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1  | INTRODUC TION

Bats have been implicated in the transmission of a number of zoo-
notic diseases (e.g., SARS, Rabies, Nipah, Hendra) that, while often 
resulting in asymptomatic infections in bats, cause significant mor-
tality in humans and domestic animals (Wang & Anderson, 2019). 
Given that bats host more viral pathogens per species than other 
mammalian orders (Luis et al., 2013) and that a greater proportion 
of their total viral diversity is zoonotic (Olival et al., 2017), there is 
justified concern over continued disease emergence from this group. 
There are ~1,400 species of bats (Fenton & Simmons, 2014) making 
a systematic investigation of viral carriage expensive and, at least 
in the short term, impractical. However, a viable and immediate 

alternative is to identify key aspects of bat ecology that underlie ob-
served patterns of viral diversity to predict species that are likely to 
carry pathogens relevant to human health.

Bats exhibit an extraordinary variety of life-history strategies 
(Simmons & Conway, 2003). Several studies have examined how this 
ecological variation correlates with viral richness (Guy, Thiagavel, 
Mideo, & Ratcliffe, 2019; Luis et al., 2013; Turmelle & Olival, 2009; 
Webber, Fletcher, & Willis, 2017). Similar to predictors of parasite 
diversity in other taxonomic groups (Ezenwa, Price, Altizer, Vitone, 
& Cook, 2006; Kamiya, O’Dwyer, Nakagawa, & Poulin, 2014; 
Lindenfors et al., 2007; Nunn, Altizer, Jones, & Sechrest, 2003), 
traits hypothesized to increase the likelihood of parasite contact 
and sharing (i.e., larger body sizes, broader geographic distributions, 
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range overlap) are important predictors of increased viral diversity in 
bats (Guy et al., 2019; Luis et al., 2013; Maganga et al., 2014; Olival 
et al., 2017). Additionally, bat species with more structured popula-
tions (less genetic mixing, possibly facilitating pathogen maintenance 
in the larger metapopulation) and classified by the International 
Union for the Conservation of Nature (IUCN) as near-threatened 
or vulnerable (which may be more susceptible to infection due to 
stress) carry a greater number of viruses (Turmelle & Olival, 2009). 
However, studies have yielded conflicting results about other bat 
traits. For example, while large group sizes are thought to pro-
mote viral transmission, leading to increased pathogen diversity, 
as observed elsewhere in the literature (reviewed in Patterson & 
Ruckstuhl, 2013) in bats there is evidence for both positive (Webber 
et al., 2017) and negative (Gay et al., 2014) associations with viral 
diversity.

This previous body of research has drawn conclusions from lim-
ited subsets of species (Webber et al., 2017, N = 51, ~4% of spe-
cies; Luis et al., 2013, N = 66, ~5% of species; Turmell & Olival, 
2009, N = 33, 3% of species) or restricted geographic areas (Gay 
et al., 2014, Southeast Asia, N = 20, ~2% of species; Maganga et al., 
2014, Central and West Africa, N = 17, ~1% of species). This is due 
to limitations of standard phylogenetic comparative methods, which 
often rely on complete trait information for species included in 
analyses, and a lack of comprehensive natural history information 
for many bat species. Machine learning (i.e., algorithms that do not 
assume an underlying data model but rather learn the relationship 
between predictors and response; Elith, Leathwick, & Hastie, 2008), 
with its ability to handle missing data, is a powerful tool for over-
coming some of these limitations. Han, Schmidt, Bowden, and Drake 
(2015) used a machine learning approach to examine drivers of viral 
diversity in rodents, finding that species with fast-paced life-history 
strategies (i.e., shorter life spans, faster development, smaller bod-
ies) were more likely to be viral carriers. Given the predictive nature 
of their approach, Han et al. (2015) were able to identify rodent spe-
cies likely to be carrying zoonotic viruses, despite no viral detections 
in those species to date. The authors also applied this methodology 
to bats to predict the distribution of filoviruses, a single viral family 
that includes Ebola and Marburg (Han et al., 2016). Bat traits such 
as neonate mass, species’ sympatry, and rates of reproduction were 
important for predicting the distribution of filoviruses, and 112 bat 
species were identified as likely, but as yet undetected, filovirus car-
riers (Han et al., 2016).

Although Han et al. (2016) considered a greater number of bat 
species (N = 1,116) than previous analyses (e.g., Guy et al., 2019; Luis 
et al., 2013; Turmelle & Olival, 2009; Webber et al., 2017), they ex-
amined the distribution of only one (i.e., filoviruses) of the 24 viral 
families found in bats (Han et al., 2016; Hayman, 2016). Moreover, 
this body of prior work has not considered how predictors of viral 
diversity may shift when viral traits are considered. Similar to host 
traits, the traits of viruses are also likely to govern infection dynam-
ics and transmission between bat species (Geoghegan, Senior, Di 
Giallonardo, & Holmes, 2016; Luis et al., 2013; Olival et al., 2017). 
For example, ribonucleic acid (RNA) viruses tend to cause acute 

infections, that is, they are relatively short-lived, and often gener-
ate long-lasting immunity (Holmes, 2009; Villarreal, Defilippis, & 
Gottlieb, 2000). Since large group sizes and synchronized birthing 
pulses (leading to influxes of susceptible hosts) are likely import-
ant for sustaining acute immunizing infections in bats (Calisher, 
Childs, Field, Holmes, & Schountz, 2006; Hayman, 2015; Plowright 
et al., 2016), these host traits may be more important for explaining 
patterns of RNA, compared to deoxyribonucleic acid (DNA), viral 
diversity.

Here, we extend on previous work to explicitly consider potential 
interactions between host and viral traits in investigating correlates 
of viral diversity across the Chiropteran order. We leverage larger 
species’ trait and viral datasets than previously analyzed and con-
sider traits found to be important drivers of viral diversity in earlier 
work examining smaller numbers of species (e.g., group size, body 
size, geographic distribution; Luis et al., 2013; Webber et al., 2017). 
We also analyze the role of several traits not previously examined 
(e.g., wing morphology, propensity to form mixed species groups), 
but hypothesized to influence patterns of viral richness (Calisher 
et al., 2006; Wang, Walker, & Poon, 2011). In Table A2, we outline 
our predictions for all traits considered. Using a machine learning 
approach, we identify the most important bat traits for predicting 
the richness of viruses they carry and examine if and how the impor-
tance of these traits depends on a key viral trait—RNA versus DNA 
genome. Lastly, we use our models to identify bat species that are 
likely—though currently undetected—carriers of viruses, highlighting 
species and geographic regions as key candidates for viral surveil-
lance efforts.

2  | MATERIAL S AND METHODS

2.1 | Bat species’ trait data

Using primary literature searches and existing databases, we col-
lected ecological trait information for 812 species of bats for which 
there exists a fully resolved phylogeny (Shi & Rabosky, 2015). 
Although this is fewer species than analyzed in Han et al. (2016), 
we included only species for which there are resolved phylogenetic 
relationships in order to investigate the influence of species’ rela-
tionships on inferences (see below). We considered traits previously 
found to be important predictors of viral diversity in mammals, 
including: range area (e.g., Lindenfors et al., 2007), latitude of spe-
cies’ geographic range midpoint (e.g., Lindenfors et al., 2007; Nunn, 
Altizer, Sechrest, & Cunningham, 2005), torpor expression (e.g., Luis 
et al., 2013), group size (e.g., Webber et al., 2017), species’ sympatry 
(e.g., Han et al., 2016; Luis et al., 2013), diet (e.g., Han et al., 2016; 
Luis et al., 2015), citation count to control for study effort (number 
of publications for a species’ binomial from Web of Science; e.g., Luis 
et al., 2013), and forearm size as a proxy for body size (e.g., Kamiya 
et al., 2014).

We also included several traits not found in previous anal-
yses including number of mixed species roosting associations 
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(potentially facilitating cross-species transmission), longitude of 
species’ range midpoint (to separate Old and New World species), 
and relative wing loading (RWL) and aspect ratio (AR) which char-
acterize wing morphology. RWL and AR also serve as rough prox-
ies for bat ecological niches (Norberg & Rayner, 1987) and capture 
variation in daily activity patterns. Since body temperature may 
contribute to pathogen control in bats (O’Shea et al., 2014), activity 
patterns may influence patterns of viral diversity. For a complete 
list of the 19 variables considered and pairwise plots of predictors, 
see Appendix A; Table A1 and Figures A1,A2. Specific hypotheses 
about predictors' relationships with viral richness are in Table A2.

We considered only those bat species for which we had informa-
tion on five or more predictor variables (i.e., >25% of the ecological 
traits considered). This resulted in 747 species (~90% of species in 
Shi & Rabosky, 2015) included in final models. Supplementary anal-
yses indicate that building models using species for which we have 
more trait information (e.g., 10 or more ecological traits, 615 species) 
does not alter conclusions (Appendix B; B1).

2.2 | Viral data

We collected information on the diversity of viruses hosted by bat 
species from published records on “DBatVir” (data downloaded April 
2018), a continually updated repository of viral sequences (Chen, Liu, 
Yang, & Jin, 2014). Although previous studies (e.g., Luis et al., 2013; 
Webber et al., 2017) used the number of viral species hosted by 
bats as a measure of diversity, we used the number of viral families 
since viral species classification lags behind surveyed viral diversity 
(Remita et al., 2017). For each of the viral families in our dataset, we 
also determined if that family had known zoonotic members (e.g., 
Coronaviridae, Flaviviridae, Rhabdoviridae).

To investigate whether the importance of bat traits shifts when 
considering different virus types, for each viral family we recorded 
genome structure (i.e., RNA, DNA, retrovirus) and Baltimore clas-
sification (1971). Using the seven categories of the Baltimore clas-
sification partitioned the data too finely to build accurate models 
(Appendix A, Figure A4), therefore we only considered the influence 
of viral genome structure (i.e., RNA or DNA, omitting retroviruses) in 
our analyses. Viral data are summarized in Figures A3–A5.

We used viral data to derive four response variables: total num-
ber of viral families, number of viral families with zoonotic members, 
number of DNA viral families, and number of RNA viral families 
hosted by bat species. All bat species for which no viral informa-
tion was present (n = 540) were designated as zeros. Supplementary 
analyses indicate that inclusion of fewer or no zeros does not quali-
tatively alter conclusions (Appendix B; B.2).

2.3 | Species’ trait correlates of viral diversity

To examine bat trait correlates of viral diversity, we used boosted 
regression tree (BRT) models (Elith et al., 2008; Ridgeway, 2017). In 

BRT models, multiple decision trees are built and combined to im-
prove predictive performance (Elith et al., 2008). BRTs have been 
used to analyze large species trait datasets (Han et al., 2015, 2016) 
and are advantageous because they do not assume an underlying 
data distribution and can handle hidden interactions, different pre-
dictor types, and nonrandom patterns of missing data (De'ath & 
Fabricius, 2000; Elith et al., 2008).

Unlike phylogenetic comparative methods, BRTs do not ex-
plicitly control for shared ancestry among species. Considering 
this, and similar to (Han et al., 2015, 2016), we included family 
as a predictor in models to explore whether viral carriers are 
more likely to come from particular bat families. We also used 
a time-calibrated phylogeny (Shi & Rabosky, 2015) to group bat 
species into “phylogenetic clusters” at 41 and 56 million years 
before present, corresponding to the start of major geological 
boundaries (the Bartonian age and Eocene Epoch, respectively; 
Ogg, Ogg, & Gradstien, 2016) and periods of relatively rapid bat 
speciation (Shi & Rabosky, 2015; Teeling et al., 2005). Using the 
three phylogenetic groupings (i.e., bat families, 41MYA clusters, 
and 56MYA clusters), we examined if species’ relationships al-
tered model predictive performance (Appendix B; B.3). Results 
suggest that while phylogenetic groupings are important for 
predicting patterns of viral diversity, species’ relationships do 
not impact model accuracy (i.e., models built on subsets of re-
lated species still predict well on subsets of less related species; 
Appendix B; B.3). Additionally, the importance of bat ecological 
traits does not depend on which phylogenetic grouping is used 
(Appendix B; B.3). Models presented in the main text include 
bat families as a predictor, given that they are more intuitive to 
interpret.

We performed all analyses in R (v. 3.4.4; R Core Development 
Team, 2014). Using the caret package (v. 6.0–79; Kuhn et al., 2018), 
we split our dataset into training (80% of species) and test (20% of 
species) sets. For each BRT model, we used the caret package to 
determine optimal values for the following: learning rate, tree com-
plexity, and number of trees. We used optimized parameter values 
to build BRT models using 10-fold cross validation. All BRT models 
were built with a Poisson loss function using the gbm package (v. 
2.0–8; Ridgeway, 2017). For each BRT model, we determined the 
relative importance of each predictor (i.e., its contribution to the 
final model expressed as a percentage) and computed pseudo R2 
measures (i.e., a measure of successful predictions to unsuccessful 
ones) for training and test datasets. Finally, we generated partial 
dependence plots, which illustrate how individual traits influence 
viral diversity, holding the effects of other predictors constant 
(Elith et al., 2008).

We built four BRT models with either total, zoonotic, DNA, 
or RNA viral family diversity as the response and all ecological 
traits as predictors. Given variability between BRT model runs 
(Appendix B), we ran each model 200 times, using different 80% 
training and 20% test splits, and calculated the average rela-
tive importance of each ecological trait. To facilitate compari-
sons of measures of relative importance across BRT models, we 
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normalized these measures to the variable of greatest importance 
(i.e., citation count).

2.4 | Predicting viral reservoirs

We used the predict function from the gbm package (Ridgeway, 2017), 
and our models for total and zoonotic viral family diversity to de-
termine which of the zeros in our dataset (i.e., species not known 
to be reservoirs; n = 540) were likely to carry viruses. Given that 
citation count was the most influential predictor in all cases, using 
the BRT models presented above would result in bat species’ being 
predicted as viral reservoirs largely based on study effort, rather 
than any intrinsic traits. Further, simply removing citation count 
from the analyses would lead to an increase in the relative impor-
tance of those traits correlated with citation count (e.g., group size, 
life span) that may also be proxies for study effort in this dataset. 
To ensure that species were predicted as potential reservoirs based 

on their ecological traits and not because they were well studied or 
possessed the traits of well-studied species, we built BRT models 
that excluded citation count and removed its effects from continu-
ous variables. We regressed each predictor that was correlated with 
citation count (Figure A2) and had high relative importance in the 
total virus diversity model (Figure 1)—group size, latitude, longitude, 
life span, and range area—against citation count. We then built new 
BRT models using the residuals as predictors, along with the other 
raw variables. We could not correct for citation count in categorical 
variables (e.g., bat family, torpor use), but note that citation count 
may influence these predictors (Figures A6,A7) and discuss implica-
tions in the results.

Using residual predictors, we ran 200 BRT models with total viral 
family diversity as the response and different 80% training and 20% 
test splits of the data. For each run, we generated predictions for 
the number of viruses harbored by each bat species and averaged 
these values over the 200 runs (Appendix C). As in (Han et al., 2015, 
2016), we looked specifically at bats with no known viruses (zeroes 

F I G U R E  1   Relative importance of ecological traits from 200 BRT model runs. Points represent average relative importance across runs, 
while shaded bars represent the range within which 95% of values fall. In the upper panel, traits summing to ~90% of the average relative 
importance for models are separated by a dashed line. In the lower two panels, traits summing to 90% of the average relative importance for 
models are marked with asterisks. Top Panel: Relative importance measures for predicting total viral family diversity. Middle Panel: Relative 
importance measures for predicting DNA viral family diversity. Bottom Panel: Relative importance measures for predicting RNA viral family 
diversity
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in our dataset) and identified the most likely reservoir species as 
those falling within the top 90th, 95th, or 99th percentile for pre-
dicted number of viruses (Appendix C). We also repeated this pro-
cess for zoonotic viral families (Appendix C) and for RNA and DNA 
viral families (only 99th percentile predictions; Appendix C). For av-
erage measures of relative importance and predictive performance 
for BRT models that accounted for the influence of citations, see 
Figures A8–A11.

We mapped the geographic distribution of bat species (obtained 
from IUCN, 2017) to gain an understanding of the global distribu-
tion of potential viral carriers. In ArcGIS (v. 10.1; ESRI, 2010), we 
performed a raster overlay analysis to create five maps (resolution 
0.1 × 0.1 decimal degrees): range overlap for all bat species, range 
overlap of confirmed viral carriers, range overlap of predicted viral 
carriers in the 90th percentile of model predictions for both total 
and zoonotic viral diversity, and range overlap of predicted viral car-
riers in the 95th percentile of model predictions for total viral diver-
sity. We then divided each raster cell in our maps for range overlap 
of predicted viral carriers by the total bat biodiversity in that cell, to 
control for the fact that bat reservoirs are more likely to come from 
areas of higher overall bat diversity. This produced additional maps 
showing the proportion of bat species in any given area that are pre-
dicted viral carriers. In the main text, we present the range overlap 
and scaled proportional diversity map for species predicted to be 
viral carriers using the total viral diversity model (90th percentile). 
All other maps are in Appendix A (Figures A12–A14).

3  | RESULTS

3.1 | Ecological traits important for predicting viral 
diversity

Models for total viral family diversity in bats had high average pre-
dictive accuracy (pseudo-R2

test.average = 0.52; Figure A16; Table A3), 
comparable to prior work (Han et al., 2015, 2016). BRT models for 
RNA viral families had similar average predictive accuracy (pseudo-
R2

test.average RNA = 0.46; Figure A16; Table A3). Models had lower 
accuracy when predicting DNA viral families (pseudo-R2

test.average 
DNA = 0.27; Figure A16; Table A3), likely due to their limited oc-
currence in the dataset (Figures A4,A5). Models also had lower ac-
curacy when predicting zoonotic viral families (pseudo-R2

test.average 
zoonotic = 0.36; Figure A11).

Traits important for predicting total viral family diversity included 
the following: citation count, life span, longitude of range midpoint, 
bat family, median group size, range area, relative wing loading, and 
aspect ratio (Figure 1). The relative importance of these eight traits 
in BRT models summed to ~90%. Averaged partial dependence plots 
for individual traits indicate that citation count, life span, longitude, 
and median group size had positive effects on predicted viral diver-
sity (Figure 2), as expected (Table A2). Put another way, our BRT 
models predict that species that are better studied, longer-lived, 
form larger social groups, and have larger geographic ranges east of 

the Prime Meridian carry the greatest number of viral families. For 
relative wing loading, both low and high values had a positive, al-
beit small, effect on predicted viral diversity, while increasing aspect 
ratio had a small, negative effect in BRT models (Figure 2). Variability 
around the partial dependence plots for these morphological traits 
makes it difficult to draw strong inferences (Figure 2). Models pre-
dicting the distribution of zoonotic viruses emphasized the same 
trait profile (i.e., longer-lived bat species, widely distributed east of 
the prime meridian) as the total viral family diversity model (Figure 
A10).

The ecological traits summing to ~90% of the relative impor-
tance for models predicting RNA, DNA, and total viral family di-
versity were largely the same (Figure 1). However, the normalized 
measures (Figure 3) reveal shifts in the relative importance of traits 
for predicting the diversity of DNA, but not RNA viruses. For DNA 
viruses, life span was more important, while family, group size, and 
range area were less important than in models predicting total and 
RNA viral family diversity (Figure 3). Partial dependence plots indi-
cate that the shape of the relationships between these traits and 
RNA or DNA viral diversity is similar to what is predicted for total 
and zoonotic viral diversity (Figures A17–A22).

3.2 | Predicted viral reservoirs

To predict suspected viral carriers, we ran BRT models that excluded 
citation count as its own variable, but corrected for its influence on 
key predictors. We found that these residual (rather than raw) pre-
dictors resulted in few changes in the relative importance of traits 
(Figures A8,A10). Life span residuals, longitude residuals, relative 
wing loading, family membership, group size residuals, aspect ratio, 
and geographic range area residuals all remained within the top pre-
dictors for both total and zoonotic viral diversity (Figures A8,A10). 
However, torpor use, forearm length, and latitude were more impor-
tant for prediction in the residual model for total viral family diver-
sity (Figure A8), while torpor use was more important in the residual 
model for zoonotic viral diversity (Figure A10). Distance from the 
equator, forearm length, and hibernation all had positive effects on 
viral diversity (Figure A15). Since we were unable to remove the in-
fluence of citation count on hibernation (a categorical variable), this 
increase in relative importance may be driven by a correlation be-
tween hibernation and citation count (Figure A6). All other ecologi-
cal traits had similar effects on predicted viral diversity as before 
(Figures A21,A22). Finally, the predictive power of the residual mod-
els was comparable to other models (Figures A9,A11).

Looking at bat species that harbor no viruses according to the 
dataset, and using the top 90th percentile of predictions from the 
total viral family diversity models, we predict 55 species from 13 
bat families may be undetected viral carriers (Figure A15). Using 
the 95th or 99th percentile as a cutoff, 27 and six species are pre-
dicted to be undetected carriers, respectively (Appendix C). For 
zoonotic viral families, we predict 54, 28, and six species may be 
undetected carriers using the 90th, 95th, and 99th percentiles, 
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F I G U R E  2   Partial dependence plots for ecological traits most important for predicting total viral family diversity. Black lines/points show 
the average effect of traits on predicted viral diversity from 200 BRT model runs, while red-shaded regions represent the range within which 
95% of values fall. Histograms and barplots showing the distribution of observed values for ecological traits are included in the background 
as gray bars
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respectively (Appendix C). For both total and zoonotic viral rich-
ness, the same six species, Asellia tridens, Barbastella barbastel-
lus, Coelops frithii, Myotis grisescens, Phyllostomus hastatus, and 
Pteropus rodricensis, were included in the 99th percentile of model 
predictions. Species identified in the 95th percentile of the zoo-
notic model were also the same as those identified by the total 
viral family diversity model (Appendix C); however, there were 
minimal shifts in the species predicted as zoonotic reservoirs in 
90th percentile (Appendix C). In Appendix C, we also list species in 

the top 99th percentile of model predictions for only RNA or DNA 
viral families. Species predicted to be carriers of RNA viral fam-
ilies are the same six listed above. Conversely, for DNA viruses, 
the six species in the 99th percentile include three of the above 
bats (Myotis grisescens, Pteropus rodricensis, and Barbastella bar-
bastellus), in addition to three other species (Hipposideros fulvus, 
Haplonycteris fischeri, and Myotis sodalis).

Geographically, predicted reservoir species are concentrated 
in Southeast Asia and South America (Figure 4, top), as would be 

F I G U R E  3   Average measures of 
relative importance from 200 BRT 
model runs (i.e., points from Figure 1), 
normalized with respect to the most 
important ecological variable in each 
model (number of citations in all cases). 
Gray, blue, and red bars are results from 
models predicting total, DNA, and RNA 
viral family diversity, respectively
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expected given the global distribution of bat biodiversity and con-
firmed reservoirs (Figure A12). There were also hotspots of pre-
dicted reservoirs along the northern and eastern coasts of Australia 
(Figure 4, top). Scaling the predicted reservoir map by total bat bio-
diversity indicates that predicted reservoirs account for a greater 
proportion of local bat diversity in Northern Africa, the Middle East, 
Northern Europe, and southwestern tip of Australia (Figure 4, bot-
tom). While we present results for predicted reservoirs based on 
our total viral family diversity models in the main text, results from 
the model using only zoonotic viral families are the same (see Figure 
A14).

4  | DISCUSSION

Bats are carriers for a vast number of viruses, many zoonotic (Wang 
& Anderson, 2019). This necessitates a deeper understanding of 
drivers of viral diversity and preemptive identification of reservoirs. 
Here, we develop a predictive model that distinguishes reservoir spe-
cies from nonreservoirs, and further delineates those reservoirs into 
those harboring zoonotic viruses, RNA or DNA viruses. We confirm 
the importance of traits previously identified (e.g., geographic range 
size and group size) as predictors of viral diversity in small samplings 
of bat species or for single viral families, but also highlight additional 
predictors of viral diversity (e.g., longitude, life span). Specifically, 
we show that longer-lived bat species that form larger social groups 
and are more widely distributed east of the Prime Meridian, host the 
greatest diversity of viruses. We also find that there are few differ-
ences in traits important for predicting the diversity of viruses with 
different genome structures (Figure 1): life span had a greater influ-
ence on DNA compared to RNA viruses (Figure 3), while group size 
and family are more important predictors for RNA viruses (Figure 3). 
Finally, we identify species that, although not currently classified as 
reservoirs, are likely to carry viruses. Predicted reservoir species are 
concentrated in Southeast Asia and South America (Figure 4, top), 
but account for a greater proportion of local bat diversity in northern 
Africa, Europe, and the Middle East (Figure 4, bottom).

As with previous work in smaller subsets of bat species (e.g., Guy 
et al., 2019; Webber et al., 2017), we find that geographic range size 
and group size have positive associations with predicted viral diver-
sity (Figure 2). Large group sizes and geographic ranges may indeed 
be universal predictors of parasite richness (Kamiya et al., 2014), 
corresponding to increased opportunities for interactions between 
con- and hetero-specifics that may facilitate pathogen transmis-
sion (Altizer et al., 2003; Altizer, Bartel, & Han, 2011; Patterson & 
Ruckstuhl, 2013). This may be particularly true for bats, as many 
species with large ranges migrate or hibernate, increasing potential 
exposure to pathogens as they move through different regions or 
use seasonal roosting sites that differ in population structure and 
species composition (Kunz, 1982). Despite this, species sympatry 
was not important for prediction. This result, in line with (Webber 
et al., 2017), but in contrast to other work (e.g., Luis et al., 2013), 
may be explained by the fact that we use the residuals of species’ 

sympatry (regressing sympatry on geographic range size), controlling 
for the fact that widely distributed bats are more likely to experi-
ence range overlap. We thus infer that range size is a more important 
driver of viral diversity than sympatry per se.

Species citation count aside, life span was the most import-
ant predictor of viral diversity (Figure 1). Our models suggest that 
longer-lived species carry a greater number of viruses, likely due 
to increased exposure. Species with slow life histories (i.e., in-
creased longevity, larger-bodied, longer juvenile development) are 
expected to accumulate more infections in their lifetimes (Poulin 
& Morand, 2004), favoring selection for costly immune defenses 
(Miller, White, & Boots, 2007). Slow-lived species also tolerate and 
limit infection-induced pathology better than species with faster 
life histories (Johnson et al., 2012). Comparing across mammals, 
bats fall at the slow end of the fast/slow life-history continuum 
(Barclay & Harder, 2003). Despite small body sizes and high meta-
bolic rates, their longevity suggests efficient mechanisms for deal-
ing with oxidative damage (Brook & Dobson, 2015; Munshi-South 
& Wilkinson, 2010) that may be co-opted to help bats tolerate viral 
infections (Brook & Dobson, 2015). While their slow life histories 
suggest that bats, in general, are better equipped to deal with vi-
ruses than shorter-lived mammals, our models suggest that among 
species, time available (i.e., life span) for potential exposure predicts 
the diversity of acquired infections.

While life span was important for predicting overall viral di-
versity, it had even greater importance for predicting the diver-
sity of DNA viruses (Figure 3). Compared to RNA viruses, DNA 
viruses are thought to more frequently codiverge with their hosts 
(Holmes, 2009), which may be a function of longer infection dura-
tions (Geoghegan, Duchêne, & Holmes, 2017; Villarreal et al., 2000). 
DNA viruses that cause chronic infections might have higher fitness 
in longer-lived individuals, through increased transmission opportu-
nities (Villarreal et al., 2000). Conversely, many RNA viruses have 
short infection durations (Holmes, 2009; Villarreal et al., 2000). The 
acute nature of these infections may explain why group size is more 
important in RNA than DNA models (Figure 3): high contact rates 
could sustain transmission of short-lived infections in populations, 
leading to episodic pulses of viral shedding (Plowright et al., 2016). 
Additionally, RNA viruses experience cross-species transmission 
more frequently (Geoghegan et al., 2017), and cross-species emer-
gence is constrained by host relatedness (Streicker, 2013), which 
could explain why bat family had higher relative importance in RNA 
models (Figure 3). We note that RNA viruses dominate our dataset, 
explaining similarities in inferences from models predicting total or 
RNA viral family diversity. Occurrences of DNA viruses are limited, 
making strong inferences from model predictions more difficult.

Consistent with current patterns of bat zoonotic emergence (e.g., 
SARS in China, Hendra in Australia, Nipah in Malaysia; reviewed in 
Wang & Anderson, 2019), our models predict that species east of 
the Prime Meridian carry more viruses (Figure 2). In line with iden-
tified hotspots for zoonotic disease emergence (Morse et al., 2012), 
our models also predict a concentration of potential bat reservoirs in 
Southeast Asia. We also find a hotspot of potential reservoirs in the 
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Neotropics (Figure 4). While this matches patterns of confirmed viral 
carriers (Figure A12), and the expectation that host diversity fos-
ters parasite diversity (Hechinger & Lafferty, 2005), zoonotic disease 
emergence has disproportionately been in the eastern Hemisphere 
(Jones et al., 2008). This highlights that reservoir distribution is not 
necessarily synonymous with human disease risk, as a myriad of fac-
tors (e.g., human population density, bush meat hunting) influence 
viral sharing between bats and humans (Brierley, Jones, Vonhof, 
Olival, & Daszak, 2016). Future work incorporating these risk cor-
relates with maps of predicted reservoirs could help guide viral sur-
veillance efforts. Global regions identified as hotspots by our scaled 
maps provide interesting targets since, in these areas, predicted viral 
carriers account for a greater proportion of local bat fauna.

The methodology we apply here was previously used to exam-
ine filovirus reservoir status in bats (Han et al., 2016) and not sur-
prisingly some of our inferences are consistent with that analysis. 
However, filoviruses comprise a small part of our dataset (1 of 26 
viral families), so naturally we also find differences: for example, in 
our analysis faster reproductive rates are not correlated with reser-
voir status (as in Han et al., 2016). We further build on the method-
ology of Han et al. (2016, 2015) by explicitly testing several model 
assumptions (e.g., effect of zero inflation, importance of phyloge-
netic grouping; Appendix B) and accounting for inherent variability 
between model runs by drawing conclusions from multiple itera-
tions. Lastly, given the importance of study effort in previous work 
(e.g., Guy et al., 2019), here we attempt to remove this effect before 
generating predictions to avoid species being predicted as reser-
voirs simply because they are well studied or possess the traits of 
well-studied species.

Finally, we identify six bat species most likely to be zoonotic 
viral carriers: Asellia tridens, Barbastella barbastellus, Coelops frithii, 
Myotis grisescens, Phyllostomus hastatus, and Pteropus rodricensis. 
While there was no viral sequence data for these species in DBatVir 
(Chen et al., 2014), there is evidence that three of these bats (B. 
barbastellus, M. grisescens, P. hastatus) are viral reservoirs (see Luis 
et al., 2013), suggesting our models are predicting well. While this 
highlights the challenges of data curation for macroecological stud-
ies, supplementary analyses indicate that additional viral informa-
tion does not change model inferences (Appendix B.4).

The three species that are consistently identified as likely zoonotic 
viral carriers—A. tridens, C. frithii, P. rodricensis—vary substantially in 
their biology, highlighting the power of machine learning approaches 
for identifying outcomes that may not have been expected a pri-
ori. The first two species are insectivorous hipposiderids, but while 
A. tridens ranges throughout the Middle East and northern Africa 
(Amichai, Levin, Kronfeld-Schor, Roll, & Yom-Tov, 2013), C. frithii is 
a southeast Asian species (Ho, Fang, Chou, Cheng, & Chang, 2013) 
about which little is known (Bates, Bumrungsri, Francis, Csorba, & 
Molur, 2008). Conversely, P. rodricensis is a large, Old World fruit 
bat (Pterpodidae), endemic to the smallest of the Mascarene Islands 
(Powell & Wehnelt, 2003). C. frithii and A. tridens are considered of 
least concern by the IUCN (Bates et al., 2008; Monadjem et al., 2017), 
but P. rodricensis is endangered (Tatayah, Jhangeer-Khan, Bégué, & 

Jones, 2017). This highlights the challenge of careful communication 
of risk from studies like ours that identify potential reservoir spe-
cies. While we identify bat species that are likely to harbor viruses, 
many of these species provide critical ecosystem services including 
pollination, seed dispersal, and insect control (Kunz, Torrez, Bauer, 
Lobova, & Fleming, 2011). We are cognizant of the impact negative 
framings may have on bat conservation (López-Baucells, Rocha, & 
Fernández-Llamazares, 2018) and hope that our results motivate not 
only viral surveillance efforts, but also the development of strategies 
that minimize disease risk to humans while simultaneously consider-
ing bat conservation.
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