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Abstract

Duplication of the bacterial nucleoid is necessary for cell division hence specific arrest of DNA replication inhibits divisions 
culminating in filamentation, nucleoid dispersion and appearance of a-nucleated cells. It is demonstrated here that during the 
first 10 min however, Escherichia coli enhanced residual divisions: the proportion of constricted cells doubled (to 40%), nucle-
oids contracted and cells remodelled dimensions: length decreased and width increased. The preliminary data provides further 
support to the existence of temporal and spatial couplings between the nucleoid/replisome and the sacculus/divisome, and is 
consistent with the idea that bacillary bacteria modulate width during the division process exclusively.

Introduction
One of the classical modes to inhibit DNA replication in 
bacteria is by depriving thymine of thyA mutants, deprivation 
that gradually stops divisions and hence is associated with 
filamentation [1, 2], culminating in loss of colony-forming 
ability namely thymine-less death [3, 4]. Important events 
such as aborted initiations were recently identified during 
the first minutes of treatment [5], triggering us to investigate 
cell and nucleoid dimensions in an attempt to detect possible 
changes during the immediate period after imposing thymine 
starvation.

Methods
Three Escherichia coli strains, all in our lab collections 
were used: K12 MG1693 (thyA715, rph-1) is a spontaneous 
thymine-requiring derivate of strain MG1655; K12 CR34 
(thr-1, leuB6, lacY1, supE44, rfbD1, thi-1, mcrA1, cyn-1, 
deoC1, thyA6, fhuA2); 15 TAU-bar (thyA42, deoB20, ura, 
arg, met, pro, trp (from PC Hanawalt). A single colony from 
a nutrient agar (NAT) plate, was inoculated in M9 minimal 
medium with thymine 20 µg ml−1, casaminoacids 0.2 % 
and glucose 0.4%, and incubated overnight by shaking at 
37 °C. This culture was diluted 1 : 200 in fresh medium and 
maintained in the exponential phase for at least six mass 
doublings. Growth was monitored by absorbance at 550 nm 

(OD550). Changes in conditions were usually performed at 
OD550 between 0.15–0.2. All materials and tools used were 
pre-warmed (37 °C). Colony-forming ability (CFA) was deter-
mined in duplicate on NAT plates at 37 °C and normalized to 
time 0. Experiments were repeated at least thrice.

Exponentially growing culture at OD550=0.2 was collected on 
a nitrocellulose Millipore HA WP04700 filter (47 mm diam-
eter; 0.45 µm pore diameter) using a Millipore vacuum pump, 
allowing a minimal time to reach the new condition. Filtered 
cells were washed with 5×-volume of the same medium 
without thymine, pre-warmed, and re-suspended by vortex 
(1 min) in the same volume of pre-warmed medium without 
thymine. Plates were incubated under the same conditions. 
Treatments such as addition of drugs were performed 
simultaneously.

A 200 µl sample was fixed in 50 µl formaldehyde 1.25 % and 
stored at room temperature. To visualize the nucleoid, DNA 
was stained with DAPI at 1 µg ml−1.

To immobilize and spread cells in a single focal plane, a 
smooth 2 % agarose surface was prepared (gelling point 35 °C, 
SERVA-A1U04, Heidelberg) in growth medium and kept at 
60–70 °C. A 100 µl aliquot was poured onto an object slide 
and covered with a siliconized coverslip (22×50 mm). After 
solidification, the cover slip was carefully removed resulting 
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in an agarose ‘microslab’. A 4 µl drop of a concentrated cell 
suspension was added and covered with a coverslip.

Images were acquired by an inverted Olympus microscope 
(IX70) equipped with a Micromax 512 camera (Princeton 
Instruments) and 100× objective (UPLFLN 100×02 PH, oil 
immersion, NA=1.3). The pixel size corresponds to 70 nm. 
Cells and nucleoids were imaged, respectively, with phase 
contrast and DAPI channels. Images from random, non-
overlapping fields were acquired. Pictures were processed 
uniformly using ImageJ and analizad using ObjectJ plugin.

Between 250–300 cells were measured for each sample, 
rendering coefficient of variation of no more than 15–20 % 
for length data and 20–30 % for area ones. Consequently, 
the standard error of the mean did not exceed 1 and 2 %, 
respectively. Error bars are not shown in the figures because 
their sizes are identical to the markers’. The lines are used 
to unite points from the same dataset.

Results, discussion and conclusions
A striking doubling of percent constricted cells, from 20 % 
before deprivation of thymine to over 40 % within 5 min of 
treatment of E. coli MG1693 (Fig. 1a) supported the impres-
sion, gained from micrographs, that cells were shorter, 
whether by phase contrast or DAPI staining (Fig. 1b). This 
contrasts the long-term effects of thymine starvation, during 
which cells elongated hence their area increased by over 
sixfold. Some of these elongated cells appeared a-nucleated, 

and in others, the previously compacted nucleoids (usually 
located in mid-cell) dispersed and expanded to almost twice 
their initial value (data not shown).

The apparent remodelling of cell dimensions immediately 
after removal of thymine from the growth medium was 
quantified: significant drop (of 30–40 %) in cell length and 
area, and in nucleoid area, associated with 10–20 % width 
increase were indeed observed (Fig.  2a–d). Thus, accel-
eration of cell division and remodelling of cell dimensions 
occur during the first 10 min of the treatment. Increased 
number of c.f.u. during this immediate period, followed 
by the well-described loss of CFA supports this conclu-
sion. The division-acceleration was confirmed by direct 
counting of cell concentrations in a Neubauer chamber 
(not shown). To test whether the enhanced divisions early 
during thymine deprivation is related to a peculiarity of 
strain K12 MG1693, the experiment was repeated with two 
other strains of E. coli, CR34 (K-12) and 15 TAU-bar, with 
similar responses (Fig. 2).

These results demonstrate that thymine starvation enhances 
cell division before the following inhibition under long-
term treatments. Using the same approach and experi-
mental conditions, cell and nucleoid dimensions were 
analysed after blocking DNA replication by nalidixic acid 
or hydroxyurea (HU). Significant drops in both cell length 
and nucleoid area, associated with increased cell diameter 
were also observed here (Fig. 3), suggesting that enhanced 

Fig. 1. Constricted cells of strain MG1693 during early stages of thymine starvation. (a) Percentage. (b) Micrographs of phase contrast 
and DAPI-stained 5 min thymine starved cells. Arrows point to constrictions in cells with well-segregated nucleoids.
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cell division and remodelling of cell dimensions are general, 
perhaps universal, immediate reactions to arresting DNA 
replication in bacteria [6].

All measured parameters returned to values of untreated cells 
during one doubling time (~40 min) after restoring thymine 
(not shown), consistent with previous results demonstrating 
that the initiations inaugurated and aborted during the 
first 10 min of thymine starvation successfully resume and 
complete the ongoing round of replication upon replenishing 
thymine [7, 8].

The classical, long-term effects of DNA-replication inhibition 
on cell division and nucleoid morphology [1] apparently 
contradict the surprising, immediate changes affected by such 
treatment: significant drops in cell length and surface area, 
associated with a small rise in diameter and doubling in the 
proportion of constricted cells (Figs 1–3). Thus, inhibiting 

DNA replication enhances cell division in a certain propor-
tion of cells before division-inhibition takes over at longer 
treatments.

This study substantiates the coordinative relationships 
between DNA replication, nucleoid morphology, cell division 
and dimensions [9, 10]. It demonstrates that blocking DNA 
replication transiently enhances divisions in the population, 
likely of cells that had completed chromosome duplication, 
before fully inhibiting further divisions. To probe which cells 
perform advanced division according to the cell division cycle 
dogma [10–12], cells in the D period were assessed. Under 
the described growth conditions, where τ=39 min, C=68 min 
and D=23 min, about 0.505 of the cells are in the D period 
[12, 13] (Fig. 4a). Under these conditions, mean cell size is 
1.391 [ = (0.495×1.152) + (0.505×1.618)] times the size of an 
average newborn cell (Fig. 4b). If all cells that are in the D 

Fig. 2. Short-term effects of thymine starvation on cell and nucleoid parameters in different thyA strains. Cell length (a) diameter (b) and 
area c), and nucleoid area (d) during 20 min in strain MG1693, CR34 and 15 TAU-bar.
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period at onset of replication-arrest divide, average cell size 
becomes 0.917 [ = (0.328×1.152) + (0.671×0.805)] (Fig. 4b), 
corresponding to 0.66 of the mean of untreated cell size 
(0.917/1.391). This value is near the one obtained experimen-
tally (Fig. 2a), consistent with the notion that all cells in the 
D period at onset of treatment do divide; they do not require 
further replication to divide, as was earlier proposed using a 
different approach [14]. FtsZ-ring assembly at mid-cell starts 
before replication-termination [15], consistent with the rapid 
increase of percent constricted cells observed during the first 
5 min of thymine starvation (Fig. 1). Activation of FtsK, a 
divisome component which facilitates chromosome segrega-
tion during division [16, 17], can be envisioned as acceler-
ating the movement of replicated chromosomes away from 
mid-cell and the FtsZ-ring, allowing the latter to constrict 
instantaneously. Thus, FtsK might be activated immediately 
upon replication block. Apparently, such an instantaneous 

activation of division has a metabolic nature rather than any 
gene expression. Therefore, alternatively, stimulation of cell 
division based on increased nucleotides and energy levels 
could accelerate the divisome and consequently shorten the 
D period upon arrest of replication.

Whatever the mechanism that enhances the division process 
here is, this physiological phenomenon is consistent with the 
finding that period D (time between replication-termination 
and subsequent cell division) is shortened upon extending C 
period (slowing the fork’s replication rate) by limiting thymine 
concentration in the growth medium of a thyA mutant of E. 
coli B/r [18].

At least two mechanisms seem to exist that couple DNA repli-
cation with cell division: the conventional one that inhibits 
division upon blocking uncompleted replication cycle and a 
new one, never observed before, to immediately accelerate 

Fig. 3. Cell and nucleoid parameters following block of DNA replication by various means in strain CR34: thymine starvation, HU addition 
and NAL addition: early effects on cell length (a) diameter (b) and surface area (c), and on nucleoid area (d).
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divisions of cells that have terminated replication before onset 
of the treatment. This new mechanism acts quickly during 
D period; it could therefore be detected only by the sort of 
precise, highly frequent measurements as performed here. An 
alternative explanation may stem of the aborted initiations 
that had been observed during the first minutes of treatment 
[5], observations that led us to embark on this study. Any 
of these mechanisms may have evolved as a first defence 
to perturbations that affect survival: a cell that terminated 
a round of chromosome replication would better divide 
as quickly as possible before appearance of an anticipated 
catastrophe.
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