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Studies performed three decades ago in our laboratory supported the hypothesis that
radiation efficacy may be augmented by bacterial extracts that stimulate non-specific sys-
temic antitumor immune responses. Application to the clinic was halted by unacceptable
side effects and toxicities resulting from exposure to whole bacterial pathogens. Later
scientific advances demonstrated that DNA isolated from bacteria was immunostimula-
tory and could be reproduced with synthetic oligodeoxynucleotides (ODNs), thus fueling
the transition from bugs to drugs. Unmethylated CpG motifs within bacterial DNA induce
activation ofToll-like receptor 9 and subsequently activate antigen-specific cellular immune
responses. CpG ODNs have demonstrated favorable toxicity profiles in phase I clinical
trials. We showed that this potent immunoadjuvant can be used in combination with radi-
ation therapy to enhance local and systemic responses of several murine tumors. Studies
demonstrated that enhanced tumor response is mediated in part by the host immune sys-
tem. Antitumor efficacy was diminished in immunocompromised mice. Animals cured by
combination of radiation and CpG ODN were resistant to subsequent tumor rechallenge.
This body of work contributes to our understanding of the dynamic interplay between tumor
irradiation and the host immune system and may facilitate translation to clinical trials.
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INTRODUCTION
The immune system can influence growth of malignant tumors
and responses to therapy with radiation or cytotoxic drugs.
Immune deficiency can lower tumor response to conventional
treatments, whereas stimulation of the immune system may
enhance therapeutic responses (Dunn et al., 2002). This under-
standing led to the use of immunologic approaches for cancer
treatments as monotherapy or in combination with chemother-
apy or radiotherapy. In early developmental stages of cancer
immunotherapy, bacteria or bacterial extracts, such as Bacillus
Calmette–Guérin and Corynebacterium parvum were used to stim-
ulate antitumor immunity (Yron et al., 1973; Milas and Scott,
1978). These bacteria or their extracts elicited or augmented many
facets of immunological reactions, including macrophage and nat-
ural killer cell activation, induction of antibody-dependent cell
cytotoxicity, and production of cytokines with antitumor activity.
They were shown to be potent antitumor agents in a variety of
rodent tumors, and they improved the efficacy of chemotherapy
and radiotherapy (Yron et al., 1973; Milas and Scott, 1978). In
contrast with promising preclinical results, however, these first-
generation bacterial immunotherapeutics provided only modest
clinical benefits (Mihich and Fefer, 1983). In addition, patients
given multiple treatments of whole bacteria and their crude
extracts showed symptoms of toxicity, including fever, nausea,
vomiting, and pain at the injection site (Milas and Scott, 1978;
Mihich and Fefer, 1983).

Recent advances in immunotherapy led to the discovery that
immunostimulatory activity of bacteria resides in their DNA
(Tokunaga et al., 1999), notably in unmethylated CpG motifs

(Krieg et al., 1995) prevalent in bacterial but not in vertebrate
genomic DNA. This led to chemical synthesis of oligodeoxynu-
cleotides (ODNs) containing unmethylated CpG motifs that are
recognized by immune cells expressing Toll-like receptor 9 (TLR9)
in plasmacytoid dendritic cells and B cells (Hemmi et al., 2000).
By stimulating TLR9, CpG ODNs induce a cascade of cellular
and molecular responses leading to secretion of antigen-specific
antibodies and cytokines and chemokines that trigger a wide
range of secondary effects such as natural killer cell and mono-
cyte activation (Uhlmann and Vollmer, 2003). Importantly, this
receptor-mediated signaling pathway activates both innate and
adaptive immunological reactions with less toxicity than do whole
bacteria or their extracts (Hemmi et al., 2000). Early studies using
CpG in experimental animals showed that these ODNs slowed
tumor growth and prolonged tumor–host survival (Blazar et al.,
2001; Kawarada et al., 2001; Heckelsmiller et al., 2002; Baines
and Celis, 2003; Lonsdorf et al., 2003; Weigel et al., 2003; Krieg,
2004). In addition, CpG ODN treatment improved the outcome of
surgery and chemotherapy (Weigel et al., 2003; Krieg, 2004). Our
group pioneered work showing that this potent immunoadjuvant
can be used in combination with radiation therapy to enhance
local and systemic responses in murine tumors (Milas et al., 2004;
Mason et al., 2005).

EARLY STUDIES: COMBINATION OF CORYNEBACTERIA
AND RADIOTHERAPY
Earliest studies with systemic injections (iv) of Corynebacterium
granulosum or C. parvum in mice showed that these agents
could induce complete regression of established s.c. immunogenic
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fibrosarcomas (Milas et al., 1974a,b). The response of individual
tumors was extremely variable: some regressed permanently and
others grew only slightly more slowly than controls. C. parvum and
C. granulosum also reduced the number of metastatic lung tumor
nodules when mice were treated within a few days of i.v. injection
of fibrosarcoma cells, and many mice were cured of metastatic
disease (Milas et al., 1974a; Milas and Scott, 1978).

These results led to studies to determine whether non-specific
immunotherapy with C. parvum was an effective adjunct to
radiotherapy, since treatment response depends not only on radio-
biological factors but also on the immune response of the tumor-
bearing host (Milas et al., 1975a; Milas and Scott, 1978; Milas,
1980). C. parvum increased radiosensitivity of well-established
(8 mm diameter) immunogenic murine fibrosarcomas when local
irradiation was given as a single-dose or in multiple fractions
(Milas et al., 1975a,b; Milas, 1980). Combination treatment pro-
longed survival of mice more than radiotherapy or immunother-
apy alone, and C. parvum significantly improved radiocurability.
Tumors not cured by combination treatment grew more slowly
and produced fewer metastases than tumors exposed to the indi-
vidual treatments (Milas and Scott, 1978; Milas, 1980). In one
study, local irradiation of a highly metastatic immunogenic mam-
mary carcinoma with 60 Gy caused complete tumor regression but
greatly increased the number of spontaneous lung metastases com-
pared with mice whose primary tumors were surgically removed
(Milas et al., 1976; Milas, 1980). C. parvum given before irradia-
tion protected mice against this effect and reduced the frequency
of lung metastases below that in mice whose tumor was surgically
removed.

Therapeutic efficacy of immunotherapy plus radiotherapy was
shown to depend on a number of factors including tumor size and
immunogenicity, dose and route of C. parvum administration,
and sequence of administration (Milas and Scott, 1978; Milas,
1980). Higher doses of local irradiation were required to cure
immunogenic tumors in mice immunocompromised by whole-
body irradiation (Stone and Milas, 1978; Milas, 1980), and C.
parvum was less effective in augmenting radiocurability of weakly
immunogenic tumors (Suit et al., 1976).

BUGS TO DRUGS: CpG OLIGODEOXYNUCLEOTIDE
AND RADIOTHERAPY
The discovery that immunostimulatory activity of bacteria resides
in their DNA (Tokunaga et al., 1999), notably in unmethylated
CpG motifs (Krieg et al., 1995), led to explorations of CpG ODN’s
immunotherapeutic and immunomodulatory effects. Our recent
studies demonstrated that synthetic CpG ODNs can be used
as potent immunoadjuvants in combination with radiotherapy
to enhance radioresponse of murine tumors (Milas et al., 2004;
Mason et al., 2005). Experiments were performed using murine
immunogenic fibrosarcomas growing in the leg of C3Hf/Kam
mice. CpG ODN 1826 was administered one, three, or seven
times s.c. peritumoral starting when tumors were 6 mm in diam-
eter. CpG ODN 1826 monotherapy had minimal effect on tumor
growth. Primary tumors were irradiated when they reached 8 mm
in diameter. Response to radiotherapy was assessed by tumor
growth delay and TCD50 (radiation dose yielding 50% tumor
cures). The ODN dramatically enhanced tumor growth delay in

response to single-dose irradiation by 2.58–2.65 and improved
radiocurability, reducing TCD50 by a factor of 1.93, from 39.6
(36.1–43.1) Gy to 20.5 (14.3–25.7) Gy (Milas et al., 2004). Multi-
ple administrations of the ODN were more effective than single
administration. Importantly, improvement in radioresponse was
also observed when CpG ODN 1826 was combined with conven-
tional daily fractional doses of 2 Gy (Mason et al., 2005). A total
dose of 83.1 (79.2–90.0) Gy was needed to achieve 50% tumor
cure in mice treated with radiation plus the inactive ODN con-
trol and only 23.0 (11.5–32.7) Gy was needed when CpG ODN
1826 plus radiation was given. Tumor response to fractionated
radiotherapy at the TCD50 level was potentiated by a radiation
enhancement factor (EF) of 3.61, substantially higher than that
observed for single-dose radiotherapy (EF 1.93). The superior-
ity of CpG ODN treatment in combination with fractionated
radiotherapy bodes well for translation of this treatment approach
to the clinic.

Fractionated radiation cure probability curves are shown in
Figure 1. The shallower slope of the CpG ODN 1826 plus radiation
group most likely reflects heterogeneity of antitumor responses in
mice treated with CpG ODN 1826. Variability in tumor response to
combined treatment was also observed when tumor growth delay
was the treatment endpoint. Since this fibrosarcoma grows rapidly,
treatment with clinically relevant 2-Gy fractions twice a day for 5
days caused only a small delay in tumor growth. The effect of CpG
ODN 1826 on radioresponse was initially observed several days
after the start of irradiation in the fractionated protocol, when
tumors had grown considerably. For example, some tumors began
to regress after they grew as large as 9–14 mm, demonstrating

FIGURE 1 | Effect of CpG ODN 1826 on tumor radiocurability.

Percentage of tumor cures was plotted as a function of radiation dose.
Mice bearing FSa tumors in the leg were exposed to a range of fractionated
doses when tumors reached 8 mm in diameter and treated seven times
with the active CpG ODN 1826 (•) or the inactive ODN 2138 (◦), at a dose
of 100 μg per mouse given s.c. peritumorally, when tumor diameters were
6 and 8 mm and once weekly for five additional weeks. The TCD50 was
determined at 100 days after irradiation. Horizontal bars, 95% confidence
intervals. Reprinted by permission from the American Association for
Cancer Research (Mason et al., 2005).
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that once elicited, the brisk antitumor response was capable of
eliminating many cells in the large bulky tumors.

Mice cured of their fibrosarcoma by CpG ODN 1826 plus local
irradiation were tested for resistance to tumor rechallenge (Mason
et al., 2005). Mice cured of their tumor by treatment with either
radiation alone or CpG ODN 1826 plus irradiation were resistant
to subsequent s.c. tumor cell inoculation compared with previ-
ously untreated age-matched non-tumor-bearing mice (Figure 2).
In normal mice, 100% tumor take was achieved with inoculations
as low as 2.5 × 105 tumor cells. At 100–120 days after treatment,
mice cured by radiation alone required 2 × 105 tumor cells to
produce 50% tumor take, whereas mice treated with CpG ODN
1826 plus irradiation were totally resistant to tumor rechallenge
with cell numbers as high as 8 × 105. Like the animals rechal-
lenged by the s.c. route, mice locally cured by CpG ODN 1826
plus irradiation were much more resistant to development of arti-
ficial metastases in the lung than were those cured by radiation
alone. These results showed that the systemic antitumor rejec-
tion response generated by CpG ODN 1826 plus radiotherapy
exerted antitumor effects long after exposure to the agents. Sec-
ondary tumor rejection was most likely due to development of
a memory response and possibly specific T cell-mediated immu-
nity (Koski and Czerniecki, 2005; Mason et al., 2005). A similar
memory response was reported recently using a tumor vaccine
composed of C-class CpG ODNs and irradiated melanoma tumor
cells that induced long-term antitumor immunity against B16F1
tumors in mice (Cerkovnik et al., 2010).

The mechanisms of action of CpG ODNs for cancer
immunotherapy have been reviewed in detail elsewhere (Krieg,
2001, 2006; Jahrsdorfer and Weiner, 2008; Krieg, 2008). We
observed histological changes in fibrosarcomas treated with CpG
ODN and radiation characterized by increased necrosis and

FIGURE 2 | Resistance of cured mice to reinoculation of tumor cells.

Mice cured of their primary tumor after irradiation alone (Δ) or after
treatment with CpG ODN 1826 plus irradiation (���) were reinoculated with
FSa tumor cells 100–120 days after local tumor irradiation. Age-matched
untreated mice were used as controls (◦). Mice were injected s.c. on the
abdomen with graded doses of FSa tumor cells and tumor takes observed
for up to 2 months after inoculation. Numbers in parentheses, tumor takes
over total injection sites. Reprinted by permission from the American
Association for Cancer Research (Mason et al., 2005).

heavy-infiltration of host inflammatory cells, primarily lympho-
cytes, and granulocytes (Milas et al., 2004). The specific nature
of the antitumor rejection response at the primary tumor site
and on metastases outside the irradiated field was subsequently
investigated (Hart et al., 2008). An abscopal-like tumor model
was used in which bilateral tumors in mice were left untreated
in one hind leg and treated with radiation, CpG, or the combina-
tion in the contralateral leg. CpG ODN elevated systemic cytokine
levels of IL-12p40, known to induce activation of NK cells and
cytolytic CD8+ T cells, and IL-10, suggesting induction of antitu-
mor antibody production. Compared to radiation alone, increased
numbers of CD11c+ and CD8+ cytolytic T cells were found within
the tumor draining lymph nodes following combined treatment
with CpG ODN 1826 and local tumor irradiation. Enhanced
local tumor control was accompanied by a measurable decrease
in tumor burden at distant sites. A more recent study showed
that fractionated (but not single-dose) radiotherapy induced an
immune-mediated abscopal effect when combined with anti-
CTLA-4 antibody in two preclinical rodent tumor models
(Dewan et al., 2009).

Studies by other investigators suggested that CpG ODN induces
antigen-specific antitumor T cell responses and activation of den-
dritic cells promoting strong immune memory responses (Shah
et al., 2003). We hypothesized that when radiotherapy is given
after CpG ODN injection, tumor antigens released from dying
cells are taken up by activated dendritic cells, leading to induc-
tion of a tumor-specific T cell response. Others proposed that
in situ tumor destruction by combination therapy may create
a unique “in situ dendritic cell vaccine” (den Brok et al., 2006;
Jahrsdorfer and Weiner, 2008). Radiotherapy has been reported to
potentiate therapeutic efficacy of intratumoral dendritic cell vac-
cination (Teitz-Tennenbaum et al., 2008). Other possible mecha-
nisms underlying the therapeutic efficacy of radiation with CpG
ODNs include altered expression of critical molecules involved
in immune recognition and killing by T cells; direct radiation
damage to and killing of tumor cells, increased vulnerability of
surviving cells to immune attack; or radiation-induced suppres-
sion of mechanisms inhibiting antitumor responses (Koski and
Czerniecki, 2005). Subsequent investigations supported the the-
ory that an immunoadjuvant effect of tumor cell death is an
important aspect of radiotherapy response (Apetoh et al., 2007a).
Radiation can promote changes in the tumor microenvironment
that may enhance infiltration and activation of immune cells that
have potential to influence tumor responses (Shiao and Coussens,
2010). Radiation was shown to up-regulate expression of CXL16
in tumors and to enhance recruitment and activation of CD8+
T cells (Matsumura et al., 2008; Matsumura and Demaria, 2010).
Expression of MHC 1, important in antitumor T cell responses,
was increased in a murine melanoma after irradiation (Lugade
et al., 2005). Secretion of HMGB1 protein by lethally irradiated
tumor cells and its effect on danger signaling was important in
promoting antigen presentation (Apetoh et al., 2007b). Calretic-
ulin exposure on the cell surface was shown to be required for
the immunogenicity of radiation-induced apoptosis (Obeid et al.,
2007; Formenti and Demaria, 2008).

Previously, we observed that enhancement of tumor radiore-
sponse induced by CpG ODN 1826 was largely dependent on
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host immunocompetence (Milas et al., 2004). CpG ODN 1826
treatment of mice immunocompromised by sublethal whole-body
irradiation caused only modest radiation-induced tumor growth
delay of immunogenic fibrosarcoma, and the curative effect was
lost. Since human tumors are generally considered to be weakly
immunogenic, we tested the effect of CpG ODN 1826 on radiore-
sponse of a non-immunogenic murine fibrosarcoma (Mason et al.,
2005). CpG ODN enhanced radiation-induced tumor growth
delay of non-immunogenic tumors when the ODN was injected
s.c. (EF 1.41) or intratumorally (EF 1.73). Thus, in addition to
being effective against the highly immunogenic fibrosarcoma, CpG
ODN 1826 improved the radioresponse of a non-immunogenic
tumor.

Several other animal tumor models have since shown response
to combined therapy with CpG ODN and radiation. Treatment
with CpG ODN and radiation-induced tumor remission in two-
thirds of rats inoculated with 9L glioma (Meng et al., 2005). The
combination treatment also enhanced tumor growth delay of s.c.
B16F1 tumors (Cerkovnik et al., 2009). CpG ODN 1826 enhanced
radiation-induced growth delay of Lewis lung cancer in mice and
enhanced the apoptotic index in tumors given combined treat-
ments compared to either treatment alone (Yuan et al., 2011). The
combination of radiation with a CpG-based tumor vaccine sig-
nificantly inhibited established LLC-OVA-carcinomas and cured
about 60% of treated mice (Chamoto et al., 2009).

CLINICAL TRIALS WITH CpG ODNs AND RADIOTHERAPY
Results with preclinical models suggested that CpG ODN would
be more useful when combined with other therapeutic approaches
in the treatment of cancer rather than as monotherapy (Krieg,
2006; Jahrsdorfer and Weiner, 2008). Although positive preclinical
results are not necessarily predictive of clinical outcome, our find-
ings provide compelling evidence that CpG ODN in combination
with conventional radiotherapy is a strong candidate for clinical
testing. Mice and humans have different TLR9 expression patterns,
and so exposure to CpG motifs stimulates a narrower profile of
cytokines/chemokines in humans than in mice (Krieg, 2008). Clin-
ical trials are necessary to confirm the synergy between CpG ODNs
and radiotherapy that was evident in preclinical testing.

Early clinical reports showed CpG 7909 was an effective and
well-tolerated adjuvant for improving vaccine responses (Cooper
et al., 2004a,b). Minor side effects were mild to moderate injection-
site reactions and transient flu-like symptoms (Cooper et al.,
2004a,b; Krieg, 2006). Key preclinical studies by Levy and col-
leagues led to development of therapeutic vaccination strategies

for clinical treatment of lymphoma (Li et al., 2007; Houot and
Levy, 2009; Brody et al., 2011; Goldstein et al., 2011). Com-
bination of intratumoral CpG with cytotoxic therapy induced
tumor-reactive CD8 T cells and cured primary subcutaneous
and widely metastatic murine lymphomas (Li et al., 2007). Com-
bination of intratumoral CpG and immunomodulatory T cell
antibodies increased antitumor efficacy of CpG without the need
for chemotherapy (Houot and Levy, 2009). A CpG-loaded tumor
cell vaccine induced CD4 T cell-mediated antitumor immunity
leading to regression of established murine lymphoma (Gold-
stein et al., 2011). A recent phase I/II clinical trial of low grade
B cell lymphoma was based on the rationale that intratumoral
CpG given with localized low dose radiation could be effective
therapy for the primary tumor and produce immune-mediated
abscopal effects (Brody et al., 2010). The in situ vaccination
strategy with CpG ODN (PF-3512676) was well-tolerated and
induced systemic antitumor responses even in patients with signif-
icant tumor burden (Brody et al., 2010). Encouraging preliminary
results were also achieved in a parallel phase I/II study using a
similar in situ vaccination strategy combined with radiation in
patients with T cell lymphoma mycosis fungoides skin lesions
(Kim et al., 2012).

CONCLUSION
Treatment of mice bearing established immunogenic or non-
immunogenic tumors with CpG ODN 1826 markedly enhanced
response to single-dose and fractionated radiotherapy, likely
through immune-mediated mechanisms. CpG ODN also induced
a durable systemic immune memory response against subsequent
rechallenge with tumor cells. These observations suggest CpG
ODN could be used not only as an “immunosensitizer” in com-
bination with radiotherapy but also as an adjuvant to prevent
or reduce metastatic disease at sites distant from the primary
irradiated tumor. These findings and others have demonstrated
that CpG ODNs can be given in combination with conventional
radiotherapy to improve therapeutic efficacy. Further studies are
warranted to elucidate the dynamic interplay between tumor
irradiation and the host immune system to facilitate transla-
tion to clinical trials. Our studies using CpG ODNs as radiation
enhancing agents are being supplemented by new integrated
approaches proposing a partnership between radiotherapy and
immunotherapy designed to capitalize on radiation’s ability to
enhance immunogenicity of the primary tumor and its microen-
vironment (Demaria et al., 2005; Formenti, 2010; Shiao and
Coussens, 2010; Haynes and Smyth, 2012).
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