Col-
lectively, these findings proved that RIG-I played its vital
roles in cell viability and glucose metabolisms at least partly
by modulating NF-κB signaling pathway in CRC cells.

4. Discussion

This study illustrated that RIG-I level was significantly
upregulated in CRC tissues and cells. Besides, RIG-I high
expression was associated with malignant clinical features
and poor prognosis of CRC patients. A series of assays con-
firmed that silencing RIG-I inhibited CRC cells and tumor
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Figure 3: RIG-I knockdown inhibited tumor growth in vivo. CACO2 cells (5 × 105) transduced with shNC or RIG-I shRNA vector were
subcutaneously injected into the armpits of nude mice. (a) Tumor size was recorded every 3 days for a total of 33 days. (b) The tumors
isolated from mice at day 33 were photographed and weighed. (c) TUNEL staining and (d) RIG-I expression in tumor xenograft. Scale
bar: 50μm. ∗∗∗P < 0:001, ∗∗P < 0:01 vs. shNC.
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growth and promoted cell apoptosis in vitro and in vivo.
Additionally, RIG-I knockdown suppressed glucose metabo-
lism in CRC cells, while glycolysis inhibition blocked CRC
tumor growth and promoted apoptosis in vitro and
in vivo. For molecular mechanisms, this finding revealed
that silencing RIG-I inactivated NF-κB. Furthermore,
PDTC, a NF-κB inhibitor, could eliminate RIG-I effects on
CRC tumor growth and glucose metabolism. Therefore, we
for the first time revealed that by regulating NF-κB signaling
pathway in CRC, RIG-I positively modulated cell growth
and glucose metabolism.

It was first reported that RIG-I could be induced to
mediate acute promyelocytic leukemia cell differentiation
[32]. In addition, RIG-I low expression level is correlated
with poor prognosis in patients with HCC [10], melanoma
[13], and gastric cancer [33], and is an independent favor-
able prognostic factor in patients with estrogen receptor-
positive breast cancer. It has been reported that RIG-I
absence exacerbates enterocolitis which is known to increase
CRC risk [34]. However, the present investigation illustrated
that increased RIG-I expression was associated with shorter
survival time and several clinicopathological features of CRC
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patients, such as tumor size, TNM staging, and distance
metastasis, but not age which is also known to be a CRC risk
[35]. Further study confirmed that silencing RIG-I dramati-
cally inhibited CRC cell proliferation and facilitated cell apo-
ptosis in vitro and in vivo. The reason for the increased early
apoptosis than late apoptosis due to RIG-I absence may be

RIG-I shRNA treatment’s short time and low concentration.
Recent research has elucidated that cells with a longer incu-
bation and higher concentration of exogenous stimulation
may demonstrate an increased late apoptosis than early apo-
ptosis [36, 37]. Moreover, mice injected with a higher num-
ber of CRC cells showed an increased tumor growth in vivo.
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RIG-I is known to be a tumor suppressor that increases cer-
vical cancer cell apoptosis and is related to the t-lymphocyte
differentiation that is helpful for anticancer effects [38].
Therefore, the correlation between RIG-I and other risk fac-
tors of CRC and the role of RIG-I in regulating CRC malig-
nant progression should be further confirmed. Recent
research has elucidated that abnormal metabolism often
occurs in cancer cells owing to the genes regulating cancer
metabolism [39]. The most high-profile abnormal metabo-
lism in cancer is aerobic glycolysis prior to mitochondrial

oxidative phosphorylation, which is the main energy source
of rapidly multiplying cancer cells, which is known as the
Warburg effect [40, 41]. It has been reported that RIG-I-
mediated innate immunity progression is affected by glycol-
ysis [42, 43], while it is unclear whether RIG-I is able to reg-
ulate glycolysis in CRC. RIG-I expression was significantly
inhibited by the potent glycolysis inhibitor 2-DG in human
plasmacytoid dendritic cells [24], and decreased RIG-I
expression promoted CRC cell apoptosis. These results indi-
cated that 2-DG may inhibit CRC tumor growth in vivo
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through inhibiting glycolysis signaling pathway and/or inhi-
biting RIG-I-mediated apoptosis progression. However, this
conclusion could be further validated in future study.

It has been reported that NF-κB pathway is involved in the
correlation between inflammatory response and cancer pro-
gression, which is closely associated with innate immunity
and tumorigenesis. For example, Lee et al. found that NF-
κBp65 activates caspase-1 expression in keratinocytes’
immune microenvironment [44]. Additionally, NF-κB signal-
ing pathway is proved to be vital in glycolysis progression in
various cancers [25, 27]. In this investigation, silencing RIG-
I obviously reduced NF-κBp65 protein level in the nucleus
but increased its content in the cytoplasm, illustrating that
RIG-I knockdown inhibited NF-κB activation. Moreover,
inhibiting NF-κB using PDTC effectively counteracted RIG-I
overexpression roles in cell viability, glycolysis, and expression
of HIF-1α, PKM2, GLUT1, and LDHA. It is in line with our
findings that RIG-I regulates inflammatory cytokine tran-
scription and releases via the NF-κB signaling pathway in
nasopharyngeal carcinoma [45]. Moreover, NF-κB mediates
HIF-1α transcriptional activation which promotes PKM2,
GLUT1, and LDHA transcription [46, 47]. These data indi-
cated that RIG-I is not a direct inhibitory factor for targeting
HIF-1α and its downstream factors. Additional researches
for signaling factors that will be affected by RIG-I in metabolic
alteration in CRC are necessary.

There were still limitations in this study. For example,
whether 2-DG synergizes with RIG-I knockdown to further
inhibit CRC cell proliferation and promote cell apoptosis
needs to be explored in future studies. In addition, we did
not conduct experiments to verify RIG-I roles in more
CRC progressions such as cell migration and invasion.
Moreover, a series of experiments should be performed to
confirm those roles in clinical trials.

5. Conclusion

In conclusion, this investigation elucidated that RIG-I posi-
tively regulated CRC tumor growth and glucose metabolism
at least partly by NF-κB signaling pathway modulation. This
study also revealed the therapeutic potential of RIG-I in
CRC and implied the promising crosstalk between RLR fam-
ily genes and glucose metabolism.
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