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Abstract: The tumor microenvironment (TME) is broadly implicated in tumorigenesis, as tumor
cells interact with surrounding cells to influence the development and progression of the tumor.
Blood vessels are a major component of the TME and are attributed to the creation of a hypoxic mi-
croenvironment, which is a common feature of advanced cancers and inflamed premalignant tissues.
Runt-related transcription factor (RUNX) proteins, a transcription factor family of developmental
master regulators, are involved in vital cellular processes such as differentiation, proliferation, cell
lineage specification, and apoptosis. Furthermore, the RUNX family is involved in the regulation
of various oncogenic processes and signaling pathways as well as tumor suppressive functions,
suggesting that the RUNX family plays a strategic role in tumorigenesis. In this review, we have
discussed the relevant findings that describe the crosstalk of the RUNX family with the hypoxic TME
and tumor angiogenesis or with their signaling molecules in cancer development and progression.
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1. Introduction

Emerging evidence has led to the emergence of a novel scenario in which cancer main-
tenance and expansion are critically regulated by signals from its microenvironment [1].
Tumor progression is strongly influenced by the interaction of cancer cells with their mi-
croenvironment, which ultimately determines whether the primary tumor has established
eradication, metastasis, or dormant states. A tumor mass is composed of a heterogeneous
population of cancer cells as well as various resident and infiltrating host cells, secreted
factors, and extracellular matrix proteins, which are collectively known as the tumor
microenvironment (TME) [2]. Hypoxia is a well-known form of stress that impairs the
biological function of cells and is associated with treatment refractory and anticancer drug
resistance in malignant tumors and cancers [3].

The Runt-related transcription factor (RUNX) protein family is evolutionarily con-
served and regulates various important developmental and biological processes such as
proliferation, differentiation, apoptosis, and cell growth in diverse tissues in a context-
dependent manner [4]. There are three RUNX genes (RUNX1, RUNX2, and RUNX3) in
humans that encode acute myeloid leukemia (AML), the alpha subunit of polyomavirus
enhancer-binding protein 2 (PEBP2α), or core-binding factor subunit α (CBFα) [5]. Fur-
thermore, these genes are defined by the presence of a highly conserved 128 amino acid
DNA binding/protein–protein interaction domain, called the Runt-homology domain [6].
Additionally, RUNX proteins form a heterodimeric complex with CBFβ, which changes
its conformation, exposing its DNA-binding site and increasing its DNA-binding affin-
ity, to exert its function as a sequence-specific trans-activator [7]. Mouse Runx genes are
closely related and essential for hematopoiesis, osteogenesis, and neurogenesis, besides
being important for other developmental processes [7]. RUNX1 has been associated with
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leukemia [8,9] and solid tumor development in the skin, lung, intestine, and breast [9,10],
while RUNX2 has been associated with osteosarcoma [11,12], thyroid carcinoma [13], as
well as breast and prostate cancers [14]. RUNX3 has been associated with gastric cancer [15]
and other types of cancers—for example, lung, breast, and pancreatic cancers [16]. As
RUNX genes have been found to function as both tumor suppressors and dominant onco-
genes in a context-dependent manner, it is imperative to gain further clarity regarding the
current experimental evidence associated with their function, especially in hypoxic TMEs
and tumor angiogenesis, via comprehensive deliberations.

2. Players of Hypoxia and Angiogenesis in Tumor Microenvironment
2.1. Players in Hypoxia TME

Hypoxia-inducible factors (HIF-1, -2, and-3) are key transcription factors that regulate
the hypoxic cellular microenvironment [17]. Hypoxia is a common phenomenon often
associated with poor prognosis that is linked to increased aggressiveness and invasiveness,
metastatic behavior, and chemo-resistance in solid tumors [18]. The molecular mechanisms
underlying HIF-α stability and activity have been reviewed elsewhere [19,20].

Hypoxia has also been documented to play a role in hematologic malignancies. For
instance, HIF-1α is overexpressed in clusters of bone marrow (BM)-resident leukemic
cells in pediatric acute lymphoblastic leukemia (ALL) cases but was found to be absent in
normal BM [21]. BMs from adult patients with ALL frequently exhibit HIF-1 expression,
associated with poor prognosis [22]. Furthermore, BM hypoxia has been reported to
promote the dissemination and rehabilitation of multiple myeloma (MM) cells by inducing
epithelial mesenchymal transition (EMT)-like features during the progression of MM [23].
Moreover, HIF-1α silencing in MM cells has been shown to inhibit tumor progression due
to decreased angiogenesis and bone destruction by the downregulation of proangiogenic
and pro-osteogenic cytokines [24]. Consequently, hypoxia has been considered a desirable
target for anti-cancer therapy of both solid and liquid tumors.

Other key players in hypoxic responses include histone deacetylases (HDACs) and
histone methyltransferases (HMTs), which are crucial for the epigenetic regulation of
gene expression. HDACs play a critical role in transcriptional regulation by inducing
conformational changes in chromosomal heterochromatin structure via the removal of
acetyl groups from ε-amino lysine residues on histone tails. Moreover, it has been well
established that the aberrant expression of classical (class I, II, IV) HDACs and alterations
in histone acetylation are linked to cancer development and a variety of malignancies,
including solid and hematological tumors [25]. Two decades ago, Kim et al. identified that
among the HDACs, HDAC1 activity is elevated under hypoxic conditions [26]. HDAC3 is
also regulated by hypoxia and HIF-1α-induced HDAC3 is essential for EMT and metastatic
phenotype in hypoxic stress conditions [27]. Some types of HDACs, including HDAC1,
4, 5, and 6 have been documented to increase HIF-1α stability by direct deacetylation of
HIF-1α or its chaperones, heat shock protein (Hsp)70, and Hsp90 [25].

G9a, a histone methyltransferase (HMT) that targets histone H3, and H3K9 methy-
lation, are usually used as markers of epigenetically silenced genes. G9a HMT has been
reported to accumulate in a similar way to HIF-1α under hypoxic conditions [28] and
is attributed to the epigenetic silencing of many tumor suppressors involved in the cell
cycle, apoptosis, DNA repair, angiogenesis, and metastasis [29]. G9a accumulation under
hypoxic conditions has been also shown to increase non-histone targets that regulate the
expression of hypoxia-responsive genes [30]. In addition, there is much evidence that G9a
HMT is overexpressed and strongly correlated with metastatic cancer progression. Thus,
the inhibition or depletion of some HDACs and G9a HMT in experimental systems leads
to reduced tumor mass and metastasis, suggesting that they function as oncogenic and
metastatic factors [25,29].
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2.2. Players in Tumor Angiogenesis

Angiogenesis induced by angiogenic factors secreted from cancer cells and TME
contributes to the transition of dormant tumors into fast-growing tumors [31]. Angiogenesis
is a major phenomenon that is regulated by HIF signaling in response to hypoxic stress to
overcome the lack of oxygen and nutrients. Potent angiogenic factors including vascular
endothelial growth factor (VEGF) family members are reportedly induced by HIF signaling,
which bind to their receptors, VEGFR1-2 and neuropilin [32]. Angiopoietins (Ang-1, -2) and
Tie-2 receptors are yet other important molecules induced by hypoxia that are involved in
a VEGF pathway-independent signaling pathway. Furthermore, Ang-1 has been reported
to be essential for normal vascular development, whereas Ang-2 is mainly expressed in
remodeling tissues and the hypoxic TME [33]. Additionally, elevated VEGF and Ang-2
expression is correlated with poor prognosis in various types of tumors [34,35].

Despite being hyper-vascularized, tumor vasculatures are often unable to supply
oxygen or efficiently deliver anti-cancer drugs to tumor cells owing to incomplete perfu-
sion through distorted vessels. Consequently, hypoxic conditions within the solid tumor
mass can induce the expression of additional angiogenic factors, the immune checkpoint
molecule PD-L1 [36], anti-apoptotic factors, and chemo- as well as radio-resistance impart-
ing molecules via HIF signaling [37,38].

3. RUNX1 in Hypoxic TME and Angiogenesis

RUNX1 (also called AML1/PEBP2αB/CBFα2) is a key regulator of terminal hematopoiesis
during embryonic development and adulthood. Its gene is located on chromosome 21 in
humans and was first characterized in acute myeloid leukemia gene 1 (AML1) for t(8;21)
translocation in AML cancer patients [39,40]. It is well known for its frequent translocation
and mutation in hematological malignancies as reviewed in other papers including this
Special Issue [41,42].

RUNX1 is involved in various biological functions such as immune cells, epithelial and
epithelial stem cells, hair follicles, and neuronal development [43–45]. Consistent with its
overarching role, RUNX1 is associated with the pathogenesis of malignancies originating in
a variety of tissues, independent of the hematopoietic system, including the breast, ovarian,
pituitary, and gastrointestinal systems [46].

Here, we need to look over the relations between the role of hypoxia in the BM
microenvironment and leukemia development. Konopleva et al. [47] have reported that
hypoxia is a common component of the leukemic BM environment. As such, extensive
expansion of hypoxic regions increases with disease progression via labeling the BM of
mice bearing xenografts or syngeneic acute leukemia models with the 2-nitroimidazole
hypoxia probe pimonidazole [48]. Matsunaga et al. have suggested that hypoxia via HIF-
1α might play a role in the maintenance of minimal residual disease in AML [49]. They
observed that HIF-1α promoted the arrest of leukemia cells in the intraosseous niche, and
speculated that this might contribute to the persistence of residual leukemic cells in AML.
In contrast, hypoxia or hypoxia mimetics such as cobalt chloride and desferrioxamine have
been reported to stimulate the differentiation of many types of AML cells in vitro [50,51].
A subsequent study has demonstrated that intermittent hypoxia significantly enhances the
survival of transplanted leukemic mice via the induction of leukemic cell differentiation
in vivo [52]. These reports thus suggest that hypoxia or hypoxia-induced molecules such as
HIF-1α induce leukemic cell differentiation. Urged expression of RUNX1 inhibits HIF-1α
transcriptional activity and decreased target gene expression, such as VEGF, but that of HIF-
1α enhances RUNX1 transcriptional activity, confirming the role of HIF-1α and RUNX1 in
angiogenesis and differentiation of leukemia cells [53]. Moreover, the interaction between
HIF-1α and Runx1 or HIF-1α and CCAAT/enhancer binding protein alpha (C/EBPα) has
been shown to increase the transcriptional activity of Runx1 or C/EBPα. Additionally, HIF-
1α reportedly plays a role in all-trans retinoic acid-induced leukemic cell differentiation [54].

The AML1/ETO fusion gene is known to induce leukemogenesis in AML cells without
mutagenic events. It has been demonstrated that HIF-1α plays a role in the phenomenon
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of leukemogenesis by interacting with AML1/ETO protein to prime leukemia cells for
subsequent aggressive growth. HIF-1α and AML1/ETO fusion proteins thus form a
positive regulatory circuit and cooperate to increase DNA hypermethylation through
transactivation of the DNMT3a gene [55]. It was further identified that the RNA N6-
methyladenosine (m6A)-reader enzyme YTH N6-methyladenosine RNA-binding protein
2 (YTHDF2) is a key molecule that regulates cell proliferation in t(8;21) AML patients.
Chen et al. revealed that YTHDF2 is a target of the AML/ETO-HIF-1α loop and promotes
cell proliferation, probably by modulating global m6A methylation in t(8;21) AML [56]
(Table 1). Therefore, these suggest that in normal HSCs, HIF-1α and RUNX1 interaction is
increases RUNX1 activity to induce angiogenesis or HSC differentiation, but in leukemic
states, HIF-1α and RUNX1(AML)/ETO fusion protein interaction increase leukemic ag-
gressiveness with proliferating phenotypes.

Table 1. Summary of RUNX functions in hypoxic TMEs.

Protein Regulation Phenotype Experimental Systems

RUNX1

HIF-1α interaction
w/RUNX1/ETO

→ DNA hypermethylation by
DNMT3a transactivation.

Target: YTHDF2

� Increase in cancer cell
proliferation and aggressiveness

human AML cells & mouse
leukemia model,

human t(8;21)AML patient

HIF-1α interaction w/RUNX1T1
→ Recruitment of PHD1/GSK3β
to HIF-1α for HIF-1α degradation

� Inhibition of cancer cell
proliferation and invasion Glioma cells

HIF-1α interaction w/Runx1 at
Runt domain

→ Transcriptional activity of
HIF-1α

→ Transcription activity of Runx1

� Decreased HIF-1α target gene
expression, VEGF

Activation of Runx1 activity

In vitro overexpression of
Runx1 or HIF-1α in

leukemia cells

RUNX2

Interaction w/ODDD of HIF-1α � HIF-1α stabilization ATDC5 chondrocytes HEK293
cells in vitro, Runx2 KO mice

Direct interaction w/HIF-1α � Increased HIF-1α
Hypoxic C3H10T1/2

mesenchymal cells, MC3T3-E1
preosteoblast cells

Hypoxia→ HDAC4→
Deacetylation of Runx2 and

HIF-1α

� Repressed activity of RUNX2
and HIF-1α

Chondrosarcoma,
pVHL-null kidney cancer cells

RUNX2 o/e � Apoptosis resistance Hypoxic LNCaP prostate
cancer cells

RUNX3

Histone modification by HDAC1
& G9a HMT at the promoter � RUNX3 gene silencing Hypoxic conditions w/human

gastric cancer cells

Interaction w/PHDs & HIF-1α � HIF-1α degradation, decreased
HIF-1α target genes

HEK293, human gastric
cancer cells

RUNX3 K129 & K171 methylation
by G9a HMT

� RUNX3 degradation, decreased
transactivation activity, increased

tumor growth w/decreased
tumor cell apoptosis

Hypoxic conditions w/human
gastric cancer cells, mouse

xenograft model

Hypoxia-induced miR-130a,
miR-495 target RUNX3 mRNA � Decreased RUNX3 translation Hypoxic conditions w/human

gastric cancer cells

RUNX1 partner transcriptional co-repressor 1 (RUNX1T1) is a member of the ETO ho-
molog family and is involved in the chromosomal translocation with RUNX1 in AML [57].
It acts as a corepressor by interacting with many transcription factors and recruits nuclear
corepressors, such as NCoR, SMRT, and HDACs, resulting in transcriptional repression and
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dysregulated hematopoietic differentiation during the development of leukemia [58,59]. In
human glioma patient tissues, the expression of the RUNX1T1 gene and protein is downreg-
ulated, while the expression of HIF-1α is higher than that in normal brain tissues. Moreover,
RUNX1T1 reportedly interacts with HIF-1α and recruits proline hydroxylase 2 (PHD2) and
GSK3β for HIF-1α degradation, resulting in the inhibition of glioma cells [60] (Table 1).
Long noncoding (lnc) RNA RUNX1-IT1 is the intronic transcript 1 of RUNX1, which is also
known as chromosome 21 open reading frame 96 (C21orF96). In hepatocellular carcinoma
(HCC), it has been identified that lnc RUNX1-IT1 represses HCC cell proliferation, cell
cycle progression, and cancer stemness in vitro. Furthermore, its downregulation in HCC
samples correlates with an unfavorable prognosis and is mediated by hypoxia-induced
HDAC3 in HCC [61].

The fact that hematopoietic cells and ECs have common precursor cells, that is, he-
mangioblasts [62,63], and that Runx1 is essential for the generation of hematopoietic cells
from hemogenic endothelial cells [64] suggests that Runx1 plays an important role in an-
giogenesis. In physiological angiogenesis, endothelial differentiation and maturation, as
well as vascular network formation, are promoted by Runx1 through the expression of
VE-cadherin by the repression of insulin-like growth factor-binding protein-3 (IGFBP-3) [65]
and Ang1 [66]. Runx1-deficient mouse embryos show angiogenic defects in vital organs
with absence of HSCs, suggesting its essential role in the vasculogenesis and angiogene-
sis [65,67].

In malignant states, the role of RUNX1 in angiogenesis has been explored but the
conclusions remain controversial. Runx1 acts as a transcriptional repressor of VEGF-A by
directly binding to its promoter and has been suggested to have anti-angiogenic activity
in AML cells [68] and in a mouse HCC model [69] (Table 2), indicating that RUNX1 per-
forms an anti-angiogenic function by suppressing VEGF-A expression. Conditioned media
obtained from RUNX1-silenced neuroblastoma cells has been shown to stimulate in vitro
tube formation in human umbilical vascular endothelial cells (HUVECs). In addition, the
SH-SY5Y and SK-N-SH neuroblastoma cells subjected to RUNX1 knockdown demonstrate
increased microvessel density in xenograft tumor tissues [69]. These investigations thus
revealed the effect of RUNX1 that is independent of the HIF-1α-mediated hypoxic signal-
ing and hypoxia-induced angiogenesis. However, RUNX1 silencing in U-87 MG human
glioblastoma cells has been shown to inhibit tube formation in HUVECs. IL-1β induces
expression of RUNX1 in which p38 MAPK pathway is activated for the expression of
invasion- and angiogenic molecules, such as MMPs, and VEGF-A [70]. These findings
suggest that RUNX1 increases angiogenic function in glioblastoma cells via the IL-1β-
RUNX1-p38MAPK-MMPs and VEGF-A signaling axis [70] (Table 2). Together, involvement
of RUNX1 in tumor angiogenesis is different depending on the tumor types, and thus,
further an in-depth study on the relationship between RUNX1 and various angiogenic
factors and their receptors or hypoxia signaling, including HIF-1α, in tumor angiogenesis
should be more piloted.

Table 2. Summary of RUNX functions in tumor angiogenesis.

Protein Regulation Phenotypes Experimental Systems

RUNX1

Direct binding to VEGF-A
gene promoter

→Repression of VEGF-A
gene expression

� Suppression of VEGF protein secretion
� Decreased HCC cell proliferation,

migration, and tumor growth

AML cells
HCC cells and mice model

RUNX1 silencing

� Increase tube formation -SiRNA transfection and conditioned
media (CM) from neuroblastoma cells

� Increase microvessel density
-inhibit EC tube formation

-Mouse xenograft neuroblastoma
model

-SiRNA transfection and (CM) from
U-87 MG human glioblastoma cells

IL-1β
→increase RUNX1 via p38 MAPK

� Increase MMPs and VEGF-A
� Increase EC tube formation, cancer cell

migration

SiRNA transfection and (CM) from
U-87 MG human glioblastoma cells,

HUVEC
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Table 2. Cont.

Protein Regulation Phenotypes Experimental Systems

RUNX2

IGFIR-mediation •EC tube formation IGF-induced expression of Runx2 in
HBMEC

Direct increase VEGF transcription •VEGF mRNA expression Hypoxic C3H10T1/2 mesenchymal
cells, MC3T3-E1 preosteoblast cells

RUNX2 o/e
•Increased VEGF, worse prognosis

•Increased VEGF, MMPs osteopontin &
worse prognosis

Human breast
cancer specimens

Human prostate cancer cells (LNCaP,
PC3)

RUNX3

Direct binding to VEGF-A
gene promoter

•Suppression of VEGF-A level, tumor
microvessel density, tumor growth &

metastasis

Gastric cancer cells, xenograft mouse
model, human gastric cancer

specimens

Interaction w/PHDs & HIF-1α •Anti-angiogenic

CM of human gastric cancer under
hypoxia, HUVEC tube formation,

migration, proliferation, CAM assay,
Matrigel plug assay

AntagomiR-130a, antagomiR-495 recover
RUNX3 protein level •Anti-angiogenic CM of human gastric cancer

Matrigel plug assay

HIF-1α inhibition •Suppressed EPC differentiation Runx3 heterozygote mouse

4. RUNX2 in Hypoxic TME and Angiogenesis

RUNX2 is a major determinant of osteoblast differentiation and regulates chondrocyte
proliferation, differentiation, and hypertrophy during endochondral bone formation [71,72].
A link between Runx2 and HIF-1α in hypertrophic chondrocytes and angiogenesis has been
suggested. In wild-type hypertrophic chondrocytes, co-expression of Runx2 and HIF-1α, as
well as higher vascular density, are observed, but in Runx2 knockout mice, the expression
of HIF-1α and vascular formation are not observed in growing tibial bones [73] (Table 1).
This finding thus suggests a possible role of RUNX2 in angiogenesis in endochondral bone
formation. In addition, RUNX2 physically interacts with HIF-1α, and Runx2 overexpression
has been reported to increase HIF-1α levels, although the underlying mechanism has not
been identified. Knockdown of Runx2 is documented to decrease VEGF transcript levels,
but it is not essential for the HIF-1α response as hypoxia induces the expression of VEGF
transcripts in Runx2–null cells too [73]. A further study has shown that RUNX2 interacts
with the oxygen-dependent degradation domain (ODDD) of HIF-1α and competes with
the von Hippel Lindau (pVHL) protein, which is an E3-ubiquitin ligase, resulting in the
stabilization of HIF-1α. Furthermore, RUNX2 overexpression has been documented to
increase the angiogenic activity of HUVECs in vitro. This finding may therefore explain
why vascular angiogenesis in the hypertrophic zone of the growth plate is mediated
by RUNX2 during endochondral bone formation [74]. As HDAC4 has been known to
decrease total and acetylated Runx2 [75] and HIF-1α [76] through its deacetylation and
transcriptional repressor activities, reduced expression of HDAC4 results in higher levels
of Runx2 and HIF-1α, thereby increasing transcription of VEGF and its angiogenic activity
on chondrosarcoma cells (Table 1).

Various studies have extensively documented the involvement of RUNX2 in tumor
development, progression, and metastasis. Its expression is significantly upregulated in
prostate [77], breast [78,79], and colon cancers [80]. RUNX2 overexpression is associated
with an increase in bone metastasis of breast cancers [81] and prostate cancers [82]. RUNX2
overexpression has been shown to contribute to a more aggressive and metastatic pheno-
type by altering the expression of many genes involved in migration, invasion, metastasis,
apoptosis, and angiogenesis, including VEGF, MMPs, and bone sialoprotein [77,83–85]
(Table 1). The proangiogenic effects of RUNX2 have been implicated in tumor progression
as it has been shown to enhance endothelial cell proliferation, migration, and invasion. In
contrast to RUNX1, VEGFA expression is induced by RUNX2 [73,86,87]. All these studies
consequently suggest that RUNX2 has a proangiogenic role in promoting the early steps of
tumorigenesis, and is probably involved in driving bone metastasis in breast and prostate
cancers (Table 2).
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Extracellular matrix (ECM) stiffness is one of the upstream regulators of RUNX2
expression. Aberrant angiogenesis has been observed in tumor tissues with an abnormal
stiffness of the ECM [88,89]. ECM stiffness represses VEGF secretion, which also involves
the expression of RUNX2-mediated-Yes-associated protein (YAP)-serine/arginine splicing
factor 1 (SRF1) [90]. Nitric oxide (NO) is yet another regulator of RUNX2 expression
in prostate cancer [91]. NO is a soluble gas produced by nitric oxide synthase (NOS),
which has three isoforms: inducible NOS (iNOS), endothelial NOS (eNOS), and neural
NOS (nNOS). The control of NO flux exerted by these three synthases has important
implications for tumor growth, apoptosis, angiogenesis, and tumor-promoting and anti-
tumor effects [92]. In addition, RUNX2 is upregulated under hypoxic stress conditions in
cancer cells, resulting in increased expression of the anti-apoptotic gene Bcl-2 [85]. These
studies indicate that various features of the tumor microenvironment such as ECM stiffness,
NO, and hypoxia, can serve as regulators that increase the expression of RUNX2 and
promote tumor growth by resulting in the expression of genes involved in anti-apoptosis,
angiogenesis, and proliferation. Interestingly, glucose has been documented to increase
RUNX2 DNA binding activity in endothelial cells (ECs). Glucose has been shown to
promote cell cycle progression in both the G2/M and G1 phases in sub-confluent cells.
The study also revealed that RUNX2 phosphorylation serves as a mechanism that leads
to increased DNA-binding activity of glucose. In addition, glucose has been shown to
increase the RUNX2 localization on the p21 promoter, thereby inhibiting its expression.
Thus, inhibition of RUNX2 expression or its DNA binding under high glucose conditions
can be explored as a beneficial strategy to inhibit EC proliferation and angiogenesis in
tumors [87,93].

As expected from the role of Runx2 in angiogenesis, RUNX2 is expressed at higher
levels in cancers such as osteosarcoma, colon, prostate, and thyroid cancers as well as
melanoma [13,94–96], suggesting its oncogenic role. Moreover, RUNX2 transactivates
genes related to tumor progression, invasion, and metastasis, including survivin, MMP-2,
MMP-9, and VEGF [78,80,82,97–102]. These findings thus suggest that overexpression
of RUNX2 is associated with undesirable outcomes in cancer progression, angiogenesis,
and metastasis.

5. RUNX3 in Hypoxic TME and Angiogenesis

RUNX3 is associated with multiple developmental functions and the differentiation
of immune cells such as CD8 lineage T cells and TrkC-dependent dorsal root ganglion
neurons. It is known to function as a tumor suppressor in various carcinomas, including
gastric cancer [7]. In this respect, it has been well established that RUNX3 is silenced in
various cancers, and that its silencing is caused by promoter DNA hypermethylation. The
silencing of RUNX3 by hemizygous deletion or DNA hypermethylation and the resultant
reduced expression of RUNX3 protein is common in many types of cancers, including bile
duct, lung, and pancreatic cancers (Wada et al. 2004; Yanada et al. 2005). For two decades,
our research group has been a pioneer in questioning as well as investigating whether
the hypoxic tumor microenvironment regulates RUNX3. We have demonstrated that a
hypoxic microenvironment can suppress RUNX3 expression at the transcriptional level via
histone modification—that is, methylation and deacetylation via G9a HMT and HDAC1,
respectively. Furthermore, RUNX3 promoter histone methylation and deacetylation have
been confirmed in hypoxic microenvironments [103] (Table 1 and Figure 1). It has been
identified that G9a HMT is stabilized and accumulated under hypoxia [28,104] and is
associated with metastasis and the poor prognosis of multiple human cancers [29,105].
Hypoxic conditions also highly activate HDAC1, which in turn deacetylates H3 histones to
decrease the transcription of pVHL and p53 [26]. As the acetylation of RUNX3 protein by
p300 [106] and BRD [107] is a key mechanism of its stability and cell-cycle arrest, histone
deacetylation plays a major role in RUNX3 inactivation by protein deacetylation. Moreover,
as HDAC inhibitors restore RUNX3 expression and tumor-suppressive function in cancer
cells [103,108,109], it has been suggested that under hypoxic conditions, compounds that
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rescue the epigenetic loss of RUNX3 expression and protein function could potentially be
utilized for the prevention and treatment of various cancers.
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interacts with PHDs and the HIF-1α C-terminal activation domain and induces hydroxylation
(OH) of HIF-1α by PHDs, resulting in HIF-1α degradation under hypoxic TMEs and/or normoxic
conditions [110]. Hypoxia-induced HDAC1 and G9a HMT increase histone deacetylation and
H3K9 dimethylation on RUNX3 promoter to inhibit its gene transcription [103]. Hyperactive G9a
HMT methylates non-histone protein RUNX3 at lysine 129 and 171 residues (me) on the Runt
domain and increases its Smurf-mediated ubiquitination and proteasomal degradation under hypoxic
TME. In turn, the decreased RUNX3 levels result in the stabilization of HIF-1α. In addition, G9a-
mediated methylation of RUNX3 inhibits CBFβ- and p300-mediated transactivation activity of
RUNX3. Thus, decreased RUNX3 protein level and activity inhibits the expression of RUNX3 target
genes but increases the expression of HIF-1α target genes involved in cell proliferation, apoptosis,
and angiogenesis. Importin α7 (imp-α) mediates RUNX3 cytosolic translocation from the nucleus
after methylation by G9a HMT [111].

In some types of gastric cancer, RUNX3 is regulated at the post-translational level
by HMT under hypoxic conditions [111]. The ankyrin repeat domain of G9a, a motif
that mediates protein–protein interactions, has been documented to interact with the
Runt domain of RUNX3. G9a methylates the Runt domain at lysine residues 129 and
171 of RUNX3, thereby increasing its SMAD-ubiquitination regulatory factor (Smurf)-
mediated proteasomal degradation and cytosolic sequestration. The K129R and K171R
mutations in RUNX3 have been shown to suppress its methylation by G9a and recover
the RUNX3 activity under hypoxic conditions. The methylation of RUNX3 by G9a inhibits
the binding of p300 and CBFβ, and then RUNX3 transactivation activity for target gene
expression. Furthermore, chromatin immunoprecipitation sequencing (ChIP-seq) and DNA
microarray analysis of K129R and K171R mutants under hypoxic conditions have revealed
the involvement of novel RUNX3 target genes in the inflammatory response, leukocyte
chemotaxis, and cell death [111] (Table 1 and Figure 1). Therefore, investigations into
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the roles of these novel RUNX3 target genes have the potential to advance the current
understanding of the RUNX3-mediated cellular responses in the future.

Regarding the role of RUNX3 in angiogenesis, it is interesting to note that hypoxia-
induced HIF-1α is destabilized by RUNX3. A mechanistic study has demonstrated that
RUNX3 interacts with the HIF-1α C-terminal activation domain as well as PHDs, which
bind to and hydroxylate proline residues in HIF-1α ODDD. These results suggest that
RUNX3 can bind to PHD1 or PHD2 and then recruit HIF-1αODDD for the hydroxylation of
HIF-1α for further proteasomal degradation [110]. As a result, RUNX3 may be considered to
be essential for HIF-1α degradation, and the downregulation of RUNX3 may be a possible
pathway to increase HIF-1α stability under hypoxic conditions. In addition, RUNX3
overexpression significantly inhibits hypoxia-induced angiogenesis, and siRNA against
PHD2 has been documented to restore the RUNX3-mediated inhibition of angiogenesis
(Tables 1 and 2 and Figure 1), suggesting that the interaction between RUNX3 and PHD is
significant for the degradation of HIF-1α [110].

Hypoxia-induced microRNAs (miRNAs) have been reported to regulate angiogenesis,
apoptosis and cell proliferation in gastric cancer cells through the targeting of RUNX3. For
instance, miR-130a and miR-495 are upregulated under hypoxic conditions and bind to
the RUNX3 3′-untranslated region (3′-UTR) to target RUNX3 mRNA translation in gastric
cancer cells. Furthermore, the combination of miR-130a and miR-495 significantly inhibited
the expression of RUNX3 as well as its target genes such as p21 and Bim. In addition,
the antagomiRs specific for miR-130a and miR-495 significantly reduced angiogenesis
in vivo [112] (Tables 1 and 2). This report thus suggests that miR-130a and miR-495 could
be further explored as potential therapeutic targets for the recovery of RUNX3 expression
under hypoxic conditions. Taken together, these results suggest a novel and critical role
for RUNX3 in hypoxic responses such as cancer progression, angiogenesis, stem cell
maintenance, and ischemic diseases.

RUNX3 expression is negatively correlated with VEGF expression and microvascular
density in the tissues, suggesting its anti-angiogenic role in human gastric cancers [113].
RUNX3 transcriptionally inhibits the expression of VEGF through binding to putative
RUNX3-binding sites of the VEGF promoter directly [113]. Its anti-angiogenic activity
was confirmed by the decreased expression of VEGF and von Willebrand factor (vWF)
in RUNX3-overexpressed human microvascular endothelial cells (HMECs) [114]. Like
RUNX1, RUNX3 is prominently expressed in hematopoietic cells and different subsets of
neurons [115,116]. RUNX3 is specifically expressed in CD34+ HSCs and several hematopoi-
etic cell lines, both normal and malignant in human [116,117]. CD34+ HSCs differentiate
into endothelial progenitor cells (EPCs), ancestors of endothelial cells, and EPC differen-
tiation is suppressed by the haploinsufficiency of Runx3 through HIF-1α [118] (Table 2).
The function of RUNX3 in hematopoiesis and EPC differentiation leads us to expect that
it controls the inflammation responses by the regulation of inflammatory cells [1] and
vascular endothelial cells in TME, as well as hematological malignancies [16,20].

6. Conclusions

The role of RUNX proteins in the inflammation and hypoxic stress is critical for
initial tumor formation and early tumorigenesis because inflammation is suggested to be a
putative initiator of carcinogenesis [119] and substantial hypoxia is induced in inflammatory
lesions [120]. All RUNX family proteins contain a conserved Runt homology domain but
tissue-specific and context-dependent regulatory mechanisms and functions. Furthermore,
the RUNX family proteins play a unique role in the regulation of vascular ECs identity
and tumor angiogenesis. RUNX1 acts as an anti-angiogenic factor by inhibiting HIF-1α
activity as well as an inhibitor of VEGF gene expression by binding its promoter. However,
RUNX1/ETO fusion protein interacts with HIF-1α for tumor progression. RUNX2 stabilizes
HIF-1α protein for regulating optimal angiogenesis in chondrocytes, but overexpressed
RUNX2 in cases of cancer increases VEGF expression and anti-apoptotic activity under
hypoxia, resulting in increased tumor progression. RUNX3 is silenced by hypoxia both
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at the gene and protein levels in cancers by hypoxia-induced HDAC1 and/or G9a HMT.
RUNX3 plays an anti-angiogenic role through the degradation of HIF-1α under hypoxia or
the direct suppression of VEGF gene expression in cancers. Consequently, it can function
in the normalization of abnormalities of tumor vasculature in vascular ECs as well as
in hypoxic TME through distinct means of action. Therefore, the manipulation of Runx-
family proteins in a hypoxic microenvironment and vascular ECs through the more precise
delineation of regulation pathways could be utilized in future research and the development
of cancer therapeutics.
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