
Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
journal homepage: www.elsevier .com/locate /csbj
Buffering updates enables efficient dynamic de Bruijn graphs
https://doi.org/10.1016/j.csbj.2021.06.047
2001-0370/� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: alanko.jarno@gmail.com (J. Alanko).

1 These authors contributed equally.
Jarno Alanko a,b,⇑, Bahar Alipanahi c, Jonathen Settle c, Christina Boucher c,1, Travis Gagie a,1

aDepartment of Computer Science, University of Helsinki, Helsinki, Finland
b Faculty of Computer Science, Dalhousie University, Halifax, Canada
cDepartment of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 March 2021
Received in revised form 29 June 2021
Accepted 29 June 2021
Available online 06 July 2021

Keywords:
de Bruijn graph
Dynamic data structures
Succinct data structures
Burrows-Wheeler transform
Motivation: The de Bruijn graph has become a ubiquitous graph model for biological data ever since its
initial introduction in the late 1990s. It has been used for a variety of purposes including genome assem-
bly (Zerbino and Birney, 2008; Bankevich et al., 2012; Peng et al., 2012), variant detection (Alipanahi
et al., 2020b; Iqbal et al., 2012), and storage of assembled genomes (Chikhi et al., 2016). For this reason,
there have been over a dozen methods for building and representing the de Bruijn graph and its variants
in a space and time efficient manner.
Results: With the exception of a few data structures (Muggli et al., 2019; Holley and Melsted, 2020;
Crawford et al.,2018), compressed and compact de Bruijn graphs do not allow for the graph to be effi-
ciently updated, meaning that data can be added or deleted. The most recent compressed dynamic de
Bruijn graph (Alipanahi et al., 2020a), relies on dynamic bit vectors which are slow in theory and practice.
To address this shortcoming, we present a compressed dynamic de Bruijn graph that removes the neces-
sity of dynamic bit vectors by buffering data that should be added or removed from the graph. We imple-
ment our method, which we refer to as BufBOSS, and compare its performance to Bifrost, DynamicBOSS,
and FDBG. Our experiments demonstrate that BufBOSS achieves attractive trade-offs compared to other
tools in terms of time, memory and disk, and has the best deletion performance by an order of magnitude.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Analyzing population level data has posed significant algorith-
mic challenges as the amount of the data has risen steadily in
the past decade or more. For example, the 1,000 Genomes Project
was concluded in 2012 [36], and more recently, the 100 K Project
concluded in 2018 [50]. The MetaSub project [19], which collects
metagenomic samples from subway systems across the world
began in 2016, is now in its fifth year. One of the main goals of
these projects is to identify rare variants – including but not lim-
ited to single nucleotide polymorphisms (SNPs), insertions, and
deletions – within the population, and to attribute them to physi-
ological or disease outcomes. One method of identifying these vari-
ants that receives a significant amount of attention is the
construction and analysis of the colored de Bruijn graph.

To define the colored de Bruijn graph correctly it is useful to
first define the de Bruijn graph in a constructive manner as follows.
Given a set of sequence reads R and integer k, the first step is to
identify all unique k-length substrings (k-mers) occurring in R,
then create a directed edge for each unique k-mer with node labels
being the ðk� 1Þ-length prefix and the ðk� 1Þ-length suffix of the
k-mer, and lastly, after all directed edges have been created, glue
all nodes that have the same label. The original purpose of the de
Bruijn graph was to assemble single genomes [46], however, the
definition and purpose has expanded to the linked de Bruijn graph
[51], positional de Bruijn graph [14,48,3] and paired de Bruijn
graph [37] to name a few. Approaches based on de Bruijn graphs
have been successful in genome assembly [7,45,52], variant detec-
tion [2,31], and storage of assembled genomes [15]. The colored
variant of the de Bruijn graph is arguably the most well-studied.
It is constructed using the sequence data of a population of gen-
omes, rather than a single genome. Here, we assume we have d sets
of sequence reads that are denoted as R1;R2; ::;Rd, and we assign a
unique color for each these d sets. Using this assignment of colors,
each edge (and node) is colored with color ci if and only if the asso-
ciated k-mer (ðk� 1Þ-mer) is contained in Ri. In this way, each edge
(or node) is assigned one or more colors which signify the sets of
sequence reads which contain the corresponding k-mer (ðk� 1Þ-
mer). The colored de Bruijn graph can then be seen as a de Bruijn
graph constructed from the union of the k-mers from R1; ::;Rd,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2021.06.047&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2021.06.047
http://creativecommons.org/licenses/by/4.0/
mailto:alanko.jarno@gmail.com
https://doi.org/10.1016/j.csbj.2021.06.047
http://www.elsevier.com/locate/csbj

Table 1
An overview of recent de Bruijn graph implementations and their attributes. In theory, BFT is capable of addition of data but it is no longer supported or functional [28].

BufBOSS DynamicBOSS FDBG Bifrost Pufferfish BFT Mantis

Addition Yes Yes Yes Yes No No No
Deletion Yes Yes Yes No No No No

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
and a binary matrix C that stores the colors of each k-mers, i.e.,
C½i; j� ¼ 1 if the i-th k-mer is contained in Rj. Thus, by traversing
the graph and finding shared and divergent paths, rare genetic
variants occurring in the population can be identified.

Iqbal et al. [31] introduced the colored de Bruijn graph and gave
the first implementation, which was in turn used to analyze the
1,000 Genomes Project data. This initial implementation was not
space efficient but it motivated the need for implementations that
could handle population-level datasets. Hence, in the past couple
years there has been an explosion in the interest in space-
efficient colored de Bruijn graphs. Vari [39] and Rainbowfish [5],
were the first space-efficient colored de Bruijn graphs methods.
Both recognize that the colored de Bruijn graph can be made
space-efficient by storing a succinct de Bruijn graph built from
the union of all sets of sequence reads (i.e., R1 [R2 [. . . [Rd), and
a compressed color matrix. Bloom Filter Trie (BFT) [30] was
another early method for compactly storing the colored de Bruijn
graph that uses Bloom filters to store the de Bruijn graph. These
initial developments were followed by many other methods,
including Mantis [43], and Bifrost [29].

Yet, several public consortium projects are not only signifi-
cantly large but are also continually evolving, including Genome-
Trakr [4] and MetaSub [19]. For this reason, there is growing
interest in dynamic, space-efficient colored de Bruijn graphs that
can also evolve with the data – meaning that they allow addition
and deletion of data. Given that there are methods for efficiently
storing the color matrix in manner that is dynamic, one of the
remaining challenges is how to store the de Bruijn graph in a man-
ner that is mutable but also space and time efficient. This is chal-
lenging since mutability and compressibility are contradictory in
nature. Even allowing for the addition of data into a compressed
version of the de Bruijn graph requires some algorithmic clever-
ness. For example, VariMerge [38] and Bifrost [29] allow addition
of new data but cannot perform deletion. VariMerge enables addi-
tion into a colored de Bruijn graph that is stored using Vari by
implementing an algorithm that merges it with another colored
de Bruijn graph that is also stored using Vari. The merge is done
without any decompression for space-efficiency. Bifrost first con-
structs the de Bruijn graph using Bloom filters, then extracts all
non-overlapping and non-branching paths in the graph (unitigs)
and indexes all the unitigs using minimizers. It performs addition
by rebuilding the de Bruijn graph from the minimizer representa-
tion, building a new graph for the additions, and then – similar to
VariMerge – merging these two graphs succinctly. We refer the
reader to Marchet et al. [35] for a more thorough explanation of
some of these key concepts, including minimizers and Bloom
filters.

Similarly, there are only two compressed data structures for
storing the de Bruijn graph that allows for both addition and dele-
tion of data; these are FDBG [18] and DynamicBOSS [1]. FDBG is an
implementation of the hash-based data structure of Belazzougui
et al. [8]. DynamicBOSS is more closely related to the work in this
paper. It adapts the de Bruijn graph representation of Bowe et al.
[13], which represents a de Bruijn graph using Burrows Wheeler
Transform (BWT). Although DynamicBOSS is capable of handling
large datasets and is fully dynamic, it is slow due to the reliance
on dynamic bit vector libraries, i.e., the library of Prezza [47].
Although dynamic bit vectors are being improved, we think it
would be better to avoid their use and implement dynamism using
4068
static data structures instead. In Table 1, we give an overview of
the basic de Bruijn graph data structures and the operations that
they support.

Our contribution is a dynamic, space-efficient de Bruijn graph
representation that eliminates the need for dynamic bit vectors.
We implement dynamism using the combination of a static,
space-efficient representation of the de Bruijn graph, and two aux-
iliary data structures, which buffer data that is to be added and
deleted. As requests for additions or deletions are made, the corre-
sponding buffers are updated, and after a prescribed number of
additions or deletions, the static de Bruijn graph is rebuilt. This
amortizes the cost of dynamic operations over the cost of rebuild-
ing from time to time. Traversal or use of the graph takes into
account the static de Bruijn graph as well as the addition and dele-
tion buffer, which thus makes the static nature of the underlying
data structure opaque. We describe how to: (a) buffer the data that
is to be added or deleted, (b) support graph traversal taking into
account the updates in the buffer (c) merge the updates to the
graph efficiently.

We compare our method to existing dynamic de Bruijn graphs –
namely Bifrost [29], FDBG [18], and DynamicBOSS [1]. The evalua-
tion criteria are the memory and time needed to construct the data
structure, the size of the data structure on disk, the time required
to add and delete data from the graph, and the time required to
perform look-up queries of k-mers. In addition to these existing
methods, we also implement and compare against a modified ver-
sion of FDBG that we refer to as FDBG-RecSplit, where RecSplit [24]
is used for minimal perfect hashing. RecSplit is the most recent
minimal perfect hash implementation and thus, shows to have
superior computational performance against competing methods.

BufBOSS was clearly superior to all methods that support addi-
tion and deletion (i.e., DynamicBOSS and FDBG) in both memory
and time on all large datasets. Bifrost was the closest competitor
but does not support deletion and our method was more perfor-
mant than Bifrost in construction on large metagenomic datasets.
In particular, our results show that BufBOSS was up to five times
faster and used up to 30% less memory to construct than the clos-
est competitor (Bifrost). The time required to add new sequences
to BufBOSS was the second fastest in the competition, losing only
to Bifrost by a factor of two, but beating the other tools by more
than a factor of ten. The peak space during additions was two times
larger than Bifrost, but we can vary a time–space trade-off param-
eter to push our space to slightly below Bifrost with a cost of slow-
ing down the additions by a factor of five. With this setting, we are
still faster than the rest of the tools, with a space that is smaller by
a factor of eight or more. Lastly, we note the performance of dele-
tion was the best out of all methods that support deletion, i.e., by a
factor of 26 in time, and 13 in memory.
2. Preliminaries

In this section, we briefly go over some of the basic terminology
and definitions that will be used throughout this paper.

2.1. Basic definitions

A string X, is represented as a sequence of characters:
X½1::n� ¼ X½1�X½2� . . .X½n�, where n is the length of the string. Each
character will be drawn from an ordered alphabet R of size r.

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
X½i::j� refers to the substring of X given by X½i�X½iþ 1� . . .X½j�, where
1 6 i 6 j 6 n. Using this notation, a suffix is a substring with j ¼ n,
while a prefix is a substring with i ¼ 1. An empty string is denoted
with e, and it is considered to be a prefix and a suffix of any string.
A string of length k is called a k-mer. The lexicographic order of two
strings X and Y is defined by the order of the characters at the first
mismatching position from the left. If no mismatch exists – i.e., one
string is a prefix of the other – the prefix is defined to be smaller.
The colexicographic order of strings is the same but characters are
compared from right to left, and in case of no mismatch, X is smal-
ler than Y iff X is a suffix of Y.

In this paper, we use the edge-centric definition of de Bruijn
graphs. In this definition, the graph is such that the nodes are all
the distinct ðk� 1Þ-mers of the input strings. There is an edge from
u (ðk� 1Þ-mer) to v (ðk� 1Þ-mer) iff there exists a k-mer in some
input string that is prefixed by v and suffixed by u.

To mitigate confusion on whether k refers to the length of edges
or nodes, we call the ðk� 1Þ-mers represented by the nodes node-
mers and the k-mers represented by the edges edgemers. We
denote the ðk� 1Þ-mer represented by a node v with ‘ðvÞ and
the k-mer represented by an edge e with ‘ðeÞ. A nodemer or an
edgemer from the DNA alphabet ACGT is said to be canonical if it
is equal to its reverse complement.
Fig. 1. The Wheeler graph on the right corresponds to the edge centric de Bruijn
graph with edgemers of length 4 from the set of strings ACGTA, ACACGT, AGTA and
GCGCGCGA. The dummy node tree is highlighted in yellow. The colexicographic
order of the nodes is the following: e, A, ACA, CGA, GTA, AC, CAC, CGC, AG, ACG, GCG,
AGT, CGT.
2.2. Overview of BOSS

The BOSS data structure [13] is a generalization of the classic
FM-index [25] to de Bruijn graphs. It is a special case of the more
general Wheeler graph index [27]. Here, we will describe the BOSS
data structure in terms of the more general Wheeler graph index,
as our implementation is based on that representation.

The Wheeler graph index for a de Bruijn graph G is based on a
larger graph W that contains G as a subgraph. The edges of W are
labeled by single characters, and the nodes are unlabeled. Edges
are labeled by the last characters of the corresponding edgemers
in G. We denote the single-character label of an edge e in W with
LðeÞ to distinguish from the notation ‘ðeÞ that refers to the k-mer
corresponding to e.

This construction guarantees that all incoming paths of length
ðk� 1Þ to a node v spell the same string. Thus, one can walk back
ðk� 1Þ nodes in the graph to extract the ðk� 1Þ-mer represented
by a node. However, in subgraph G alone, some nodes might not
have an incoming path of length ðk� 1Þ. To amend this, we add
for every node v with indegree 0 a new path of k nodes, each rep-
resenting a proper prefix of the ðk� 1Þ-mer represented by v, all
the way to the empty prefix e. The added edges are labeled by
the last character of the corresponding prefix of the destination
node. If the same prefix is added for two different nodes, the nodes
representing those prefixes are glued together. These added nodes
and edges are called dummy nodes and dummy edges. The dummy
nodes and edges form a tree starting from the node of the empty
string, such that the leaves of the tree have outgoing edges to
nodes of subgraph G. The notations ‘ðvÞ and ‘ðeÞ are extended for
dummy nodes v and dummy edges e to denote the prefix repre-
sented by the node or the edge. The notation LðeÞ again denotes
the last character of ‘ðeÞ.

TheWheeler index onW is based on the colexicographical order
� on the nodes and edges of W. For nodes u and v, it is defined that
u � v iff ‘ðuÞ is colexicographically smaller than ‘ðvÞ. The edges e
are ordered colexicographically among themselves in the same
way by ‘ðeÞ. The Wheeler index consists of three main compo-
nents: (1) a string EBWT, which is the concatenation of all edge
labels ofW sorted by the order of the node at the origin of the edge,
with ties broken arbitrarily (2) a bit vector encoding the outde-
grees of all nodes of W in the colexicographic order (3) a bit vector
4069
encoding the indegrees of all nodes of W in the colexicographic
order. Remarkably, these data structures define the graph com-
pletely [27].

Fig. 1 shows an example of a Wheeler graph. The EBWT is illus-
trated with vertical separators showing where the node at the ori-
gin changes. These separators are for illustration purposes only and
are not included in the EBWT string. The sequence of outdegrees in
colexicographic order is 1,2,1,0,0,1,1,1,1,1,2,1,1, whereas the
sequence of indegrees is 0,1,1,1,2,1,1,1,1,1,1,1,1. The Wheeler
graph index represents these by encoding degree d with bit string

1 � 0d, and concatenating the representations. The concatenated
representation of outdegrees is denoted with O and the concate-
nated representation of indegrees with I.

The colexicographic ordering implies that if v and u are nodes
such that v � u, and both have an outgoing edge with the same
character label c 2 R leading to destinations v 0 and u0, respectively,
then v 0 � u0. This means that if we have an interval ½i; j� of nodes in
the order, and follow all outgoing edges from nodes in the interval
with the same label c, we arrive at another contiguous interval
½i0; j0� of nodes. This, in turn, implies that it’s enough to compute
just the endpoints i0 and j0 because all the other destinations will
fall in between them. This can be done in OðlogrÞ-time using rank
queries on EBWT and rank/select queries on the indegree and out-
degree bit vectors [27]. Armed with this, we can locate the interval
of nodes at the ends of paths labeled with any pattern P in
OðjPj logrÞ time by starting from the interval of all nodes, and
updating the interval jPj times, following the characters of P. In
the case of the de Bruijn graph, this gives us an algorithm to locate
any nodemer in the graph, and to traverse edges in the graph for-
ward and backward.

The original BOSS representation of Bowe et al. [13] uses the
same ideas but the implementation is slightly different. In this rep-
resentation, nodes with indegree or outdegree of zero are forbid-
den. This limitation allows us to represent the information of the
indegrees and outdegrees by marking the last outgoing edge from
each node and the first incoming edge to each node. This comes at
the cost of introducing a new character $ to the alphabet and add-
ing extra edges labeled with $ to EBWT to ensure that every node
has at least one outgoing and incoming edge, but it allows a shorter
representation of the indegrees and outdegrees.
3. Dynamizing compact data structures

BufBOSS follows a line of researchdatingback toBentley andSaxe
[11]. They proposed an approach to making static data structures

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
semi-dynamicwhenqueries aredecomposable,where semi-dynamic
meanswe can support additions but not deletions and decomposable
meanswecanquickly answera query about theunionof twodisjoint
setswhen given the answers to the queries about those two sets sep-
arately. Decomposable queries include membership, minimum,
maximum and mean, for example, but not mode.

To support queries and updates to a dynamic set S using a static
data structure D, Bentley and Saxe split S into a logarithmic number
of disjoint subsets whose sizes are distinct powers of 2 and store an
instance of D for each subset. To query S, we query each instance
and combine the results. To insert a new element x into S, we pool
x with the elements from the subsets of size 1, 2, 4, etc, destroying
the instances of D for those subsets as we go, until we find a power
of 2 for which there is currently no instance of D. We build a new
instance of D storing the pooled elements, whose number of pooled
elements is exactly that power of 2. The dynamic version of D for S
we obtain this way is a constant factor larger than the static version
of D for S, answers queries an Oðlog jSjÞ factor more slowly, and sup-
ports each addition in amortized OðPðSÞ logðjSjÞ=jSjÞ-time, where
PðSÞ is the time to build the static version of D for S.

Overmars and van Leeuwen [42] extended Bentley and Saxe’s
approach to make the amortized complexity of additions worst-
case, using copies of the subsets and background processing, and
to support deletions. Two techniques for supporting deletions are
keeping a ‘‘ghost” instance of D that holds the deleted elements,
and ‘‘lazily” deleting elements by marking them in the dynamic
version of D for S and then collapsing a subset and rebuilding when
more than half its elements have been lazily deleted.

Munro et al. [40] adapted Bentley and Saxe’s and Overmars and
Van Leeuwen’s results to dynamize compact but static data struc-
tures, focusing on indexes for document collections. They proposed
keeping a fast but space-inefficient dynamic data structure for the
elements that have been added or deleted most recently, as well as
a series of compact static data structures for increasingly larger
subsets, according to Bentley and Saxe’s scheme; when the
dynamic data structure grows too large, they empty it by rebuild-
ing some of the static data structures and incorporating the buffer’s
contents. Munro et al. [40] emphasized that previous approaches
to dynamizing compact data structures generally relied on
dynamic bitvectors, for which there are fairly strong lower bounds
[26]. By maintaining a dynamic, pointer-based buffer and occa-
sionally rebuilding a compact static data, they can avoid using
dynamic bitvectors and thus side-step those lower bounds.

Munro et al. also explained how their ideas could be used to
obtain dynamic compact representations of graphs, and Coimbra
et al. [17] recently applied those ideas to obtain an implementation

of dynamic k2-trees that is competitive with previous implementa-

tions, which were essentially just static k2-trees but with dynamic
instead of static bitvectors. Since DynamicBOSS [1] is essentially
the data structure of Bowe et al. [13] but with dynamic instead
of static bit vectors, we are naturally curious how competitive a
dynamic de Bruijn graph based on Munro et al.’s ideas will be.

For simplicity and practicality, in this paper we use only one
compact static data structure in addition to the dynamic buffer.
The main challenge is rebuilding the compact static data structure
still in small space, since many data structures that are compact
once built are not compact to build, and an implementation is
not really compact if it is usually small but balloons every so often.
4. Buffering additions and deletions

In this section, we describe how to support additions and dele-
tions on a static de Bruijn graph by using a dynamic buffer. Here,
we denote G ¼ ðV ; EÞ as the (original) graph before any updates.
We denote A as the set of edgemers we want to add, and D as
4070
the set of edgemers we want to delete. The edge set of the modified
graph G0 is E0 ¼ ðE [AÞ n D and the node set V 0 is derived from E0 as
the set of all nodemers that are prefixes or suffixes of edgemers in
E0.

Since G is represented in a BOSS format, the edges and nodes of
G are identified by their colexicographic ranks. We denote the
colexicographic rank of a node v 2 V with
colexðvÞ ¼ jf‘ðuÞ � ‘ðvÞ : u 2 Vgj, where � denotes the colexico-
graphic comparison and ‘ðvÞ is the label of v. Similarly, for an edge
e 2 E, we denote colexðeÞ ¼ jf‘ðdÞ � ‘ðeÞ : d 2 Egj. We abstract the
BOSS structure behind the following interface.

� Node search: Given a node label ‘ðvÞ, return colexðvÞ if v 2 V or
report that v R V in Oðk logrÞ-time.
� Edge search: Given an edge label ‘ðeÞ, return colexðeÞ if e 2 E or
report that e R E in Oðk logrÞ-time.
� Out-edge label set: Given colexðvÞ, list the single-character edge
labels LðeÞ for all edges e leaving from v in OðoutdegreeðvÞÞ-time.
� In-edge label: Given colexðvÞ, return an incoming single-
character edge label to v, if exists, in Oð1Þ-time (by construction,
all incoming edges to a node always have the same label).
� Out-edge rank: Given colexðvÞ for a node v and a character c,
return the colexicographic rank the edge label ‘ðvÞ � c, if exists,
in OðlogrÞ-time.
� Forward: Given the representation of an edge e either as its
rank colexðeÞ, or the pair ðcolexðvÞ; LðeÞÞ, where v is the origin of
the edge, return colexðuÞ, where u is the node at the destination
of an edge, in OðlogrÞ-time.
� Backward: Given colexðvÞ for a node v, return colexðuÞ, where u is
a node that has an outgoing edge to v, or report that no such
edge exists, in OðlogrÞ-time. If there are multiple candidates
for u, we can return any.
� In-edge interval: Given colexðvÞ, return the interval ½i; j� of the
colexicographic ranks of the incoming edges to v in Oð1Þ-time.

See Gagie et al. [27] for the implementation details of these oper-
ations. We now describe how to use these operations and the buf-
fers A and D to offer graph traversal functionality for G0.

We represent the addition buffer A with a hash table HA, where
the keys are nodemers and the values are the sets of added incom-
ing and outgoing edge labels. If an edge e is outgoing from the node
then its label is the last character of ‘ðeÞ; but if it is incoming then
its label in the addition buffer is defined as the first character of
‘ðeÞ. We note that the label in the incoming direction is usually
not the same as the label of the edge in the Wheeler graph, but
rather the label of an incoming edge to a node u that is at distance
k� 2 from the origin of e backwards. The keys are packed into inte-
gers with dlogre bits per character. This allows efficient hashing in
Oðk logðrÞ=wÞ expected time, where w is the width of a machine
word in the RAM-machine model. In practice, we limit k 6 32, so
that with r ¼ 4, all the keys can be represented with single 64-
bit words. The values of HA are encoded with two bit vectors using
r bits for the forward direction and rþ 1 bits for the backward
direction as the special $-symbol is also a possible incoming label.

For example, if we have a buffer nodemer ACA that is contained
in buffer edgemers ACAA, ACAG and TACA, then ACA has outgoing
labels A and G (the last symbols of the edgemers ACAA and ACAG,
where ACA is a prefix) and an incoming label T (the first symbol of
the edgemer TACA, where ACA is a suffix). This information is rep-
resented in HA½0ACA0�by bit vectors 00001 in the incoming direc-
tion (T is the last character of the incoming alphabet $ACGT) and
1010 in the outgoing direction (A and G are the first and third char-
acters of the outgoing alphabet ACGT). If ACA was not a suffix of
any buffer edgemer, then we would have an incoming dollar,
which would be encoded by 10000 in the incoming direction.

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
The hash table HA provides node and edge membership queries
to A in Oðk logðrÞ=wÞ expected time, given a nodemer ‘ðvÞ or an
edgemer ‘ðeÞ.

The deletion buffer D is represented with just a single bit vector
BD of length jEj, such that BD½colexðeÞ� ¼ 1 if and only if e 2 D. This
bit vector provides membership queries to D in constant time
given colexðeÞ, and in Oðk logrÞ time given ‘ðeÞ by computing
colexðeÞ with the BOSS structure.

Adding an edgemer e to the addition set A is done by splitting e
into the ðk� 1Þ-length prefix and suffix nodemers v and u, and set-
ting the bits corresponding to the last and first character of e in
HA½‘ðvÞ� and HA½‘ðuÞ�, respectively. Adding an edgemer e to the
deletion set D is done by searching e using the BOSS to compute
colexðeÞ and marking the position in BD. We keep the table HA and
the vector BD synchronized so that when we add an edgemer to
HA, we remove it from BD if present, and vice versa. We do not sup-
port node deletions or additions explicitly because the node set is
implicitly defined as the set of endpoints of all edges.

We now describe the query interface to the modified graph G0.
Instead of operating on node identifiers colexðvÞ, we operate on
node tokens, which are pairs ðcolexðvÞ;HA½‘ðvÞ�Þ, where the first ele-
ment of the pair is null if v R V and the second element is null if
‘ðvÞ is not a key of HA.

We can use a token to report whether the represented node
exists in G0. Given the pair ðcolexðvÞ;HA½‘ðvÞ�Þ, the node v exists in
G0 if and only if one of the following holds (i) HA½‘ðvÞ� is not null
(i.e. v is a prefix or a suffix of some edge in the addition set), or
(ii) colexðvÞ is not null (i.e. v is in the BOSS structure) and there is
an incoming or outgoing edge to v in the BOSS that is not deleted.
Checking case (ii) can be implemented by checking for the exis-
tence of a 0-bit in BD in the in-edge range of v and at the colexico-
graphic rank of every outgoing edge.

We can list all outgoing edge labels from a node represented by
a token ðcolexðvÞ;HA½‘ðvÞ�Þ by taking the union of the BOSS out-edge
listing and the edges marked in HA½‘ðvÞ�, and removing the edges
marked in BD.

Forward traversal from a node in G0 is done by checking the
existence of the edge in G0 using the node token, and then updating
colexðvÞ with a BOSS traversal step and HA½‘ðvÞ� with hash table
lookup.

If the number of dynamic additions and deletions is small, we
can optimize the time of graph traversal at the cost of a little space
by marking in the BOSS those nodes which are affected by dynamic
operations. These are the nodes whose labels are currently keys in
HA or that have at least one incoming or outgoing edge marked in
BD. With this, we only have to look up data from HA and BD on those
nodes, and can rely on the static BOSS most of the time when
traversing the graph. The marking can be implemented by using
a bit vector M such that M½i� ¼ 1 iff the node with colexicographic
rank i is marked. This allows us to mark nodes and query whether a
node is marked in constant time, given the colexicographic rank of
a node. The colexicographic rank of the current node is always
known while traversing the graph.
5. Batched Updates of Additions and Deletions

In this section, we describe a method to update a BOSS structure
with a batch of additions and deletions. The input to the algorithm
is a static BOSS structure G ¼ ðV ; EÞ, a set A of edgemers we want to
add, and a set D of edgemers we want to delete. The sets A and D
are represented with the hash table HA and the bit vector BD

described in the previous section. The algorithm requires that
A \ D ¼£;A \ E ¼£ and D# E, which all hold due to the way HA

and BD are constructed and synchronized. The output is a BOSS
4071
structure containing the set of edgemers of G with the set A added
and D deleted.

The update algorithm consists of four phases: (1) a dummy
node preparation phase, (2) a merge planning phase, (3) a merge
execution phase, which applies both the additions and the dele-
tions, and (4) an optional dummy cleanup phase. We now proceed
to describe each phase in this order.
5.1. Dummy node preparation phase

In this phase, we iterate over the deletion buffer to check which
nodes will be left without an incoming edge after the update. We
must add an incoming chain of dummy nodes to these nodes dur-
ing the update. For every edge that is marked for deletion in BD, we
first check whether all incoming edges to its destination node v are
marked for deletion. If this is the case, we check in the addition
buffer whether there are new incoming edges to v. If not, we need
to add the incoming dummy chain to v.

To implement these checks, we need to know HA½‘ðvÞ� and the
indegree range of v. We can find both of these by using the static
BOSS structure. We traverse the edge to v to find colexðvÞ, which
allows us compute the indegree range, and then retrieve the label
‘ðvÞ by traversing backward k� 1 times, which enables us to look
up HA½‘ðv �Þ. All the required new dummy nodes are added to the
addition buffer before proceeding to the next phase.
5.2. Merge planning phase

The purpose of the planning phase is to find the correct places of
the node labels in the addition buffer in the colexicographic order
of the node labels of the BOSS. Our approach can be seen as a
streamlined variant of the planning phase of VariMerge [38],
where we have a BOSS structure and a sorted addition buffer rather
than two using BOSS structures. This phase does not depend on the
deletion buffer at all – the deletions are taken into account in the
next phase.

To aid our presentation, we assume that every node label has
length k� 1, by padding the node labels of the dummy nodes with
$-symbols from the left. With this, we define the BOSS matrix,
denoted with Mboss, such that Mboss½i�½j� is the j-th character of the
i-th node label of the BOSS in colexicographic order. Similarly,
we define the buffer matrix, denoted with Mbuffer, such that
Mbuffer½i�½j� is the j-th character of the i-th node label of the addition
buffer in colexicographic order. We denote with nboss and nbuffer the
number of rows in Mboss and Mbuffer respectively.

We build Mbuffer by extracting all node labels from the addition
buffer and sorting them colexicographically. We also attach (as
satellite data) to each row the HA entry encoding the outgoing
and incoming labels. However, we note that the matrix Mboss is
not built explicitly. We only define and use it here for explanatory
purposes and note that we can use the BOSS structure to access it
column by column from right to left. The last column can be con-
structed by querying the in-edge labels of the nodes in colexico-
graphic order, and Algorithm 2 describes a subroutine that takes
as input the i-th column ofMboss, and returns the ði� 1Þ-th column,
by propagating the labels forward in the de Bruijn graph.

After constructing Mbuffer, we identify equal rows between
Mbuffer and Mboss, and the colexicographic interleaving of the rest
of the rows. This is done by running k� 1 iterations of a partition
refinement subroutine. At the start of iteration t, we have a
sequence of pairs of half-open intervals ð½a1; a2Þ; ½b1; b2ÞÞ,
½a2; a3; ½b2; b3ÞÞ, . . . ; ð½an�1; anÞ; ½bn�1; bnÞÞ such that the intervals
describe the coarsest partition of rows where every row in the
same part has the same suffix of length t � 1. That is, the pairs at
iteration t have the following properties:

J. Alanko, B. Alipanahi, J. Settle et al.
1. 1 ¼ a1 6 a2; . . . ;6 an ¼ nboss þ 1 and 1 ¼ b1 6 b2; . . . ;6 bn ¼ nbuffer þ 1.
2. Mboss½p�½ðk� t þ 1Þ::ðk� 1Þ� ¼ Mbuffer½q�½ðk� t þ 1Þ::ðk� 1Þ� for ai

6 p < aiþ1 and bi 6 q < biþ1.
3. If ai – aiþ1, then Mboss½ai�½ðk� t þ 1Þ::ðk� 1Þ� –Mboss½aiþ1�
½ðk� t þ 1Þ::ðk� 1Þ�

4. If bi – biþ1, then Mbuffer½bi�½ðk� t þ 1Þ::ðk� 1Þ� –Mbuffer½biþ1�
½ðk� t þ 1Þ::ðk� 1Þ�

To encode these interval pairs succinctly, we only encode the dif-
ferences ai � ai�1 and bi � bi�1 as unary numbers, using in total only
Oðnboss þ nbufferÞ bits. Empty intervals are allowed when a node is
present in the BOSS but not in the buffer, or the other way around.

At the start of iteration t ¼ 1, we have just a single pair
ð½1;nboss þ 1Þ; ½1;nbuffer þ 1ÞÞ. Each iteration refines the partition
encoded in the interval pairs by splitting the intervals by the runs
of characters in the previous columns ofMboss andMbuffer. The pseu-
docode is at Algorithm 3.

Algorithm 1: Dummy node preparation phase

1. for e ¼ 1::jEBWTj do , For all edges in colex order
2. if BD½e� ¼ 1 then , Marked for deletion
3. v gets BOSS.Forward(e) , Follow edge
4. S BOSS.NodeLabel(v)
5. ½‘; rÞ BOSS.InEdgeInterval(v)
6. if BD½l::rÞ has only ones then
7. if HA½S� has no incoming edges then
8. Add all prefixes of S to HA

Algorithm 2: Subroutine PrevColumn

Input: The i-th column of Mboss, denoted with Col.
Output: The ði� 1Þ-th column of Mboss

1. Colnew Empty column of length jColj 2. for v ¼ 1::jColj do
3. for c in the outgoing label set from node v do
4. u BOSS.Forward(v; c)
5. Colnew½u� ¼ Col½v �
6. Colnew½1� $,Root node
7. Return Colnew
Algorithm 4: Merge execution phase

Input: The addition and deletion buffers, the BOSS structure and the
Output: BOSS of the updated graph
1. While Q is not empty do
2. Pop ½ai; aiþ1Þ; ½bi; biþ1Þ from Q
3. if aiþ1 � ai ¼ biþ1 � bi ¼ 1

then
4. Outlabels (BOSS.Outlabels(ai) n DeletionsFrom(ai)) [Addit
5. InDegree jBOSS.InEdgeInterval(ai)j � CountDeletionsTo(ai)
6. AddNode(Outlabels, InDegree)
7. if aiþ1 ¼ ai then
8. for j 2 ½bi; biþ1Þ do
9. AddNode(AdditionsFrom(j), CountAdditionsTo(j))
10. if biþ1 ¼ bi then
11. for j 2 ½ai; aiþ1Þ do
12. Outlabels BOSS.Outlabels(j) n DeletionsFrom(j)
13. Indegree jBOSS.InEdgeRange(j)j � CountDeletionsTo(j)
14. AddNode(Outlabels,Indeg)

4072
Algorithm 3: Merge planning phase
1. Col Array with length nboss

2. for v ¼ 1::nboss do , For all BOSS nodes in colex order
3. Col½v � in-edge label of v , or ‘$ ’ if indegreeðvÞ = 0.
4. Q Empty queue
5. Push ½1;nboss þ 1Þ; ½1;nbuffer þ 1Þð Þ to Q
6. for t ¼ 1::ðk� 1Þ do
7. Qnew Empty queue
8. while Q is not empty do
9. Pop ½ai; aiþ1Þ; ½bi; biþ1Þ from Q
10.
11. Refine interval pair ½ai; aiþ1Þ; ½bi; biþ1Þ
12. x; y ai; bi
13. x0; y0 x; y
14. for c 2 R [f$g in alphabetical order do
15. while x0 < aiþ1 and Col½x0� ¼ c do
16. x0 x0 þ 1
17. while y0 < biþ1 and Mbuffer½y0�½k� t� ¼ c do
18. y0 y0 þ 1
19. if x0 > xor y0 > y then
20. Push ð½x; x0Þ; ½y; y0ÞÞ to Qnew

21. x; y x0; y0
22. Col PrevColumn(Col) , Algorithm 2
23. Q Qnew

24. Return Q

Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
5.3. Merge execution phase

After the merge planning phase, we move to the execution
phase. The interval pairs now identify the nodes that are common
to the BOSS and the buffer, and the colexicographic interleaving of
all nodes.

In this phase, we stream the interval pairs from the merge plan-
ning phase. As we stream the intervals, we enumerate in colexico-
graphic order the indegree and outgoing label set of each node in
the buffer and in the BOSS.

During the streaming, the deletion buffer BD comes into play
again. While iterating the nodes, we check two things for every
queue Q returned by Algorithm 3.

, Shared node
ionsFrom(bi)
þ CountAdditionsTo(bi)

, Nodes in the addition buffer only
,Add a range of nodes from the addition buffer

, Not in BOSS, so no deletions possible from/to here
, Nodes in the BOSS only

,Add a range of nodes from the BOSS

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
node: (1) whether any of the outgoing edges e are marked in BD.
We can check this by using the BOSS structure to retrieve colexðeÞ
and checking BD½colexðeÞ�. (2) Whether any of the incoming edges
to the node are marked for deletion: we use the BOSS structure
to retrieve the colexicographic range of the incoming edges, and
count how many are marked in BD. We remove the outgoing edges
that are marked from the outgoing label set, and decrease the inde-
gree by the number of incoming edges that are marked. See Fig. 2.

We stream the new EBWT; I and O structures of the new
updated BOSS to disk while iterating the interval pairs. The pseu-
docode is at Algorithm 4. The subroutines DeletionsFrom and
CountDeletionsTo use the BOSS interface to compute the colexico-
graphic ranks of the incoming and outgoing edges, and access the
bit vector BD to check the deletion flags. The subroutines Addi-
tionsFrom and CountAdditionsTo read from the satellite data
attached to the rows of Mbuffer in the planning phase. The subrou-
tine AddNode appends data to the EBWT; I and O structures of
the updated BOSS. Specifically, a call to AddNode(A; d), where A is
an outgoing label set and integer d is an indegree, appends 1 � 0jAj
to the new O;1 � 0d to the new I and the list A to the new EBWT.
The structures EBWT; I and O of the updated BOSS are initialized
to empty.
5.4. Dummy cleanup phase

After the execution phase, we have an optional clean-up phase,
where we delete dummy nodes that have become redundant after
the addition of the new nodes.

We recall that the dummy nodes form a tree starting from the
node of the empty string. We do a depth-first search in the tree
of dummies of the updated BOSS from the root using the forward
traversal operation in the BOSS interface. When we reach a leaf
node of the dummy tree, we follow all the outgoing edges to full
nodemers. We check the indegree of each such nodemer. If it is
two or more, we can mark the incoming edge from the tree part
Fig. 2. Merge execution phase. In the figure we start from the graph in Fig. 1, adding
the edgemers in the sequence CGCACAGT and deleting the edgemers CGCG, CGTA
and ACAC. The columns IN, OUT and NODE are the indegrees, outgoing edge label
sets and the node labels, respectively, including the dummies. The lines in the
middle are computed in the planning phase and represented succinctly as a
sequence of interval pairs. Black lines connect nodes with the same label. Red lines
are for nodes that are present in the buffer but not the BOSS, and blue lines are the
other way around. Edges marked for deletion and the indegrees affected by those
are marked with a strike-through line.

4073
for deletion, because the target node has another incoming edge
which must come from another nodemer. If all out-edges of the
dummy node were marked, we can mark the in-edge of the
dummy node for deletion as well. Likewise, when we backtrack
in the depth-first search, if all out-edges of a dummy tree node
are marked for deletion, we mark its in-edge for deletion. This
algorithm takes only time proportional to the number of dummy
nodes. In the end, we stream the EBWT; I and O structures of the
updated boss, removing marked edges and decrementing the inde-
grees of the destinations of the deleted edges as done in the execu-
tion phase before.

6. Results

In this section, we demonstrate the performance of BufBOSS
against a variety of dynamic de Bruijn graph implementations from
the literature.

6.1. Experimental details

The experiments were run on a server with an Intel Xeon CPU
E5-2640 v4 with 40 cores clocked at 2.40 GHz, equipped with
755GiB of RAM. The timing and peak memory (RSS) were mea-
sured using the Unix utility /usr/bin/time.

6.2. Implementation of FDBG-RecSplit

As previously mentioned, we modified FDBG and compare
against this modification in addition to original FDBG implementa-
tion. Here, we give some background on this modification. Ali-
panahi et al. [1] observed that FDBG fails for datasets
approaching 232 distinct nodemers. This is due to hash collisions.
FDBG hashes nodemers first with the Karp-Rabin hash function
[32], and then hashes these hashes with the perfect hash function
BBHash [34]. The problem is that the Karp-Rabin hash values are
stored in 64-bit integers for best compatibility with BBHash, which

means that collisions start to happen often at around
ffiffiffi

2
p 64 ¼ 232

keys due to the birthday paradox phenomenon in probability. In
the interest of studying the scalability of FDBG for datasets that
have more than 232 nodemers, we edited the implementation to
use 128-bit Karp-Rabin hashes, and changed the perfect hashing
implementation from BBHash to a recently published new imple-
mentation called RecSplit [23]. RecSplit is a good choice for this
purpose because it is optimized to work for uniformly random
128-bit keys, and the Karp-Rabin hashes of the nodemers satisfy
this model well. Arithmetic with 128-bit values is significantly
slower than with 64-bit values, especially when modulo-
operations are involved, so we also include results with the original
FDBG.

6.3. Implementation of BufBOSS

We construct the BOSS structure by first using the KMC3 k-mer
counter [33] to list all distinct edgemer of the data. KMC3 is highly
parallel, using both machine-level parallel vector instructions, and
multi-threading to exploit all the cores available on the CPU.

We then write to disk triples (x; c; b), where x is a nodemer
string, c is a character either to the left or to the right of x in the
input data, and b is a bit that indicates whether c is on the left or
on the right. We sort these triples on disk by the colexicographic
order of the nodemers x using the stxxl library [20]. We then scan
the sorted pairs to count the number of characters to the left of x. If
some nodemer x does not have characters on the left, we need to
add the dummy nodes corresponding to all prefixes of x to the
graph. We write these prefixes to another file on disk along with

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
the characters of the right, and sort these colexicographically by
the order of the prefixes. Finally, we merge the order of the dummy
nodes into the order of the nodemers by streaming the two lists on
disk and using logic of the merge phase of merge sort. While we are
doing this merge we have, in the correct order, all the information
to build the data structure: for every node label x, we have the
count of characters on the left (the indegree of x), and the outgoing
edge labels (the outdegree and the labels of the outgoing edges
from x), all in the colexicographic order of the nodes.

When adding sequences to BufBOSS dynamically, we set a
threshold t 2 ½0;1� such that if the addition buffer HA contains a
fraction of more than t entries compared to the number of edge-
mers in the static BOSS structure, we flush the buffers HA and BD

by running the update algorithm described in Section 5, and clear-
ing the buffers afterwards. This amortizes the cost of individual
updates over the buffer flushes, with different time–space trade-
offs available for different values of t.

The rank and select structures required for queries are imple-
mented with the SDSL-library. The queries are implemented in
our Wheeler graph library. The dynamic buffer hash table HA is
implemented with the C++ standard library. Like FDBG, we store
edgemers in 64-bit integers, so the maximum allowed edgemer
length is 32.

6.4. Competing Tools

We compare the performance of BufBOSS to the following
dynamic de Bruijn graph implementations: DynamicBOSS [1],
FDBG [18], FDBG-RecSplit, and Bifrost [29]. An overview of recent
Fig. 3. Index co

4074
de Bruijn graph implementations and their attributes is given in
Table 1. Hence, we did not compare against BFT [30], Vari [39],
Rainbowfish [5], and Pufferfish [6], and Mantis [43] because they
cannot perform addition or deletion of data.

We deviate from our experimental setup in one detail to fairly
evaluate the time for addition for Bifrost: we discount the time
to load the index into memory. This is because Bifrost does not
serialize its index to disk but rather writes all maximal non-
branching paths of the de Bruijn graph (unitigs) to disk in a graph
format. When Bifrost loads the index, it must re-index the whole
dataset by computing and hashing k-mer minimizers for all unitigs
in the data.

6.5. Datasets

Our first set of datasets is short reads from the bacteria E. coli.
We used 28428648 paired-end reads generated from whole gen-
ome sequencing of E.coli K-12 substr. MG1655 dataset (NCBI SRA
accession ERX002508). We refer to this as 28 M-e. Next, we split
this dataset to generate smaller datasets of sizes 2000, 200000,
2000000, and 14000000 reads, which we denote by 20 K-e,
200 K-e, 2 M-e and 14 M-e, respectively.

The second set of inputs is a series of metagenomic read sets of
increasing size from a study on antimicrobial resistant determi-
nants in commercial beef production [41]. This dataset consists
of 87 datasets that were generated by sequencing DNA that was
collected from various locations across a beef production cycle –
the goal being to identify specific points where the pathogenic load
either increased or decreased and thus, determine of the effective-
nstruction.

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
ness of the existing interventions used to reduce pathogenic load.
The NCBI SRA accession number for these datasets is
PRJNA292471. From these 87 datasets, we selected the datasets
with the smallest and largest number of reads, which 55242004
and 11136890 sequence reads, respectively. We refer to as 55 M
and 11 M. We generated smaller datasets by randomly selecting
20000, 200000 and 2000000 reads from 11 M dataset which we
refer to these as 20 K, 200 K and 2 M, respectively. Next, we con-
catenated three datasets that consist of 55242004, 44035852,
and 52833978 reads to create a dataset with over 150 million
reads, which we refer to as 150 M. Lastly, we added 7 different
datasets to 150 M to generate a dataset with over 600 million
reads, which we refer to as 600 M.

Since most of the tools we experiment with do not understand
characters outside of the DNA-alphabet {A,C,G,T}, such as the inva-
lid character N, we split the reads into pieces that contain only
characters from the DNA alphabet. Since FDBG, FDBG-Recsplit
and DynamicBOSS do not index reverse complements, but
BufBOSS and Bifrost do, we concatenate the input read sets with
their reverse complements for the former three tools to make the
graphs the same for all tools.
6.6. Construction

For each E. coli dataset, we build the index of each tool using
50% of the reads, then add the next 25% of the reads and finally
delete the remaining 25%. Addition and deletion are shown in
the next subsection. Here, we discuss the construction time, space
and memory. Table 3 shows the time and peak memory for con-
struction as well as the size of the final data structure on disk. In
addition, Figs. 3a and 3b illustrate the time versus memory
Table 2
Index construction on the metagenome datasets. The units of disk and peak memory are GB
because it runs into hash collisions for large datasets. FDBG-RecSplit ran out of memory (O
ran out of memory on the 600 M dataset. The number of distinct canonical edgemers
478210723, 1360576988, 3741452498 and 11676829812.

BufBOSS DynamicBOSS

Disk Memory Time Disk Memory Time

20 K 0.00 5.26 00:00:08 0.00 0.37 00:00:30
200 K 0.03 6.50 00:00:23 0.02 2.45 00:01:44
2 M 0.30 10.07 00:02:58 0.17 7.64 00:08:26
11 M 1.32 12.82 00:13:24 0.73 33.54 00:35:11
55 M 3.65 14.88 00:39:42 2.01 93.66 01:57:32
150 M 10.00 36.77 02:13:47 5.52 258.03 05:52:31
600 M 30.67 112.55 09:18:19 OOM OOM OOM

Table 3
Construction on the E. coli dataset. The units of disk and peak memory are GB (230 bytes) a
edgemers in these datasets in increasing order of size are 626875, 4087049, 13241253, 6

BufBOSS DynamicBOSS FDB

Disk Memory Time Disk Memory Time Disk Me

20 K-e 0.00 5.15 00:00:07 0.00 0.11 00:00:44 0.00 0.27
200 K-e 0.01 5.78 00:00:12 0.01 1.12 00:00:54 0.01 1.54
2 M-e 0.04 6.97 00:00:25 0.02 2.61 00:02:16 0.04 5.14
14 M-e 0.20 10.07 00:02:06 0.11 5.10 00:09:18 0.21 23.7
28 M-e 0.41 12.57 00:04:24 0.23 10.33 00:16:25 0.42 47.8

4075
required for construction of the data structure using the largest
E. coli dataset, and the time versus disk space required for con-
struction of the data structure using the largest E. coli dataset.

The k-mer preprocessing steps of all tools are included in the
time and peak memory numbers. BufBOSS was consistently the
fastest index to construct, being almost 4 times faster than the
closest competitor DynamicBOSS on the largest dataset. Our index
construction takes a lot of memory on the small datasets, but this
is due to KMC3 always requiring a large amount of memory even
on small datasets. When the size of the data increases, our peak
memory becomes more competitive. Bifrost had the smallest
memory by a factor of 5 to the closest competitors DynamicBOSS
and BufBOSS. DynamicBOSS had the smallest index on disk, being
half the size of BufBOSS. This is due to the BOSS-implementation
of DynamicBOSS being geared more toward small size rather than
speed.

We test further scalability of construction using the metagen-
ome datasets, omitting the original FDBG as it can not handle more
than 232 nodemers. The data for the rest of the tools is in Table 2.
Fig. 3c shows the time-memory plot for the 55 M dataset, which is
the largest FDBG-Recsplit was able to process before running out of
memory, and Fig. 3d shows the same plot for the 150 M dataset
without FDBG-Recsplit.

The external memory construction of BufBOSS now starts to
show its scalability on the largest dataset, with the lowest peak
memory out of all tools, while maintaining the fastest construction.
DynamicBOSS again has the smallest index size on disk. The peak
construction memory of FDBG-Recsplit is very large, and exceeds
the 755GiB memory capacity of the machine already on the
150 M dataset. This enormous peak memory is probably caused
by the fact that FDBG-Recsplit holds all input edgemers in memory
(230 bytes) and the format of the time is hours:minutes:seconds. FDBG is not included
OM) on the 150 M dataset. The edgemer packing preprocessing step of DynamicBOSS
in these datasets in increasing order of size are 1203852, 11839506, 107122222,

FDBG-RecSplit Bifrost

Disk Memory Time Disk Memory Time

0.00 0.52 00:00:41 0.00 0.02 00:00:07
0.04 4.77 00:07:03 0.02 0.10 00:01:08
0.38 42.04 01:15:17 0.19 1.42 00:10:22
1.68 183.74 07:24:03 1.13 6.00 00:53:12
4.69 612.64 29:00:39 4.76 14.64 02:49:29
OOM OOM OOM 14.39 53.18 09:15:26
OOM OOM OOM 59.08 162.00 45:30:00

nd the format of the time is hours:minutes:seconds. The number of distinct canonical
3704311 and 128431292.

G-RecSplit FDBG Bifrost

mory Time Disk Memory Time Disk Memory Time

00:00:21 0.00 0.23 00:00:07 0.00 0.02 00:00:04
00:02:27 0.02 1.30 00:00:51 0.01 0.05 00:00:25
00:09:37 0.05 4.36 00:04:20 0.08 0.16 00:02:01

4 00:54:19 0.24 19.98 00:29:09 0.54 1.09 00:13:36
7 02:02:57 0.47 40.30 01:04:05 1.12 2.17 00:30:57

Table 4
Additions after construction of 3 on the E. coli dataset. The units of disk and peak memory are GB (230 bytes) and the format of the time is hours:minutes:seconds. BufBOSS uses
the buffer fraction parameter 0.025. The number of distinct canonical edgemers in these datasets in the addition set in increasing order of size are 329523, 2501881, 9047060,
38892710 and 56315888.

BufBOSS DynamicBOSS FDBG-RecSplit FDBG Bifrost

Disk Memory Time Disk Memory Time Disk Memory Time Disk Memory Time Disk Memory Time

20 K-e 0.00 0.02 00:00:43 0.00 0.09 00:12:51 0.01 0.32 00:00:56 0.01 0.32 00:00:21 0.00 0.03 00:00:03
200 K-e 0.01 0.09 00:02:47 0.01 0.64 00:59:22 0.05 1.42 00:08:57 0.05 1.42 00:03:13 0.01 0.07 00:00:18
2 M-e 0.06 0.29 00:13:43 0.03 2.47 04:22:04 0.20 9.89 01:31:27 0.20 9.89 00:30:02 0.12 0.38 00:01:21
14 M-e 0.33 1.33 01:37:50 0.16 11.42 27:08:14 1.26 67.13 11:38:54 1.29 67.16 04:04:59 0.81 1.56 00:08:08
28 M-e 0.56 2.26 02:28:24 0.30 17.79 40:33:54 1.88 120.07 23:08:40 1.94 120.13 07:29:05 1.54 2.63 00:14:37

Table 5
Deletions after construction of Table 3 and additions of Table 4 on the E. coli dataset. The units of disk and peak memory are GB (230 bytes) and the format of the time is hours:
minutes:seconds. Bifrost is not included because it does not support deletions. The number of distinct canonical edgemers in these datasets in the deletion set in increasing order
of size are 330563, 2526285, 8786286, 43705141 and 48377370.

BufBOSS DynamicBOSS FDBG-RecSplit FDBG

Disk Memory Time Disk Memory Time Disk Memory Time Disk Memory Time

20 K-e 0.00 0.01 00:00:01 0.00 0.09 00:03:32 0.01 0.22 00:00:50 0.01 0.22 00:00:17
200 K-e 0.01 0.04 00:00:07 0.01 0.64 01:44:39 0.10 1.22 00:28:53 0.10 1.22 00:12:50
2 M-e 0.06 0.13 00:01:30 0.03 2.42 04:52:23 0.34 7.84 01:28:27 0.34 7.85 00:39:22
14 M-e 0.33 0.79 00:17:24 0.18 12.62 12:46:43 1.56 51.69 05:49:05 1.59 51.72 03:23:58
28 M-e 0.56 1.23 00:32:32 0.32 15.96 17:23:39 2.31 94.22 14:35:19 2.37 94.28 08:56:51

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
while building the index. The k-mer preprocessing step of dyna-
micBOSS also exceeded the 755GiB capacity of the machine on
the 600 M dataset.
6.7. Addition and deletion

Since only two tools out of five are able to scale on construction
of the metagenome datasets, we benchmark additions, deletions
and queries only on the E. coli dataset. For the E. coli datasets,
we evaluated the resources needed to add an additional 25% of
the reads, and delete the remaining 25% of the reads. We added
and deleted using the graphs that were constructed for the previ-
ous section. For deletion, we only compare to FDBG-Recsplit, FDBG
and DynamicBOSS since Bifrost does not perform deletion. Tables 4
and 5 illustrate the time, memory and disk required for addition
and deletion, respectively. Also, Figs. 4 and 5 illustrate the time
versus space for additions and deletions, respectively.

As previously mentioned, we discount the time to load the
index into memory for Bifrost. This loading takes two minutes on
the 28 M E. coli read set. The loading time of other tools is negligi-
ble in our experiment. Hence, we subtract Bifrost’s loading time
out to avoid skewing the addition performance results.

Fig. 4 shows a few different time–space trade-offs BufBOSS can
achieve by varying the buffer flushing threshold t. With the values
of t ¼ 0:025 or t ¼ 0:01;BufBOSS achieves the lowest peak memory
out of all tools, losing in time only to Bifrost.

FDBG and FDBG-Recsplit perform very poorly with additions,
because they store new nodemers in a hash table as strings. This
blows up both the peak memory and the size of the index on disk.
The smallest index on disk is DynamicBOSS, being about half as
small as BufBOSS in the end. Bifrost has the fastest additions even
when BufBOSS does not flush the buffer at all (t ¼ 1:0).

In deletion efficiency, BufBOSS is by far superior, being an order
of magnitude better than the other tools in both time and peak
space. The deletions of BufBOSS are very efficient because we only
4076
mark the deleted edgemers in a bit vector. No buffer flushes are
required since the space of the deletion buffer bit vector BD does
not depend on the number of deletions. We note that the other
tools could adopt a similar technique for deletions.
6.8. Edge existence queries

We test the existence query speeds of the tools on six different
types of input data. The first three query types are single edge-
mers: we query edgemers sampled from the construction read
set, the addition read set, and completely randomly generated
edgemers which do not exist in the data with high probability.
The last three are the same, except that instead of single edgemers,
we query all edgemers of whole read sequences in the same query,
which speeds up the query time per edgemer in BufBOSS, because
if the queries exist in the data, we can just traverse the de Bruijn
graph instead of searching all the edgemers separately.

All the queries are done on the index with the construction and
addition edgemers, but without having deleted the final 25% of
edgemers, because for consistency, we want all the queries to be
done on the same de Bruijn graph, and Bifrost can not delete
edgemers.

Again we factor out the time to load the index for all tools. Fig-
ure 6 shows the average query times on the different types of
queries. Bifrost has the fastest queries on all query types, with
BufBOSS coming in second. DynamicBOSS queries are significantly
slower than those of BufBOSS because of the heavy price Dynamic-
BOSS pays for using dynamic bit vectors in the implementation.
We see that BufBOSS benefits significantly if the queries are given
as whole reads rather than single edgemers, because if the reads
are in the graph, we do not have to search every edgemer from
scratch, but can traverse the graph instead. This improves the time
complexity of querying all edgemers of a read of length m from
Oðkm logrÞ to Oðm logrÞ. Querying edgemers from the set of
added edgemers did not make a noticeable difference compared

Fig. 4. Addition performance on the 28 M E. coli dataset. The data points labeled
with BB-t are runs on BufBOSS with different buffer fraction parameters t.

Fig. 5. Deletion performance on the 28 M E. coli dataset. Here we do not vary the
buffer fraction parameter for BufBOSS because buffer flushes are not needed when
doing only deletions.

Fig. 6. Edge existence queries for six different types of edgemers against the 28 M
E. coli index including the added sequences. The query types are the following: EBS
= existing build sequence, EAS = existing added sequence, EAE = existing added
edgemer, EBE = existing build edgemer, RS = random sequence, RE = random
edgemer.

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
to querying from the initial construction set. Random edgemers are
faster to query than single existing edgemers, because the search
can terminate early when a prefix of the edgemer is found to not
exist in the graph, yet still slower than querying whole existing
reads because of the efficiency of graph traversal.

The query efficiency of Bifrost is explained partly by good mem-
ory locality. Bifrost finds the unitig containing the current edge-
mer, and can scan forward sequentially in memory in the unitig.
On the other hand, the BOSS structure has to jump around in mem-
ory in an unpredictable way, resulting in a large number of cache
misses. FDBG and FDBG-Recsplit face a similar issue because adja-
cent edgemers being stored by their hash values in unpredicatable
memory locations. Sirén et al. [49] recently developed a technique
to improve BWT-based data structures’ memory locality, but so far
it has been applied only in the context of variation graphs.
7. Discussion and future work

We have shown that buffering updates into a BOSS data struc-
ture can provide attractive trade-offs in terms of time, memory
and disk usage compared to other tools. In particular, our approach
to deletion is clearly the most efficient method for deletion in a de
4077
Bruijn graph. Our index construction was also the fastest, which is
mainly due to the efficiency of the libraries KMC3 and stxxl used
for edgemer listing and sorting. An important caveat in construc-
tion is that while BufBOSS was ran single-threaded as the other
tools, the external libraries KMC3 and stxxl used for BufBOSS con-
struction use parallelism nonetheless.

Observing the source code of the tools reveals shortcomings in
the implementations of all the tools. For example, the Bifrost index
on disk is just a representation of the de Bruijn graph as a collec-
tion of unitigs and edge pointers, but it does not include a indexing
structure and thus, Bifrost has to rebuild the index every time it is
run. FDBG, FDBG-Recsplit and DynamicBOSS load all the distinct
edgemers into memory at once for additions and deletions, even
though this should not be needed. All the tools could in principle
implement deletions efficiently by simply marking the deleted
edgemers, like BufBOSS does. These shortcomings indicate that
much could still be gained by more careful implementations of
the methods, and that the results we obtained do not necessarily
reflect the fundamental limitations of the approaches. Bifrost is
the most mature implementation as the codebase dates back to
2011.

The implementation of BufBOSS could also be improved.
Recently, Egidi et al. [22] consider Wheeler graph merging in addi-
tion to de Bruijn graph merging, and although, they show that the
problem is computationally more challenging, they propose an
algorithm specific to BOSS that has a lower peak space than Vari-
Merge in theory. It is worth noting that these results are still only
theoretical and they do not provide any implementation. Nonethe-
less, the practicality of their results warrants future investigation.

More drastic modifications possible to BufBOSS include applying
the technique of Sirén et al. [49] for improving memory locality,
and maintaining a dynamic longest-common prefix (LCP) array to
allow us to change the order k of the graph while navigating it,
up to some maximum order set at construction time. Previously,
Boucher et al. [12] showed how the BOSS data structure can be
augmented to support variable orders; Belazzougui et al. [9,10]
showed how the resulting data structure can be made bidirec-
tional; and Díaz-Domínguez et al. [21] showed how the LCP array
can be replaced by a succinct tree shape, at the cost of the order no
longer being known.

Although there are tools that recommend the best fixed order
for a de Bruijn graph [16], variations in read coverage, particularly
from single-cell sequencing, can mean that no single order is
appropriate for an entire genome or set of genomes. Some tools,

J. Alanko, B. Alipanahi, J. Settle et al. Computational and Structural Biotechnology Journal 19 (2021) 4067–4078
such as SPAdes [7] and IDBA [44], use several iterations with differ-
ent orders, but rebuilding massive graphs this way would be
impractical and defeat the purpose of the dynamization. As far as
we know, there is currently no algorithm to maintain a dynamic
LCP array, it seems like a reasonable extension of BufBOSS. In con-
trast, it seems unlikely that Bifrost, for example, can be made to
support variable orders without greatly increasing its memory
usage.

Funding

This work was partly funded by the Academy of Finland (Grant
No. 309048), NSERC Discovery Grant (Grant No. RGPIN-07185–
2020), NSF IIBR (Grant No. 2029552) and NIH NIAID (Grant No.
R01AI141810 and Grant No. R01HG011392).

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Alipanahi B, Kuhnle A, Puglisi S, Salmela L, Boucher C, Succinct Dynamic de
Bruijn Graphs. Bioinformatics btaa546; 2020a..

[2] Alipanahi B, Muggli M, Jundi M, Noyes N, Boucher C, Metagenome SNP calling
via read-colored de Bruijn graphs. Bioinformatics btaa081; 2020b..

[3] Alipanahi B, Salmela L, Puglisi SJ, Muggli M, Boucher C. Disentangled long-read
de Bruijn graphs via optical maps. In: Proc of WABI. pp. 1:1–1:14.

[4] Allard MW, Strain E, Melka D, Bunning K, Musser SM, Brown EW, Timme R.
Practical value of food pathogen traceability through building a whole-genome
sequencing network and database. J Clin Microbiol 2016;54(8):1975–83.

[5] Almodaresi F, Pandey P, Patro R. Rainbowfish: A succinct colored de Bruijn
graph representation. In: Proc of WABI. p. 251–65.

[6] Almodaresi F, Sarkar H, Srivastava A, Patro R. A space and time-efficient index
for the compacted colored de Bruijn graph. Bioinformatics 2018;34(13):
i169–77.

[7] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19
(5):455–77.

[8] Belazzougui D, Gagie T, Mäkinen V, Previtali M, Fully Dynamic de Bruijn
Graphs. In: Proc of SPIRE. pp. 145–152; 2016a..

[9] Belazzougui D, Gagie T, Mäkinen V, Previtali M, Puglisi SJ, Bidirectional
variable-order de Bruijn graphs. In: Proc of LATIN. Springer, pp. 164–178;
2016b..

[10] Belazzougui D, Gagie T, Mäkinen V, Previtali M, Puglisi SJ. Bidirectional
variable-order de bruijn graphs. Int J Found Comput Sci 2018;29(08):1279–95.

[11] Bentley JL, Saxe JB. Decomposable searching problems I: Static-to-dynamic
transformation. J Algo 1980;1(4):301–58.

[12] Boucher C, Bowe A, Gagie T, Puglisi SJ, Sadakane K. Variable-order de Bruijn
graphs. In: Proc of DCC. p. 383–92.

[13] Bowe A, Onodera T, Sadakane K, Shibuya T, Succinct de Bruijn graphs. In: Proc
of WABI. pp. 225–235; 2012..

[14] Cameron D, Schröder J, Sietsma Penington J, Do H, Molania R, Dobrovic A,
Speed T, Papenfuss A. GRIDSS: sensitive and specific genomic rearrangement
detection using positional de Bruijn graph assembly. Genome Res 2017;27
(12):2050–60.

[15] Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 2016;32(12):
i201–8.

[16] Chikhi R, Medvedev P. Informed and automated k-mer size selection for
genome assembly. Bioinformatics 2014;30(1):31–7.

[17] Coimbra ME, Francisco AP, Russo LM, De Bernardo G, Ladra S, Navarro G. On
dynamic succinct graph representations. In: Proc of DCC. p. 213–22.
4078
[18] Crawford V, Kuhnle A, Boucher C, Chikhi R, Gagie T. Practical Dynamic de
Bruijn Graphs. Bioinformatics 2018;34(24):4189–95.

[19] Danko D et al. Global genetic cartography of urban metagenomes and anti-
microbial resistance. Cell 2021;184:1–18.

[20] Dementiev R, Kettner L, Sanders P. STXXL: standard template library for xxl
data sets. Softw Pract Exp 2008;38(6):589–637.

[21] Díaz-Domínguez D, Gagie T, Navarro G. Simulating the DNA overlap graph in
succinct space. In: Proc of CPM. pp. 26:1–26:20.

[22] Egidi L, Louza F, Manzini G, Space efficient merging of de Bruijn graphs and
wheeler graphs. arXiv; 2020..

[23] Esposito E, Graf TM, Vigna S, RecSplit: Minimal perfect hashing via recursive
splitting. In: Proc of ALENEX. pp. 175–185; 2020a..

[24] Esposito E, Mueller-Graf T, Vigna S, RecSplit: Minimal Perfect Hashing via
Recursive Splitting. In: Proc of ALENEX. pp. 175–185; 2020b..

[25] Ferragina P, Manzini G. Indexing compressed text. JACM 2005;52(4):552–81.
[26] Fredman M, Saks M. The cell probe complexity of dynamic data structures. In:

Proc of STOC. p. 345–54.
[27] Gagie T, Manzini G, Sirén J. Wheeler graphs: A framework for BWT-based data

structures. Theor Comput Sci 2017;698:67–78.
[28] Holley G, Personal email communication with authors of BFT; 2019..
[29] Holley G, Melsted P. Bifrost–highly parallel construction and indexing of

colored and compacted de Bruijn graphs. Genome Bio 2020;21:249.
[30] Holley G, Wittler R, Stoye J. Bloom filter trie–a data structure for pan-genome

storage. In: Proc. of WABI. p. 217–30.
[31] Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G, De novo assembly and

genotyping of variants using colored de Bruijn graphs. Nat Genet 44 (2), 226–
232; 2012..

[32] Karp RM, Rabin MO. Efficient randomized pattern-matching algorithms. IBM J
Res Dev 1987;31(2):249–60.

[33] Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating k-mer
statistics. Bioinformatics 2017;33(17):2759–61.

[34] Limasset A, Rizk G, Chikhi R, Peterlongo P. Fast and scalable minimal perfect
hashing for massive key sets. In: Proc of SEA. pp. 25:1–25:16.

[35] Marchet C, Boucher C, Puglisi S, Medvedev P, Salson M, Chikhi R, Data
structures based on k-mers for querying large collections of sequencing data
sets. Genome Res 31 (1), 1–12; 2021..

[36] McVean G et al. An integrated map of genetic variation from 1,092 human
genomes. Nature 2012;491:56–65.

[37] Medvedev P, Pham S, Chaisson M, Tesler G, Pevzner P. Paired de Bruijn graphs:
A novel approach for incorporating mate pair information into genome
assemblers. J Comput Biol 2011;18(11):1625–34.

[38] Muggli M, Alipanahi B, Boucher C. Building large updatable colored de Bruijn
graphs via merging. Bioinformatics 2019;35:i51–60.

[39] Muggli M, Bowe A, Noyes N, Morley P, Belk K, Raymond R, Gagie T, Puglisi S,
Boucher C. Succinct colored de Bruijn graphs. Bioinformatics 2017;33
(20):3181–7.

[40] Munro I, Nekrich Y, Vitter JS, Dynamic data structures for document
collections and graphs. In: Proc of PODS. pp. 277–289; 2015..

[41] Noyes N et al. Resistome diversity in cattle and the environment decreases
during beef production. eLife 2016;5:e13195.

[42] Overmars MH, van Leeuwen J. Worst-case optimal insertion and deletion
methods for decomposable searching problems. Inf Process Lett 1981;12
(4):168–73.

[43] Pandey P, Almodaresi F, Bender M, Ferdman M, Johnson R, Patro R. Mantis: A
fast, small, and exact large-scale sequence-search index. Cell 2018;7(2):201–7.

[44] Peng Y, Leung HC, Yiu S-M, Chin FY. IDBA–a practical iterative de Bruijn graph
de novo assembler. In: Proc of RECOMB. p. 426–40.

[45] Peng Y et al. IDBA-UD: A de novo assembler for single-cell and metagenomic
sequencing data with highly uneven depth. Bioinformatics 2012;28(11).

[46] Pevzner P, Tang H, Waterman M. An Eulerian path approach to DNA fragment
assembly. Proc Natl Acad Sci 2001;98(17):9748–53.

[47] Prezza N. A framework of dynamic data structures for string processing. In:
Proc of SEA. p. 11:1–11:15.

[48] Ronen R, Boucher C, Chitsaz H, Pevzner P. SEQuel: improving the accuracy of
genome assemblies. Bioinformatics 2012;28(12):i188–96.

[49] Sirén J, Garrison E, Novak AM, Paten B, Durbin R. Haplotype-aware graph
indexes. Bioinformatics 2020;36(2):400–7.

[50] Turnbull C et al. The 100,000 genomes project: bringing whole genome
sequencing to the nhs. Br Med J 2018;361.

[51] Turner I, Garimella K, Iqbal Z, McVean G. Integrating long-range connectivity
information into de Bruijn graphs. Bioinformatics 2018;34(15):2556–65.

[52] Zerbino D, Birney E. Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res 2008;18:821–9.

http://refhub.elsevier.com/S2001-0370(21)00285-3/h0015
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0015
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0020
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0020
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0020
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0025
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0025
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0030
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0030
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0030
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0035
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0035
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0035
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0035
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0050
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0050
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0055
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0055
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0060
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0060
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0070
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0070
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0070
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0070
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0075
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0075
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0075
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0080
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0080
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0085
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0085
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0090
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0090
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0095
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0095
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0100
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0100
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0105
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0105
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0125
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0130
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0130
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0135
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0135
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0145
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0145
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0150
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0150
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0160
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0160
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0165
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0165
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0170
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0170
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0180
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0180
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0185
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0185
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0185
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0190
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0190
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0195
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0195
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0195
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0205
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0205
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0210
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0210
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0210
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0215
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0215
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0220
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0220
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0225
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0225
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0230
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0230
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0235
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0235
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0240
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0240
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0245
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0245
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0250
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0250
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0255
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0255
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0260
http://refhub.elsevier.com/S2001-0370(21)00285-3/h0260

	Buffering updates enables efficient dynamic de Bruijn graphs
	1 Introduction
	2 Preliminaries
	2.1 Basic definitions
	2.2 Overview of BOSS

	3 Dynamizing compact data structures
	4 Buffering additions and deletions
	5 Batched Updates of Additions and Deletions
	5.1 Dummy node preparation phase
	5.2 Merge planning phase
	5.3 Merge execution phase
	5.4 Dummy cleanup phase

	6 Results
	6.1 Experimental details
	6.2 Implementation of FDBG-RecSplit
	6.3 Implementation of BufBOSS
	6.4 Competing Tools
	6.5 Datasets
	6.6 Construction
	6.7 Addition and deletion
	6.8 Edge existence queries

	7 Discussion and future work
	Funding
	Declaration of Competing Interest
	References

