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Introduction

Colorectal cancer (CRC) is the third most common type 
of cancer globally, resulting in 700,000 deaths annually, 
and this number is still increasing [1]. The liver is the 
most frequent distant metastases organ for CRC, and liver 
metastases are the leading death cause for CRC patients 
[2]. Approximately 10–15% of patients are diagnosed with 
CRC with synchronous liver metastases; however, only 
10–20% of patients qualify for surgery, which it is the 
only possible treatment to cure CRC with liver metastases 
currently [3]. Unfortunately, about 30–50% of patients 
would suffer from reoccurrence of local tumor or distant 
metastasis even after curative resection of primary tumors 

[4, 5]. Liver metastases are a multiple-step process influ-
enced by various factors, and is not just the simple process 
whereby cells migrate from primary lesions to distant 
organs. Given our poor understanding of genetic factors 
that affect this process, it is critically important to reveal 
the genetic and molecular causes that underlie the occur-
rence of liver metastasis. Meanwhile, conventional methods 
to detect distant metastases are still radiology and biopsy, 
which lack economic efficiency and convenience [6]. Thus, 
novel biomarkers of metastatic progression are required 
urgently to detect liver metastases and improve diagnostic 
accuracy.

The emergence of next-generation sequencing (NGS) 
has already changed the ways we perform genomic 
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Abstract

Colorectal cancer (CRC) is the third most common cancer worldwide and liver 
metastases are the leading cause of death in patients with CRC. In this study, 
we performed next-generation sequencing profiling on primary colorectal tumor 
tissues obtained from three CRC patients with liver metastases and three CRC 
patients without liver metastases to identify differentially expressed genes (DEGs) 
that might be responsible for the metastases process. After filtering 2690 DEGs, 
comprising 996 upregulated and 1694 downregulated RNAs, 22 upregulated and 
73 downregulated DEGs were identified. Gene ontology (GO) and pathway 
analyses were performed to determine the underlying mechanisms. Single-
organism process (biological process), cell (cellular component), and binding 
(molecular function) were the most related terms in the GO analysis. We selected 
the top 13 upregulated and top 12 downregulated genes by fold change to verify 
their differential expression using quantitative real-time reverse transcription 
PCR (qRT-PCR) and immunohistochemistry (IHC). The validation showed that 
three most significantly upregulated DEGs were HOXD10, UGT2A3, and 
SLC13A2, whereas the five most significantly downregulated DEGs were SPP1, 
CXCL8, MMP3, OSM, and CXCL6, respectively. These aberrantly expressed genes 
may play pivotal roles in promoting or inhibiting metastases. Further studies 
are required to determine the functions of DEGs to promote the diagnosis of 
metastases and provide novel chemotherapy targets.
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studies. Before NGS, gene expression was quantified by 
other methods, such as hybridization-based microarrays. 
Compared with microarrays, NGS is able to detect RNAs 
with very low expressions and identify unrecognized novel 
targets [7], as well as providing more detailed information 
[8]. Several previous studies [9–16] used NGS to seek 
mutations and differentially expressed genes (DEGs) that 
could play pivotal roles in the colorectal carcinogenesis 
and metastases, which reveals the significance of NGS.

However, although NGS has been applied in studies 
involving CRC liver metastases, it was reported that meta-
static and primary CRC demonstrated a high concordance 
in gene expression. Therefore, our study adopted another 
strategy. Comprehensive NGS-based whole-transcriptome 
profiling was performed on six primary colorectal cancer 
tissues obtained from three patients with liver metastases 
and three patients without liver metastases. Libraries of 
total RNA and small RNAs were constructed for sequenc-
ing. DEGs were examined and filtered after sequencing. 
Our goal was to identify DEGs that might be vital in 
regulating the process of metastases and potential target 
biomarkers through next-generation RNA-seq technology.

Materials and Methods

Patients and samples

We adopted some methods to screen all the samples from 
the biobank in the Department of Colorectal Surgery, the 
First Affiliated Hospital of Nanjing Medical University, 
between 2014 and 2016. First, we divided these samples 
into two categories: one is primary CRC samples with 
liver metastases and the other is primary CRC samples 
without liver metastases. Then, to decrease potential dis-
cordance, only T4 samples (according to TNM staging) 
were collected from patients with only left colon tumors 
who were enrolled in this study. Finally, samples must be 
obtained from patients without receiving neoadjuvant 
chemotherapy. Through this filtering process, 36 fresh 
primary CRC samples were collected and then we per-
formed quality tests twice on all 36 samples before next-
generation RNA-seq. After that, three primary CRC samples 
with liver metastasis and three primary CRC samples without 

metastasis (i.e., six primary CRC samples) were subjected 
to NGS. We therefore performed NGS on these qualified 
samples. All the patients and grouping information are 
listed in the Table  1. All these samples were confirmed 
as pathologically adenocarcinoma. All samples were snap-
frozen in the liquid nitrogen after surgery [15] and stored 
at −80°C within 30 min after excision of the tumor. Written 
informed consent was obtained from all patients, and this 
study was approved by the Ethics Committee of the First 
Clinical Medicine College, Nanjing Medical University.

RNA extraction

Total RNA was isolated from each sample using the TRIzol 
reagent (Invitrogen, Carlsbad, CA), following the manu-
facturer’s protocol. The purified RNA samples were quan-
tified using a NanoDrop 2000 spectrophotometer (Agilent, 
Santa Clara, CA). The isolated RNA was stored at −80°C 
until analysis. After screening all 36 RNA samples using 
the Agilent 2100, six of them met the level A standard 
for subsequent sequencing. The RNA Integrity Number 
(RIN) was confirmed as above 7.0 and rRNA 28S/18S 
ratio was above 1.0 separately in these six samples.

Illumina-based sequencing

The total RNA samples were first treated with DNase I 
to degrade any possible DNA contamination. Oligo(dT) 
magnetic beads were then used to enrich the mRNA. The 
mRNA was fragmented into short fragments after mixing 
with fragmentation buffer. Using random hexamer-primers, 
first strand cDNA was synthesized. The second strand 
was synthesized using buffer, dNTPs, RNase H, and DNA 
polymerase I. The double strand cDNAs were purified 
with magnetic beads. Finally, sequencing adaptors were 
ligated to the fragments. PCR amplification then enriched 
the fragments. The library products were ready for sequenc-
ing using the Illumina HiSeq™ 2000 system.

Quality control and filtering

Primary sequencing data produced by the Illumina HiSeq™ 
2000 were termed raw reads. “Dirty” raw reads were 

Table 1. Information for patients whose tissue were obtained for next-generation sequencing (NGS)-based profiling.

No. Group Age Gender Location Pathology Metastases Stage Primary tumor size (cm)

T2 T 62 M Left colon Adenocarcinoma Liver T4N2M1 4*3*1.5
T8 T 57 M Left colon Adenocarcinoma Liver T4N1M1 7*6*2
T9 T 54 F Left colon Adenocarcinoma Liver T4N2M1 4.5*2.5*0.5
T4 C 57 M Left colon Adenocarcinoma No T4N0M0 6*4*2
T6 C 59 M Left colon Adenocarcinoma No T4N0M0 6*6*1.5
T7 C 62 M Left colon Adenocarcinoma No T4N0M0 3*2*1
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defined as those that contained the sequence of the adap-
tor, high content of unknown bases, and low-quality reads. 
These dirty reads were filtered out as follows: (1) Reads 
with adaptors were removed; (2) reads in which unknown 
bases were more than 10% were removed; and (3) low-
quality reads (the percentage of low-quality bases was 
over 50% in a read) were removed. All subsequent analyses 
were based on the clean data.

Gene quantification

To quantify each DEG, the fragments per kb per million 
fragments (FPKM) method are adopted [17]. To calculate 
the expression level, the following formula was used:

In this formula, Given the gene A, C represents the 
number of fragments that are uniquely mapped to gene A, 
N is the total number of fragments that are uniquely mapped 
to all genes, and L is the number of bases of gene A. The 
FPKM method can eliminate the influence of different gene 
length and sequencing discrepancy on the calculation of 
gene expression. Therefore, the calculated gene expression 
can be used directly for comparisons between samples.

Data analysis

P-value and false discovery rate (FDR) filtering was used 
to identify the mRNAs and small RNAs whose expression 
was significantly different between Treatment (T) Groups 
(T2, T8, and T9) and Control (C) Groups (T4, T6, and 
T7). These differentially expressed mRNAs and small RNAs 
were identified through fold change filtering.

Gene function and Kyoto Encyclopedia of 
Genes and Genomes pathway enrichment 
analysis

Gene Ontology (GO) is an international standard gene 
functional classification system that provides a dynamically 
up-to-date vocabulary. GO covers three ontologies: molecular 
function, cellular component, and biological process. First, 
this method mapped all DEGs to GO terms in the database 
(http://www.geneontology.org/), calculating the numbers of 
DEGs for every term. Then, a hypergeometric test was used 
to identify significantly enriched GO terms in the input list 
of DEGs. This analysis is able to recognize the main bio-
logical functions and processes that involve various DEGs. 
Pathway analysis is a functional analysis that maps genes 
to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. This analysis identifies metabolic or signal 

transduction pathways that are significantly enriched by 
DEGs.

Quantitative RT-PCR verification for target 
mRNAs

After filtering the results of the next-generation sequenc-
ing, several target RNAs were selected for quantitative 
real-time reverse transcription PCR (qRT-PCR) validation. 
Eight samples of primary CRC with liver metastases and 
another eight without liver metastases were collected from 
the Department of Colorectal Surgery, the First Affiliated 
Hospital of Nanjing Medical University. For each sample, 
total RNA was isolated using the TRIzol (Invitrogen, 
Carlsbad, CA) and then reverse transcribed using the 
Prime Script RT reagent kit. QRT-PCR was performed 
with SYBR green mix reagents on an ABI 7500 (Applied 
Biosystems, Carlsbad, CA), according to the manufacturer’s 
instructions, to detect the expression levels of the target 
mRNAs.

Immunohistochemistry analysis

Primary samples collected from patients with and without 
liver metastases were cut into 4-μm-thick serial sections. 
The sections were submerged in antigenic retrieval buffer 
and microwaved for antigen fixation, after which they were 
deparaffinized with xylene. Slides were treated with hydro-
gen peroxide to quench endogenous nonspecific binding 
activity. The slides were then probed with the following 
primary antibodies: rabbit anti-human SPP1, rabbit anti-
human MMP3, rabbit anti-human OSM, rabbit anti-human 
SLC13A2, and mouse anti-human CXCL8 (all Proteintech, 
Inc. Wuhan, China); rabbit anti-human HOXD10 (Bioss, 
Inc. Beijing, China), and rabbit anti-human CXCL6 (Abcam, 
Cambridge, UK), respectively. Next, the slides were incu-
bated with horseradish peroxidase (HRP)-polymer-
conjugated secondary anti-rabbit or anti-mouse antibody 
at 37°C for 1  h. Then, the immunoreactivity was detected 
with the diaminobenzidine (DAB) substrate to determine 
protein expression. A negative control was performed by 
replacing the primary antibodies with phosphate-buffered 
saline (PBS). The stained tissue slices were reviewed and 
scored by two pathologists separately.

Results

Overview

Six primary CRC samples were included in the NGS-based 
profiling, generating approximately 12,807,481 raw 
sequencing reads, of which 12,782,782 clean reads remained 
after filtering low-quality samples, making the average 
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clean reads ratio 99.81% (Table  2). After Quality control 
(QC), clean reads are mapped to reference using BWA 
[18] and Bowtie2 [19] tools. The average mapping ratio 
with reference genes was 74.48%. Table  3 lists separate 
mapping rates for each sample.

Gene expression levels were quantified by a software 
package called RSEM [20]. We counted the number of 
identified expressed genes and calculated their proportion 
to total number of genes (26,929 in total) in the database 
for each sample, as shown in Figure  1A. Also, histogram 
distributions were performed for each sample based on 
gene expressions. The average FPKM values were 24.76, 
22.26, 24.69, 21.53, 22.84, and 24.42 for the T2, T8, T9, 
T4, T6, and T7 samples, respectively (Fig.  1B–G).

The whole-transcriptome analysis revealed the differ-
ences between Treatment (T) Group and Control (C) 
Group. The 2690 dysregulated RNAs (log 2 ratio ≥2.0-fold 
change) comprised 996 upregulated and 1694 downregu-
lated DEGs. In addition, probability analysis reveals the 
possibility of how significantly these genes are differentially 
expressed between groups. The resulting range narrowed 
a lot at a probability ≥0.8, identifying of 32 upregulated 
and 111 downregulated DEGs (log  2  ≥  2.0-fold change, 
P  <  0.05, P  ≥  0.8) (Fig.  2A and B). We then removed 
genes with extremely low FPKM (FPKM  <  0.5) values 
in both the T and C groups on that basis [17, 21]. 
Therefore, 22 upregulated and 73 downregulated DEGs 
were included after filtering (Table S1). Among the upregu-
lated genes, HOXD10 was the most upregulated DEG with 
a 4.56-fold change, whereas the most downregulated DEG 
was SPP1, with a −7.12 fold-change.

Gene ontology and pathway analyses

In the GO analysis, the DEGs were annotated to different 
terms and grouped into three categories: biological process, 
cellular component, and molecular function. Between T and 
C groups, the three terms most associated with biological 
process were single-organism process (82), cellular process 
(74), and response to stimulus (65). In the cellular com-
ponent category, cell (64), cell part (64), and organelle (44) 
were the three most substantial components. Among molecu-
lar functions, binding (73) ranked first, followed by catalytic 
activity (23) and molecular transducer activity (8) (Fig. 3A).

The pathway enrichment analysis reveals the way in 
which DEGs would interact with other factors and how 
they participate in the various biological functions. Between 
the two groups, the top 10 pathways annotated with higher 
numbers of DEGs among all the dysregulated genes were: 
Phagosome (17), Cytokine-cytokine receptor interaction 
(14), Pertussis (14), Cell adhesion molecules (CAMs) (13), 
PI3K-Akt signaling pathway (13), Hematopoietic cell line-
age (12), Leishmaniasis (12), Proteoglycans in cancer (12), 
Rheumatoid arthritis (11), and ECM-receptor interaction 
(11). All pathways displayed in Figure  3B reached statisti-
cally significance (P  <  0.05). The pathway involving the 
most DEG annotations is displayed in Figure  3C.

Hierarchical clustering analysis of DEGs

Genes with similar expression patterns usually have func-
tional correlations. Therefore, clustering analysis of DEGs 
was performed using Cluster [22], according to the 

Table 2. Summary of sequencing data.

Sample
Sequencing 
strategy

Raw data size 
(bp)

Raw reads 
number

Clean data size 
(bp)

Clean reads 
number

Clean data rate 
(%)

T2 SE49 639,113,762 13,043,138 638,528,996 13,031,204 99.9
T8 SE49 611,143,876 12,472,324 610,085,427 12,450,723 99.82
T9 SE49 613,761,652 12,525,748 612,491,866 12,499,834 99.79
T4 SE49 639,188,046 13,044,654 636,882,547 12,997,603 99.63
T6 SE49 639,151,394 13,043,906 638,229,557 13,025,093 99.85
T7 SE49 623,040,733 12,715,117 621,919,564 12,692,236 99.82

Strategy to sequence samples with paired-end (PE); the following number reflects the read length.

Table 3. Alignment statistics of reads aligned to the reference gene.

Sample Total reads Total bases
Total mapped 
reads (%)

Perfect 
match (%)

Mismatch 
(%)

Unique 
match (%)

Multi-position 
match (%)

Total unmapped 
reads (%)

T2 13,031,204 638,528,996 72.43 62.27 10.15 63.82 8.6 27.57
T8 12,450,723 61,008,5427 75.17 61.7 13.47 66.75 8.42 24.83
T9 12,499,834 612,491,866 73.37 60.03 13.34 64.78 8.59 26.63
T4 12,997,603 636,882,547 77.59 63.28 14.31 68.74 8.86 22.41
T6 13,025,093 638,229,557 73.69 63.53 10.15 65.09 8.6 26.31
T7 12,692,236 621,919,564 74.62 61.19 13.44 65.98 8.65 25.38
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provided cluster plans for DEGs. We also provided a 
complete intersection and union DEGs heatmap (Fig. 4A) 
for each cluster plan.

Target DEGs selection and validation

After removing genes with extremely low FPKM values 
(FPKM  <  0.5), we selected the top 13 upregulated and 
top 12 downregulated genes by fold change to verify their 
differential expression using qRT-PCR. These target DEGs 
are listed in Table  4. QRT-PCR validated that eight of 
the 25 selected DEGs demonstrated significant changes 
between groups. The three most significantly upregulated 
DEGs were HOXD10, UGT2A3, and SLC13A2, whereas 

the five most significantly downregulated DEGs were SPP1, 
CXCL8, MMP3, OSM, and CXCL6, respectively. The most 
up- and downregulated DEGs in the list reached statistical 
significance. A comparison was also performed between 
outcomes of NGS and qRT-PCR, as shown in the Figure 4B 
and Table 4. Good correlations of expressions were observed 
in most pairs between the two platforms, demonstrating 
the credibility of these results.

Immunohistochemistry validation of the 
expressions of target genes

Immunohistochemistry (IHC) validations were performed 
on primary CRC samples with and without liver 

Figure 1. Analyses of identified genes (A) Number of identified genes. The x-axis is the sample name. The y-axis is number of identified expressed 
genes. The proportion at the top of each bar equals the number of expressed genes divided by the total gene number reported in database. (B–G) 
Histograms showing the distribution of genes at the expression level of T2, T8, T9, T4, T6, and T7. The x-axis is fragments per kb per million fragments 
(FPKM) value. The y-axis is gene number of at the corresponding FPKM.
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metastases. Among the upregulated DEGs, IHC for 
HOXD10 and SLC13A2 showed higher levels in primary 
samples with liver metastases (LM) than in those without 
liver metastases (NLM) (Fig.  5A and B). Notably, since 
anti-human UGT2A3 could not be applied in IHC accord-
ing to the Abcam official instructions, we did not perform 
IHC to detect UGT2A3 protein levels. For the downregu-
lated DEGs, OSM, MMP3, CXCL6, and CXCL8 all dis-
played expression patterns similar to the qRT-PCR 
validations; that is, the protein levels were lower in the 
primary CRC tissues with liver metastases than in those 
without liver metastases (Fig.  5C–F). The IHC staining 
on tissues with liver metastases with cytokine CXCL6 and 
CXCL8 antibodies were extremely weak, demonstrating a 
strong distinction compared to those in tissues without 
liver metastases. However, IHC analysis between tissues 
using SPP1 antibodies demonstrated no significant differ-
ence (Fig.  5G). Collectively, the outcomes of the IHC 
analyses were mostly consistent with the qRT-PCR results, 
except for SPP1.

Discussion

Liver is the most frequent organ to form distant metas-
tases in CRC, and liver metastases are the leading cause 
of death for patients with CRC. Therefore, it is important 
to explore the underlying mechanism and detect novel 

biomarkers of liver metastases. Several microarray studies 
revealed that liver metastases sites demonstrated a high 
correspondence [17] with their primary tumor in terms 
of gene expression; therefore, we adopted the strategy 
whereby primary tumors from patients with and without 
liver metastases were selected to detect gene expressions 
via NGS, which avoided the potential bias caused by dif-
ferent organs. Moreover, we selected only left colon tumors 
as samples to rule out the bias from different locations 
of CRC, because the new NCCN guidelines of colon cancer 
have already mentioned that anti-EGFR therapy has rela-
tively lower benefits on the right-sided colon compared 
with the left-sided colon. Our results revealed that the 
potential DEGs might contribute to or inhibit the process 
of liver metastases.

HOXD10 was the most upregulated DEG in this study. 
HOX genes are a family of regulators that play important 
roles in organ and cell development during embryogenesis. 
Interestingly, studies have revealed that HOXD10 affects 
the outcomes of different tumors. According to Sharpe 
and colleagues [23], HOXD10 and HOXD11 are expressed 
at high levels in head and neck squamous cell carcinoma, 
which corresponded to our results. Knockdown of HOXD10 
led to decreased migration and proliferation in head and 
neck squamous cell carcinoma cells in their study, which 
suggested that HOXD10 acts as an oncogene that promote 
metastases. Interestingly, studies concerning breast cancer 

Figure 2. Scatter plots and Volcano graphs of all expressed genes. (A) Scatter plots of all expressed genes in each pairwise comparison. The x and 
y-axes represent the log 2 value of gene expression for treatment (T) and control (C) groups. Blue means a downregulated gene, orange means an 
upregulated gene, and brown means a nonregulated gene. The screening threshold is shown on the top legend. (B) Volcano graph of all expressed 
genes in each pairwise comparison. The x-axis shows the log 2 (fold change) and the y-axis shows the –log 10 (1−P), representing the threshold values 
in log transformation. Each dot is a differentially expressed gene (DEG). Red dots mean significant DEGs and black dots are nonsignificant DEGs.
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and gastric cancer showed opposite effects. According to 
Wang and colleagues [24], HOXD10 is downregulated in 
gastric cancer tissues and cell lines compared with normal 
tissues, suggesting that high expression of HOXD10 
impaired cell migration and invasion, which may function 

as tumor suppressor. In breast cancer, significant differ-
ences were found between cancerous and normal tissues, 
and low expression of HOXD10 was associated with high-
grade breast cancer, displaying a similar tumor suppressor 
function to that in gastric cancer [19]. In our study, 

Figure 3. Functional analysis of differentially expressed genes (DEGs). (A) Gene ontology (GO) functional classification on DEGs between groups. The 
x-axis represents the number of DEGs (the number is presented by its square root value). The y-axis represents the GO terms. All GO terms are grouped 
into three ontologies: blue represents biological process, brown is cellular component, and orange is molecular function. (B) The Rich Factor is the 
ratio of DEGs numbers annotated in this pathway term to all gene numbers annotated in this pathway. A higher Rich Factor means greater 
intensiveness. The Q-value is the corrected P-value ranging from 0 to 1, and a smaller Q-value means greater intensiveness. (C) The phagosome 
pathway is annotated with most DEGs among all the referred pathways.
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HOXD10 was expressed at a significantly higher level in 
primary CRC with liver metastases than in those without 
liver metastases, indicating that our results favor the iden-
tification of HOXD10 as an oncogene in colorectal cancer. 
This might need further validation.

The UDP-glucuronosyltransferase (UGT) enzymes are 
responsible for the glucuronidation of exogenous and 
endogenous compounds, including drugs, environmental 
intoxicants, steroids, neurotransmitters, bile acids, and 
other hormones. UGT2A3 is one of the UGT family 
members. It is reported that UGT2A3 expressed at its 
highest levels in tissues that are mostly related to drug 
clearance, of which liver is the most expressed organ, 
followed by the gastrointestinal tract, and the kidneys. 
Also, UGT2A3 was found to glucuronidate bile acid spe-
cifically, which is a product of cholesterol metabolism. 
Normally, 90% of bile acids that pass through the biliary 
system would be reabsorbed and returned to the liver. 
Therefore, if the bile flow is somewhat impaired or limited 
by cholestatic liver disease, liver injuries would occur due 
to the accumulation of bile acids. In our study, primary 

CRC patients with liver metastases showed significantly 
higher levels of UGT2A3 than those without liver metas-
tases. The liver dysfunction caused by liver metastases 
may influence the normal bile flow, therefore leading to 
cholestasis. The accumulation of bile acids requires higher 
UGT2A3 activity to catalyze the process of glucuronida-
tion. This hypothesis highlights the significance of metabo-
lism in carcinogenesis, as reported by Lindsey and colleagues 
[25]. We hypothesized that UGT2A3 could be a potential 
biomarker of CRC with liver metastases [26].

Like UGT2A3, few reports have focused on SLC13A2. 
SLC13A2 encodes the Na+-dicarboxylate cotransporter 
isoform 1 (NaDC1), which plays an important role in 
dealing with renal citrate. Mostly, NaDC1 is located on 
the apical membrane of epithelial cells of the renal proxi-
mal tubule and small intestine, where absorption of citric 
acids take place [27]. In the kidney, the function of NaDC1 
is involved with formation of kidney stones because of 
the existence of divalent citrate (citrate2+). Although it 
seems irrelevant to CRC with liver metastases, our results 
showed that SLC13A2 is associated with liver metastases, 

Figure 4. Analysis of differentially expressed genes (DEGs). (A) Only genes that were differentially expressed in all pairwise comparisons of the cluster 
plan were used to build this heatmap. The gradient color barcode at the right top indicates the log 2 fold change value. Each row represents a DEG 
and each column represents a pairwise condition. DEGs with similar fold changes value are clustered both at the row and column level. (B) Comparison 
of the expressions obtained using two platforms showed good correspondence for most pairs. The blue columns represent the log 2 ratio fold change 
in each DEG with the application of next-generation sequencing (NGS) and red columns represent log 2 fold changes using quantitative real-time 
reverse transcription PCR (qRT-PCR).
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although the underlying mechanism has yet to be 
determined.

Among the downregulated DEGs, OSM and SPP1 shared 
one the same pathway, the PI3K-Akt pathway, indicating 
that this pathway is might be involved in tumorigenesis 
and metastases. SPP1, also known as OPN, activates the 
PI3K/Akt signaling pathway through an extracellular matrix 
(ECM)-Receptor interaction, whereas OSM activates the 

pathway via a cytokine-cytokine receptor interaction. Matrix 
metalloproteinase-3 (MMP-3) is a member of the MMP 
family that is associated with several kinds of malignant 
tumors [28]. The CXCR-1 binding chemokines IL-8/CXCL8 
and CXCL6 are often coinduced with CXCL6, according 
to several reports [29, 30], resulting in the same trend in 
regulation. Interestingly, it is reported that CXCL6 staining 
correlates with MMP9 expression in gastrointestinal 

Table 4. Validation outcomes of target genes via next-generation sequencing (NGS) and quantitative real-time reverse transcription PCR (qRT-PCR) 
separately.

Symbol Regulation (T/C) Log 2 ratio (T/C) (NGS) Probability (T/C) P-value (PCR) Significance (PCR) Log 2 ratio (T/C) (PCR)

HOXD10 UP 4.56 0.85 0.0399 * 1.7818003
MAGEB17 UP 4.44 0.87 0.2719 NS 1.5873628
UGT2A3 UP 4.35 0.88 0.0231 * 1.9476197
HOXD11 UP 4.20 0.83 N NS N
UGT2B17 UP 3.77 0.87 0.2305 NS 5.8695526
CYP2W1 UP 3.43 0.88 0.6263 NS 0.49270165
ADH1C UP 3.34 0.87 0.9272 NS −0.10134707
CKB UP 3.32 0.89 0.2883 NS 1.066491
SLC39A2 UP 3.28 0.82 0.4047 NS 2.0332544
PCP4 UP 2.77 0.81 0.1535 NS 5.333551
SLC13A2 UP 2.72 0.82 0.0088 ** 2.0332544
HOXB13 UP 2.69 0.81 0.1130 NS 0.88917387
PRAC1 UP 2.62 0.85 0.6127 NS 0.58156765
SPP1 DOWN −7.12 0.97 0.0055 ** −2.5303776
KLK10 DOWN −6.43 0.96 0.3147 NS 1.0371485
HCAR2 DOWN −5.88 0.92 0.0572 NS 1.1890949
IGFL2 DOWN −5.76 0.92 0.0545 NS −0.13972865
CXCL8 DOWN −5.65 0.96 0.0073 ** −2.2027724
SLC11A1 DOWN −5.56 0.90 0.7785 NS −0.154957
PPBP DOWN −5.37 0.90 0.3707 NS −2.3749266
HCAR3 DOWN −5.32 0.91 0.3892 NS 0.61707544
MMP3 DOWN −5.29 0.93 0.0301 * −5.1104937
FCGR3B DOWN −5.21 0.91 0.1368 NS −1.0682427
OSM DOWN −5.20 0.89 0.0437 * −1.4058526
CXCL6 DOWN −5.15 0.90 0.0392 * −1.5858094

NS means not significant and statistical significance (*) is defined as P < 0.05.
**P<0.01

Figure 5. IHC validation for HOXD10 (A), SLC13A2 (B), OSM (C), MMP3 (D), CXCL6 (E), CXCL8 (F), and SPP1 (G). For each gene: LM represents 
primary CRC samples with liver metastases; NLM represents primary CRC samples without liver metastases; NC represents negative control; original 
magnification: ×200.
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malignancies. In contrast, another study reported that 
CXCL6 suppressed the activity of MMP2 in the first tri-
mester, indicating various functions and roles of CXCL6 
[31]. In addition, with regard to CXCL8, it is reported 
that a high serum level of CXCL8 is a protective factor 
to prevent metastases, and high CXCL8 levels are associ-
ated with better prognosis [32]. Meanwhile, some studies 
[33, 34] show that CXCL8 promotes cancer progression 
and is linked to poor prognosis. Thus, it still remains 
controversial how CXCL8 would influence the metastases; 
however, our results showed that reductions in the expres-
sion of CXCL8 is associated with tumor progression and 
metastases, indicating that these cytokines could possibly 
play roles as tumor suppressors and biomarkers. Both 
CXCL6 and CXCL8 showed diverse expression between 
them, by qRT-PCR and IHC analysis, and both methods 
demonstrated a great correspondence in all samples.

Advanced bioinformatics tool could help us to under-
stand the roles of these DEGs. In terms of Gene Ontology, 
one of the top terms associated with biological process is 
single-organism process, which agrees with a previous study 
by Chen and colleagues [35], whereas in the molecular 
function analysis, binding is another term shared between 
this study and the previous study [35]. This consistency 
not only suggests that most DEGs contribute to these two 
common processes, but also enhanced the credibility of 
both studies. For the KEGG pathways, cytokine-cytokine 
receptor interaction, CAMs, PI3K-Akt signaling pathway, 
Leishmaniasis, and rheumatoid arthritis were also identified 
in the previous study [35]. Among these, the PI3K-Akt 
pathway is recognized as a carcinogenesis-related pathway, 
which is also the pathway shared by two validated DEGs, 
OSM and SPP1, suggesting that the PI3K-Akt pathway is 
very significant [36, 37]. Cytokine-cytokine receptor inter-
action is often associated with carcinogenesis and metastases 
of CRC [38–41], which also corresponds to our observation 
of significantly differentially expressed cytokines CXCL6 
and CXCL8. CAMs also ranked high among all these 
pathways because the process of cells migration to distant 
sites is associated with adhesion ability and the epithelial-
mesenchymal transition (EMT)[42–44], which is also highly 
correlated with “binding” in GO molecular function. We 
believe that these pathways might play more important 
roles in the metastases as well as in carcinogenesis.

Obviously, one of the disadvantages of this study is 
that number of samples for NGS is relatively small. More 
qualified samples are required to perform large-sized NGS-
based whole-transcriptome profiling. Moreover, functional 
validation of these DEGs is also required for the con-
nections between some DEGs and carcinogenesis and 
metastases. Lastly, since there is abundant information 
for numerous DEGs, more valuable results could be 
obtained from the primary statistics.

Collectively, the goal of this study was to discover DEGs 
that might be responsible for liver metastases or could 
be biomarkers of liver metastases, using NGS-based whole-
transcriptome profiling on CRC tissues with and without 
metastases. Validations of the top 25 up and downregulated 
DEGs were performed via qRT-PCR and IHC. The results 
showed that these DEGs were significantly differentially 
expressed and corresponded to the previous NGS profile. 
To the best of our knowledge, this is the first study to 
perform NGS-based mRNA whole-transcriptome on CRC 
tissues with and without liver metastases. These findings 
might provide novel targets for colorectal liver metastases 
and biomarker discovery, suggesting potential roles in 
therapeutic application.
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