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Abstract

Schwertmannite is an Fe(III)-oxyhydroxysulfate which is common in acid mine drainage

(AMD) and acid sulfate soil (ASS) environments. Natural schwertmannite is often enriched

in Cr(III), yet the effects of Cr(III) substitution on schwertmannite transformation to more sta-

ble Fe(III) minerals has not been addressed. Here we examine, for the first time, the effects

of Cr(III) substitution on the Fe(II)-accelerated transformation of schwertmannite. X-ray dif-

fraction (XRD) and Fe K-edge extended X-ray absorption fine structure (EXAFS) spectros-

copy shows that Cr(III) substitution inhibits schwertmannite transformation. Substitution at a

Cr(III):Fe(III) ratio of 0.025 decreased schwertmannite transformation (at pH 6.5) by 18–

49% (depending on Fe(II) concentrations) relative to that of Cr(III)-free schwertmannite. For-

mation of crystalline secondary phases (predominantly goethite) caused associated

decreases in solid-phase Fe and Cr extractability by 1 M HCl. The extractability of Cr was

consistently greater than that of Fe, suggesting some accumulation of Cr(III) at the residual

schwertmannite surface–a phenomenon which passivates the surface against Fe(II)/Fe(III)

electron transfer and atom exchange required for the Fe(II)-accelerated transformation pro-

cess. The finding that Cr(III)-substitution inhibits schwertmannite transformation implies that

it may also significantly impact associated Fe, S and trace metal(loid) behaviour.

Introduction

Schwertmannite is a poorly-ordered Fe(III)-oxyhydroxysulfate which precipitates from acidic,

Fe- and SO4
2—rich waters [1–3]. As such, it occurs commonly in systems that are affected by

acid-sulfate soils (ASS) and acid-mine drainage (AMD) [4–9]. The formation and fate of

schwertmannite strongly influences Fe and S cycling, the generation and consumption of acid-

ity, as well as the mobility of trace metals and metalloids [4, 5, 10–13].

Schwertmannite is metastable, transforming over time to more stable Fe(III) oxides, such as

goethite (α-FeOOH) [9]. Although metastable, schwertmannite tends to persist under acidic,

oxic conditions for periods of time ranging from several months to years [14]. However, it’s

transformation is greatly accelerated under near-neutral, anoxic conditions by interactions
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with Fe(II) [15–18]. The conditions required for this Fe(II)-accelerated transformation process

can rapidly develop due to microbial Fe(III)-reduction when, for example, previously drained

ASS wetlands are re-flooded [13, 16, 19–22]. Such conditions are also well documented for a

range of AMD settings, including mine-pit lake sediments and organic-rich constructed wet-

lands [10, 23–26].

Natural precipitates of schwertmannite are often enriched in Cr (up to approx. 1000 mg kg-1)

[27–30]. In aqueous environments, Cr predominantly exists as Cr(VI) and Cr(III) species [31].

Chromium(VI) is highly toxic and carcinogenic, and its interactions with schwertmannite have

been relatively well-studied [29, 32, 33]. However, Cr(VI) is typically absent from acid-sulfate

waters due to the rapid reduction of Cr(VI) to Cr(III) in the presence of elevated Fe(II) concen-

trations and low pH (which characterise such waters) [28]. As a consequence, schwertmannite

which precipitates from Fe(II)-bearing, acid-sulfate waters is likely to contain Cr predominantly

in the Cr(III) oxidation state.

The substitution of Cr(III) for Fe(III) in Fe(III) oxides is well-known, and its effects have

been studied for many Fe(III) oxides including hematite, goethite and ferrihydrite [34–39].

However, Cr(III) substitution in schwertmannite has received little attention. In particular, no

previous studies have addressed the potential effects of Cr(III) substitution on schwertmannite

stability with regard to its Fe(II)-accelerated transformation. The associated effects on Cr

mobility and fate during this transformation process have also not been examined. Given the

ubiquity of Cr(III)-enrichment in natural schwertmannite, these potential effects of Cr(III)

substitution represent an area requiring further research.

In this work, we examine the effects of Cr(III) substitution on the Fe(II)-accelerated trans-

formation of schwertmannite. The results also provide insights into how this transformation

process affects the associated availability of solid-phase Cr(III).

Materials and methods

General

All reagents were of analytical grade and all solutions were prepared using deoxygenated Milli-

Q water (18 MΩ resistivity, Millipore Corp, Milford, MA, USA).

Schwertmannite synthesis

Chromium(III)-free schwertmannite was synthesised following Burton et al. [40]. This

involved dissolving 1500 g of FeSO4.7H2O (Sigma Aldrich, Australia) in 50 L of deionised

water. To this solution, 800 mL of 30% H2O2 was added to initiate schwertmannite formation.

The resulting suspension was allowed to settle for 24 h, followed by five rinsing cycles (with

each cycle involving the replacement of about 80% of the supernatant solution with deionised

water). The final schwertmannite slurry was dried at 40˚C and finely ground.

Different levels of Cr(III) substitution in schwertmannite were achieved by following

the same procedure as described above, except for the addition of differing quantities of

Cr(VI) (K2CrO4, Sigma Aldrich, Australia). It should be noted that, under the synthesis

conditions, all Cr(VI) is rapidly reduced to Cr(III), thereby leading to Cr(III) substitution

into the resulting schwertmannite. Three contrasting levels of Cr(III) substitution (hereby

termed low, medium and high) were prepared by the addition of 5.24, 13.1 and 52.4 g

K2CrO4 respectively, to the FeSO4.7H2O solution prior to the addition of H2O2. The Cr

(III)-substituted schwertmannite was dried and ground as described above for the Cr-free

schwertmannite.

Chromium(III) substitution and reductive transformation of schwertmannite
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Schwertmannite transformation experiment

Throughout this experiment, O2-free conditions were achieved via the use of an anaerobic

chamber containing an atmosphere of 97–98% N2 and 2–3% H2. A constant weight (0.4±0.001

g) of schwertmannite was added to 50 mL polypropylene vials and mixed with 40 mL of anoxic

0.1 M NaCl buffered to pH 6.5 with 0.05 M MES/MOPS. This suspension was allowed to equil-

ibrate for 24 h, after which pH was readjusted to 6.5 by addition of a 5.76 M NaOH solution.

Three levels of Fe(II) were achieved by addition of appropriate volumes of an FeCl2 stock

solution, yielding an initial concentration of either 0, 1 or 10 mM Fe(II). The suspensions were

placed on an orbital shaking table (120 rpm) within the anaerobic chamber, with quadruplicate

subsamples removed periodically (at 1h, 12h, 1d, 2d, 4d, 7d and 14 d). At each sampling time,

the suspensions were centrifuged (1472 g), and the supernatant solution was filtered to

<0.45 μm. Immediately after filtering, aliquots of the aqueous phase were processed for deter-

mination of Fe(II), Fe(total), Cr(VI) and Cr(total). The solid-phase was rinsed with 40 mL

deoxygenated methanol (via centrifugation and decanting), allowed to dry, ground using a

mortar and pestle, and stored in glass vials sealed with rubber septa for further analyses (with

all steps conducted under O2-free conditions).

Aqueous phase characterisation

Iron(II) and Fe(total) fractions in the aqueous phase were analysed using the 1, 10-phenan-

throline method [41]. Aqueous Cr(total) was analysed by ICP-OES (Perkin Elmer 4300DV,

USA). Aqueous Cr(VI) was determined using the 1, 5 diphenylcarbazide method [42]. Chro-

mium(VI) concentrations were below the limit of detection (<0.01 mg L-1) throughout the

experiment.

Solid phase characterisation

The concentration of Fe, S and Cr in the initial schwertmannite was analysed by ICP-OES

(Perkin Elmer 4300DV, USA), after aqua-regia digestion. Changes in the extractability of

solid-phase Fe(III) and Cr(III) during transformation experiment were also quantified via

extraction with 1 M HCl for 1 hour.

Mineralogy was determined by X-ray powder diffraction (XRD) (Bruker AXS GmbH, Ger-

many) using CoKα radiation. Powdered and homogenised samples were placed on either a

standard sample holder or a low background quartz sample holder. X-ray diffractograms were

acquired at 2θ angles from 10-80o, with a step size of 0.02o and 2 second counting time. The

diffraction patterns were evaluated using EVA software package (DIFFRAC-plus evaluation

package, Bruker AXS, Germany).

The solid-phase micromorphology of individual particles was examined using scanning

electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX, Zeiss EVOLS-15,

Germany). The association of Cr(III) with specific minerals was examined using a Jeol JEM-

2200FS transmission electron microscope (TEM). Samples for TEM examination were sus-

pended in ethanol and disaggregated by grinding using a mortar and pestle. A drop of suspen-

sion was placed onto a carbon-coated Cu grid with a lacy-carbon support, allowed to air dry

and then immediately loaded into a Jeol double-tilting, analytical specimen holder. Observa-

tions of various individual mineral particles were undertaken at a voltage of 200 kV.

Crystal lattice fringes were examined to provide data on lattice plane spacing and morpho-

logical features. Fast Fourier transform (FFT) analyses was performed using Digital Micro-
graph (Gatan Inc. USA) to measure d-spacings from selected areas. Semi-quantitative

determination of key elements concentration ratios was carried out using Energy Dispersive

X-ray spectrometry (EDX) with attached Oxford Link ISIS system (X-MAX 80 mm2). The

Chromium(III) substitution and reductive transformation of schwertmannite
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EDX analyses was performed at three to four locations for each sample and averages for the

compositions were calculated. Elemental mapping was also performed using TEM-EDX to

observe the distribution of Cr(III) in the mineralogical transformation products.

Chromium and Fe K-edge X-ray absorption spectroscopy was conducted at Beamline 17C

at the National Synchrotron Radiation Research Centre (NSRRC) in Hsinchu, Taiwan.

Selected samples and reference phases were loaded in sample holders and sealed with Kapton

tape. The XAS spectra of samples and standards were collected in fluorescence detection mode

using a Si(111) double crystal monochromator. The storage ring was operating at 1.5 GeV in

continuous injection mode. Data were averaged and normalised, with linear combination fit-

ting (LCF) of the Fe K-edge EXAFS spectra performed over the k = 3–10 Å-1 range using the

Athena software [43]. The combinatorics function in Athena was used to determine the best fit

for all possible combinations from a library of Fe reference standards (prepared as described

in Burton et al. [44]). Only components which contributed greater than 5% to the total were

included in the final fits. This approach resulted in no more than 2–3 phases being required to

fit any individual Fe K-edge EXAFS spectrum.

Fig 1. X-ray diffraction patterns of the initial schwertmannite specimens examined in this study. Schwertmannite peaks with d-spacing values are denoted with

dotted lines.

https://doi.org/10.1371/journal.pone.0208355.g001
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Fig 2. Scanning electron micrographs (SEM) of zero Cr(III)- and Cr(III)-incorporated schwertmannite. (A1, A2) zero Cr(III)- schwertmannite with large spheroids;

(B) low; (C) medium and, (D1 and D2) high Cr(III)- incorporated schwertmannite.

https://doi.org/10.1371/journal.pone.0208355.g002
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Fig 3. HRTEM micrographs. (A) Cr(III)-free schwertmannite; (B) FFT pattern of area enclosed by dashed-line in (A); (C) TEM-EDX spectrum of zero Cr(III)-

schwertmannite; (D) high Cr(III)-schwertmannite; (E) FFT pattern of the area enclosed by dashed-line in (D); (F) EDX spectrum of high Cr(III)-schwertmannite; (G)

high Cr(III)-schwertmannite sample that was treated with 10 mM Fe(II) after 14 days, (H) corresponding FFT pattern of the area enclosed by dashed line in (G) and (I)

elemental mapping of sample shows Cr distribution.

https://doi.org/10.1371/journal.pone.0208355.g003

Chromium(III) substitution and reductive transformation of schwertmannite

PLOS ONE | https://doi.org/10.1371/journal.pone.0208355 December 5, 2018 6 / 17

https://doi.org/10.1371/journal.pone.0208355.g003
https://doi.org/10.1371/journal.pone.0208355


Results and discussion

Initial schwertmannite properties

The low-, medium- and high-Cr(III) schwertmannite displayed XRD patterns that were

identical to Cr-free schwertmannite (Fig 1). The total Fe and S content of the initial

schwertmannites ranged from 7.9–8.2 mmol g-1 and 1.63–1.82 mmol g-1, respectively (S1

Table), which is consistent with the compositional variability of natural schwertmannite

[1, 4, 40, 45]. The total Cr content in the low-, medium- and high-Cr(III) schwertmannite

was 0.02, 0.05 and 0.21 mmol g-1, respectively (S1 Table). These total Cr concentrations

bracket those reported in previous studies on natural schwertmannite formed in AMD

systems [27–30].

Scanning electron microscopy revealed that the Cr-free schwertmannite existed as spher-

oids with a diameter of 400–600 nm (Fig 2). Increased levels of Cr(III) substitution was associ-

ated with decreases in the size of these schwertmannite spheroids (Fig 2A–2D) and with slight

increases in the corresponding total SO4
2- content (S1 Table). This latter effect is consistent

with the smaller schwertmannite spheroids having greater surface area, thereby enabling larger

levels of SO4
2- adsorption.

High-resolution TEM indicated that the initial Cr(III)-free schwertmannite contained

nano-crystalline domains, which were slightly elongated with visible lattice fringes (Fig 3A).

Fast Fourier Transform (FFT) patterns of these nano-domains revealed d-spacing of 2.25 and

2.56 Å, consistent with schwertmannite (Fig 3B). TEM-EDX analyses revealed that Cr(III) sub-

stitution increased the abundance of nano-crystalline domains (Fig 3C and 3D), which was

confirmed by FFT analyses (Fig 3E). EDX analyses of the initial high-Cr(III) schwertmannite

show that Fe, O, S and Cr were homogenously distributed at the sub-micron scale (Fig 3F to

3I).

Fig 4. Chromium K-edge XANES spectra of (A) Cr(III)-substituted schwertmannite, Cr(OH)3 and CrO4
2- and (B) corresponding first derivative spectra. The

vertical dotted lines in (B) highlight features which are attributable to Cr(III) for Fe(III) substitution based on Tang et al. [37].

https://doi.org/10.1371/journal.pone.0208355.g004
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Cr K-edge XANES spectroscopy showed that the Cr(III)-substituted schwertmannite con-

tained Cr(III) with no Cr(VI) (Fig 4A). This is evident from the absence of a pre-edge peak at

~5989 eV in the Cr K-edge XANES spectra, which (when present) is indicative of Cr(VI).

Accordingly, the XANES edge position of the Cr(III)-substituted schwertmannite was consis-

tent with that of the Cr(OH)3 reference material. However, the first derivative of the XANES

spectra revealed the presence of additional edge features for the Cr(III)-substituted schwert-

mannite (Fig 4B). These additional features were also observed by Tang et al. [37] for Cr(III)-

substituted ferrihydrite, who attributed such features to Cr(III) substitution for Fe(III). There

Cr K-edge XANES features provide evidence of Cr(III) substitution into the schwertmannite

crystal structure (as opposed to the presence of discrete Cr(OH)3 crystallites mixed with Cr

(III)-free schwertmannite crystallites).

Schwertmannite stability in the absence of Fe(II)

The XRD patterns show that, in the absence of Fe(II), schwertmannite experienced very little

or no transformation to crystalline phases over the 14 day experiment duration (Fig 5). How-

ever, linear combination fitting of the corresponding Fe K-edge EXAFS spectra revealed some

Fig 5. XRD patterns of material collected after allowing the zero-, low-, medium- and high-Cr(III) schwertmannite to react with 0, 1 or 10 mM Fe(II) over 1 h, 7 d

and 14 d. Peaks for schwertmannite, goethite and lepidocrocite are denoted as S, G and L, respectively.

https://doi.org/10.1371/journal.pone.0208355.g005
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transformation of schwertmannite to ferrihydrite under Fe(II)-free conditions (Figs 6 and 7).

The formation of ferrihydrite is consistent with previous work by Davidson et al. [46] who

showed that ferrihydrite can form as an intermediate phase following the release of SO4
2- from

schwertmannite.

The extent of ferrihydrite formation under Fe(II)-free conditions decreased with increases

in the level of Cr(III) substitution in the initial schwertmannite (Fig 7). In this case, 24% of

solid-phase Fe in the Cr(III)-free schwertmannite had transformed to ferrihydrite by day 14.

In comparison, 16, 10 and 0% transformation occurred over 14 days for the low-, medium-

and high-Cr(III) schwertmannite, respectively. The indistinguishable formation, based on

XRD, of these amounts of ferrihydrite is consistent with ferrihydrite occurring as poorly-

ordered nanocrystallites which produce only very diffuse XRD peaks which overlap those of

schwertmannite.

The Fe(II)-accelerated transformation of schwertmannite

The XRD patterns show that Fe(II) accelerated the transformation of schwertmannite to goe-

thite, along with minor lepidocrocite in some samples (Fig 5). These patterns show that, as

expected, the extent of secondary Fe(III) (oxy)hydroxide formation increased over time with

increases in the Fe(II) concentration. This is consistent with previous studies showing that Fe

(II) accelerates the transformation of schwertmannite to goethite and lepidocrocite [15–18, 47,

48]. The formation of lepidocrocite in some samples following the addition of Fe(II), and its

subsequent disappearance by day 14 in the 10 mM Fe(II) treatment is consistent with lepido-

crocite being an intermediate phase, which eventually transforms to goethite in the presence of

Fe(II).

The XRD patterns provide semi-quantitative evidence that Cr(III)-substitution inhibited

the Fe(II)-accelerated transformation of schwertmannite. For example, the XRD peak heights

for goethite which formed following addition of 1 mM Fe(II) are much lower for the high-Cr

(III) system at 7 and 14 days than they are in the corresponding medium-, low- and zero-Cr

(III) systems (Fig 5). Likewise, the addition of 10 mM Fe(II) to the medium-, low- and zero-Cr

(III) schwertmannite induced substantial transformation of schwertmannite to goethite within

just 1 hour, yet the corresponding XRD pattern for the high-Cr(III) system shows negligible

goethite formation (Fig 5).

Linear combination fitting of the Fe K-edge EXAFS spectra showed that >75% of solid-

phase Fe persisted as schwertmannite under Fe(II)-free conditions (Figs 6 and 7). In compari-

son,<55% and <30% of solid-phase Fe remained as schwertmannite after 14 days in the pres-

ence of 1 and 10 mM Fe(II), respectively (Fig 7 and S2 Table). This provides quantitative

verification of the effect of Fe(II) in accelerating schwertmannite transformation under near-

neutral conditions.

The Fe K-edge EXAFS results confirm that Cr(III)-substitution inhibited the Fe(II)-acceler-

ated transformation of schwertmannite. For example, following addition of 1 mM Fe(II), only

6% of solid-phase Fe remained as schwertmannite in the zero-Cr(III) system at day 14, com-

pared to 55% in the corresponding high-Cr(III) system (Fig 7). The inhibitory effect of Cr

(III)-substitution was lower in the 10 mM Fe(II) treatment, yet schwertmannite transforma-

tion in this treatment still decreased from 88% at day 14 in the Cr(III)-free system to 70% in

the high-Cr(III) system (Fig 7).

Fig 6. Iron K-edge EXAFS spectra of Cr(III)-free and Cr(III)-incorporated schwertmannite and their

mineralogical transformation during Fe(II) accelerated transformation at reaction period of 14 days. The XAS

data of the samples are shown as a solid line and the linear combination fit is shown as coloured circles.

https://doi.org/10.1371/journal.pone.0208355.g006

Chromium(III) substitution and reductive transformation of schwertmannite

PLOS ONE | https://doi.org/10.1371/journal.pone.0208355 December 5, 2018 10 / 17

https://doi.org/10.1371/journal.pone.0208355.g006
https://doi.org/10.1371/journal.pone.0208355


Chromium(III) substitution and reductive transformation of schwertmannite

PLOS ONE | https://doi.org/10.1371/journal.pone.0208355 December 5, 2018 11 / 17

https://doi.org/10.1371/journal.pone.0208355


Changes in Fe(III) and Cr(III) extractability

In the absence of Fe(II), the levels of Fe(III) and Cr(III) extractability in 1 M HCl remained

close to 100% and did not vary with the level of Cr(III)-substitution (Fig 8). This is consistent

with the day 14 solid-phase in the Fe(II)-free treatments comprising a mixture of mostly

schwertmannite and ferrihydrite (Fig 7), both of which are soluble in 1 M HCl.

In treatments which received Fe(II), the extractability of Fe and Cr at day 14 ranged from

0.3–49% and 4–68%, respectively (Fig 8). In general, Fe(III) and Cr(III) extractability varied in

accordance with the extent of schwertmannite transformation to highly crystalline goethite,

which is only poorly soluble in 1 M HCl. In this case, the lowest levels of extractability were

observed in treatments which experienced the largest extent of schwertmannite transformation

to goethite (S1 Fig). As such, the HCl-extractability of both Fe and Cr increased with the level

of Cr(III)-substitution–due to the effect of Cr(III)-substitution in inhibiting schwertmannite

transformation (Fig 8). For example, in the 1 mM Fe(II) treatment, Fe extractability increased

from 2.5 to 49% and Cr extractability from 13 to 68% as the amount of substituted Cr(III)

increased from 0.02 to 0.21 mmol g-1 (Fig 8).

The extractability of Fe(III) versus Cr(III) in the 1 and 10 mM Fe(II) treatments at day 14

was not congruent (Fig 8). More specifically, the extent of Cr(III) extractability was greater

than the corresponding extractability of Fe(III). For example, in the 1 mM Fe(II) treatment,

the extractability of Cr(III) exceeded that of Fe(III) by between 11 and 19% (Fig 8).

Mechanism of inhibited schwertmannite transformation

The Fe(II)-accelerated transformation of metastable Fe(III) phases involves the oxidative

adsorption of Fe(II) onto the mineral surface. Coupled electron transfer and atom exchange

between adsorbed Fe(II) and surface Fe(III) leads to reductive dissolution and the subsequent

re-precipitation of Fe(III) as a more stable phase [49–51]. The fact that the Fe(II)-accelerated

transformation of schwertmannite involves Fe(III) reductive dissolution implies that the sur-

face concentrations of substituent Cr(III) would have increased wherever Fe(III) dissolution

occurred. This is because Cr(III) is insoluble and redox-inactive under the conditions

employed in the present study. The theoretical surface enrichment of Cr(III) is consistent with

our empirical results showing greater relative extractability of Cr(III) versus Fe(III) in solid-

phase samples collected at day 14 (Fig 8). Although not being conclusive proof, the greater

extractability of Cr(III) versus Fe(III) supports the hypothesized enrichment of Cr(III) at the

surface of the residual schwertmannite.

Any accumulation of Cr(III) at the residual schwertmannite surface will act to physically

block Fe sites or divert electron flow. The Fe(II)-induced reductive dissolution of schwertman-

nite should thus become retarded at a local scale as a result of progressive Cr(III) build-up at

the schwertmannite surface. At a bulk scale, this progressive surface enrichment of Cr(III)

would therefore produce the observed inhibitory effect of Cr(III)-substitution on schwertman-

nite transformation.

The present study is the first to show that Cr(III) substitution inhibits the transformation of

schwertmannite. However, somewhat comparable findings have been reported in earlier stud-

ies on goethite and hematite behaviour. For example, Bousserrhine et al. [52] found that Cr

(III)-substitution inhibited the reductive dissolution of goethite and proposed that this may

have also been related to Cr(III) accumulation on the goethite surface, which blocked access to

Fig 7. Solid-phase Fe speciation (based on Fe K-edge EXAFS spectroscopy) after allowing schwertmannite, with

varying levels of Cr(III)-substitution, to react with 0, 1 and 10 mM Fe(II) for 14 d.

https://doi.org/10.1371/journal.pone.0208355.g007
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sites used in Fe(III) reduction. Analogous results have also been reported by Frierdich et al.

[53] who demonstrated that substitution of Cr(III) into goethite and hematite hindered Fe

atom exchange between aqueous Fe(II) and structural Fe(III).

Environmental implications

Naturally occurring schwertmannite is typically enriched in Cr(III), yet the potential effects of

Cr(III) substitution on schwertmannite stability have not been previously considered. Here we

show, for the first time, that Cr(III) substitution stabilizes schwertmannite against Fe(II)-accel-

erated transformation to more thermodynamically stable products (predominantly goethite).

The Fe(II)-accelerated transformation of schwertmannite is known to strongly influence elec-

tron flow in anoxic soils/sediments by altering the favourability of microbial Fe(III) reduction

versus SO4
2- reduction [15]. As such, it is likely that the Cr(III)-substitution may in turn also

influence these biogeochemical processes, and their subsequent effects on Fe and S cycling as

well as the mobility and fate of associated trace metal(loids). The results also show that

schwertmannite transformation to goethite strongly decreases solid-phase Cr(III) extractabil-

ity, which may translate to a lesser risk of its future oxidation to carcinogenic Cr(VI) if oxidis-

ing conditions return.
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7. Kumpulainen S, Räisänen ML, Kammer FVD, Hofmann T. Ageing of synthetic and natural schwertman-

nites at pH 2–8. Clay Minerals. 2008; 43(3): 437–448.

8. Fitzpatrick RW, Mosley LM, Raven MD, Shand P. Schwertmannite formation and properties in acidic

drain environments following exposure and oxidation of acid sulfate soils in irrigation areas during

extreme drought. Geoderma. 2017; 308: 235–51.

9. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M. Schwertmannite and the chemical model-

ing of iron in acid sulfate waters. Geochim Cosmochim Acta. 1996; 60(12): 2111–21.
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