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Transfusions of platelets are an important cornerstone of medicine; however, recipients 
may be subject to risk of adverse events associated with the potential transmission 
of pathogens, especially bacteria. Pathogen inactivation (PI) technologies based on 
ultraviolet illumination have been developed in the last decades to mitigate this risk. This 
review discusses studies of platelet concentrates treated with the current generation of 
PI technologies to assess their impact on quality, PI capacity, safety, and clinical efficacy. 
Improved safety seems to come with the cost of reduced platelet functionality, and 
hence transfusion efficacy. In order to understand these negative impacts in more detail, 
several molecular analyses have identified signaling pathways linked to platelet function 
that are altered by PI. Because some of these biochemical alterations are similar to 
those seen arising in the context of routine platelet storage lesion development occurring 
during blood bank storage, we lack a complete picture of the contribution of PI treatment 
to impaired platelet functionality. A model generated using data from currently available 
publications places the signaling protein kinase p38 as a central player regulating a 
variety of mechanisms triggered in platelets by PI systems.
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THe CHALLeNGeS OF PLATeLeT TRANSFUSiONS

Platelets play an essential role in hemostasis, fibrinolysis, and vascular integrity, which are criti-
cal physiological processes to prevent and control bleeding (1–3). Platelet concentrates (PCs) are 
transfused to treat bleeding in thrombocytopenic, trauma, or surgery patients (4–6) as well as for 
prophylactic treatment of patients with hypoproliferative thrombocytopenia (7, 8). Over the last 
decades, development of improved therapies and the subsequent introduction of new transfusion 
guidelines have changed the practice of platelet transfusion (9, 10) which has, in turn, influenced the 
management of platelet inventories in the blood bank.

Additionally, the integrity and safety of platelet preparations could be compromised by the pres-
ence of pathogens, such as viruses, bacteria, and parasites (11). Serious complications or death due 
to bacterially contaminated units have been well documented, leading to several changes in the 
collection procedures, including stricter donor screening, improved skin disinfection methods and 
diversion of the first few milliliters of collected blood, and bacterial culture of PCs (12–16). However, 
the risk still exists, not only for undetected bacterial contamination but for the increasing number 
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TABLe 1 | Overview of pathogen inactivation (PI) treatment options to obtain 
pathogen-reduced platelet products.

Product treatment Storage 
solution

Pi system

iNTeRCePT MiRASOL THeRAFLeX

AP/PC Plasma + + −
PAS + + +

PRPC or BC/PC Plasma + + −
PAS + + +

WB (prior to PRPC or 
BC/PC production)

Plasma − + −
PAS − + −

AP/PC, apheresis platelet concentrates; PRPC, platelet-rich plasma concentrate; BC/
PC, buffy-coat-derived platelet concentrate; WB, whole blood; PAS, platelet additive 
solution.
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of emerging and re-emerging pathogens, particularly viruses for 
which screening tests may not be in place.

Finally, even with the use of pre-storage leukoreduction, the 
transfer of residual allogeneic donor leukocytes in PCs still occurs 
and can potentially cause adverse reactions in certain platelet 
recipients (17). All pathogen inactivation (PI) systems show 
inactivation capacity of these residual leukocytes (18, 19).

These challenges of platelet storage have led to the develop-
ment and increasing implementation of PI technologies which 
are based on ultraviolet (UV) light-mediated damage of nucleic 
acids and subsequent inactivation of most pathogens as well as 
passenger white blood cells.

A BRieF OveRview OF CURReNT  
Pi SYSTeMS

Currently, three PI systems to produce pathogen-reduced PCs are 
commercially available, utilizing UV in the presence or absence 
of a photosenzitizer. These technologies are extensively reviewed 
in the literature (20–29); therefore, only key points necessary for 
the context of this review are provided.

The INTERCEPT system (Cerus Corporation, Concord, 
CA, USA) uses amotosalen as photosensitzer in combination 
with UVA light (320–400 nm). Amotosalen penetrates the cel-
lular membrane forming non-covalent links between pyrimidine 
residues in DNA and RNA. UV illumination induces a photo-
chemical reaction that transforms the preexisting link into an 
irreversible covalent bond, preventing DNA replication and RNA 
transcription. Excess amotosalen and its photoproducts need to 
be removed by an in-line compound absorption device (30, 31).

The MIRASOL system (Terumo BCT, Lakewood, CO, USA) 
uses vitamin B2 (riboflavin) as the photosensitizer and UVA/
UVB light (270–360 nm) (32, 33). In the presence of riboflavin, 
illumination generates free oxygen radicals causing irreversible 
damage to guanidine nucleotide bases. Riboflavin does not need 
to be removed following illumination as it is a common dietary 
element and generally considered to be safe.

The THERAFLEX-UV Platelets system (MacoPharma, 
Tourcoing, France) uses UVC light in combination with strong 
agitation which facilitates light penetration and does not require 
a photosensitizer. UVC acts directly on nucleic acids to induce 
pyrimidine dimers to block DNA replication (34, 35).

PATHOGeN-ReDUCeD PLATeLeT 
PRODUCTS

Pathogen-reduced PCs can be obtained by direct treatment of 
platelet components using a PI system, or they can be derived by 
treating whole blood with the MIRASOL (36, 37) or potentially 
the INTERCEPT system once a current trial turns out to be 
successful followed by processing into the (platelet) components 
(Table 1).

It is noteworthy to point out that the THERAFLEX system 
require PCs produced in platelet additive solution (PAS) while 
the MIRASOL and INTERCEPT systems can treat PCs in plasma 
or PAS.

ONGOiNG DeBATe: SAFeTY vS eFFiCACY 
OF Pi

More than a decade ago, the interest in PI prompted many large-
scale discussions (38–40). The outcome of these deliberations 
included the provision of information required for implementa-
tion of PI systems such as implementation criteria, component 
specifications, licensing requirements, and the impact in blood 
product inventories, as well as clinical issues such as transfusion 
efficacy, risk management issues, and cost–benefit assessments. 
Since then, numerous studies have been conducted to provide 
answers to questions on product safety, clinical efficacy, and 
quality.

In order to assess inactivation efficacy, studies spiking patho-
gens relevant to blood transfusion into PCs prior to illumination 
have been performed (34, 41–44). All PI systems currently on 
the market have demonstrated effectiveness in inactivating most 
tested pathogens with moderate to highly effective inactivation 
capacities for several emerging viruses including West Nile virus 
(45), chikungunyah virus (46), Zika virus (47, 48), dengue virus 
(49), and hepatitis-E-virus (50). Additionally, a comparative 
study (51) revealed that HIV-1 can be similarly inactivated by 
MIRASOL and INTERCEPT, however, less efficient compared 
to other viruses due to its resistance to UV light. Furthermore, 
INTERCEPT demonstrated a higher inactivation capacity for 
bovine viral diarrhea virus and pseudorabies virus compared to 
MIRASOL while both technologies showed similar log reductions 
for hepatitis-A-virus and porcine parvovirus. However, due to 
their chemistry, PI systems are only able to target pathogens that 
contain nucleic acids and consequently they are ineffective against 
prions and transmission of variant Creutzfeldt–Jakob disease (52).

In order to demonstrate clinical efficacy, several large clini-
cal trials using these PI systems have been conducted or are 
underway (22, 53) and extensive hemovigilance studies have 
also been undertaken. The main message is that PI treatment 
damages the platelets in many ways including alterations in 
membrane integrity, signaling pathways and in some capacity 
functionality of miRNAs, which results in reduced recovery 
and survival in healthy volunteers (54, 55). Similarly, shorter 
transfusion intervals have been observed in patients receiv-
ing PI-treated platelets, but these observations for the most 
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part have not been associated with increased World Health 
Organization grade 2 or greater bleeding in patients receiving 
pathogen-reduced platelets, as hemostatic efficacy seems to 
be maintained (22, 26). Furthermore, some evidence points 
toward the fact that transfusion of PI-treated platelets does 
not affect mortality, the risk of clinically significant or severe 
bleeding, or the risk of a serious adverse event (AE) (56). 
However, as pointed out by Kaiser-Guignard and colleagues, 
the results of the published clinical studies should be inter-
preted with caution, and their characteristics and possible 
biases should be taken into account (22), such that interpreta-
tion of clinical outcome data cannot be generalized across 
different PI systems (22). A recent systematic review presented 
strong evidence that transfusion of PI-treated platelets appears 
to increase the risk of platelet refractoriness and the frequency 
of platelet transfusions (56).

The majority of contributions to investigations of PIs are 
in vitro quality studies. Multiple analyses have been conducted to 
monitor potential changes in the platelet quality following illu-
mination with the three different PI systems in combination with 
products of different characteristics (see Table 1). These studies 
have typically measured common blood banking parameters, 
including metabolic activities, platelet activation, and platelet 
function to evaluate product quality, and to determine whether 
quality control requirements of the individual jurisdictions were 
met. Comparisons of different studies; however, are hampered 
by the fact that these measures are influenced by the type and 
proportion of the platelet storage medium. PI treatment of plate-
lets in different PAS differentially alters platelet quality features 
(57). Recent studies with the riboflavin/UV system (MIRASOL) 
revealed that the quality of platelets is similar whether stored in 
plasma or PAS; however, transfusion of treated PCs in PAS led 
to fewer transfusion reactions (58). This observation is corrobo-
rated by the finding that PAS seems to have a protective effect on 
platelets upon illumination (59).

Based on these diverse studies, in recent years, many (indi-
vidual) opinions have been published outlining the pros and 
cons of PI in light of safety and efficacy (20, 60–64). Ongoing 
discussions are guided by experiences from blood centers that 
have implemented PI (65–67).

PLATeLeT STORAGe LeSiON (PSL): A 
GeNeRAL OveRview

Many studies measuring changes to platelet in vitro quality indi-
cate that PI treatment accelerates the progression of the PSL. This 
term describes the sum of all the deleterious changes in platelet 
structure and function that arise from the time the blood is with-
drawn from the donor to the time the platelets are transfused to 
the recipient (68–73). It is mainly explained by triggering platelet 
activation during preparation and handling of PCs, especially the 
heightened metabolic activity and activation-specific changes to 
surface glycoproteins observed in stored platelets (74). Transient 
derangement of platelet metabolism can be rescued by plasma 
replacement, resulting in improved morphology scores, stabi-
lized osmotic recovery, and completely restored platelet secretory 
responses (75).

THe iMPACT OF Pi ON PLATeLeT 
FUNCTiONS

PLT Activation, Degranulation, and Protein 
Release
As mentioned above, the main feature of PSL seems to be platelet 
activation, which is commonly determined by the expression of 
P-selectin (CD62P) on the platelet surface, as a consequence of 
the release of the alpha-granule content. Many studies have shown 
that PI increases the surface expression of CD62P (58, 76–78).

Additional features of storage-mediated platelet activation are 
the increased phosphatidylserine (PS) externalization (79) and 
changes in the protein profile of platelet surface receptors (80, 81) 
which are further altered upon PI treatment (82).

Among other changes, the level of cytokines and chemokines 
also increases in the supernatant of the storage solution during 
platelet storage (83–85). Although some controversy continues 
in the literature (86), PI treatment appears to induce platelet 
degranulation, hence further increasing the levels of immune 
factors under some treatment conditions (86–91). The altered 
releasate composition may affect the immunomodulatory 
capacity of platelets. As a consequence of this accumulation, 
supernatants of MIRASOL PI-treated platelets can suppress LPS 
(lipopolysaccharide)-induced monocyte IL-12 production (92), as 
well as increase LPS-induced mononuclear cell production of IL-8 
(93). A recent study has demonstrated that increased supernatant 
levels of pro-inflammatory molecules resulting from platelet gran-
ule release are associated with reactive oxygen species generation 
during storage (94). This finding is corroborated by an observed 
increased ROS production in MIRASOL PI-treated PCs (77, 95).

A brief summary is provided in Table  2 highlighting the 
changes of platelet storage features by the individual PI systems.

Development of Platelet Apoptosis
There is an ongoing debate regarding the extent to which platelet 
activation and programmed cell death (apoptosis) in platelets 
overlap at the molecular level (113). Platelets contain most of 
the apoptotic machinery, including pro- and anti-apoptotic Bcl-
protein family members as well as caspases (114). Activation of 
these pathways leads to microvesiculation with expression of PS 
in the outer layer of the platelet membrane (115). As PS exposure 
is believed to contribute to the development of inflammatory or 
immunomodulatory processes and ultimately regulates clearance 
of platelet from circulation, PS exposure monitored by annexin-V 
binding is commonly used to measure the development of platelet 
apoptosis.

Pathogen inactivation treatment also results in the externali-
zation of PS (59, 116, 117). MIRASOL PI-treated PLTs exhibit an 
increased expression of proapoptotic proteins Bak and Bax, but 
not anti-apoptotic proteins Bcl-XL (109, 116). Additionally, 
MIRASOL PI-triggered activation of caspase cleavage leads 
to proteolytic cleavage of their respective substrate proteins 
(116). Similar results have recently been shown in INTERCEPT 
PI-treated platelets (118). However, these features are not promi-
nent until later in storage (typically 5–7 days) and may only need 
to be considered in the context of extended platelet storage.
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TABLe 2 | Summary of impact of pathogen inactivation (PI) treatment on platelet 
features compared to untreated control.

Platelet storage feature Pi system

iNTeRCePT MiRASOL THeRAFLeX

Metabolic activity ± (96); ↑ (97) ↑ (98) ↑ (99)
Platelet activation  
(CD62P expression)

↑ (96, 100) ↑ (98) ↑ (99)

Platelet adhesion  
(under flow)

± (101); ↑ (102)a ↓ (102); ±(103) n.d.

Clot formation 
(thrombo-elastography)

↓ (104) ↑b, ↓c (105) ↓ (99)

Responsiveness  
(to agonists)

↓ (102); ±↓d (106)c ↓ (98) ± (99)

Platelet apoptosis  
(PS exposure)

± (107); ↑ (108)a ↑ (109) ↑ (99)

Platelet microparticle  
release

↑ (110) ↑ (111) ↑ (112)

Free mitochondria  
release

n.d. ↑ (95) n.d.

↓ = decrease; ± = similar; ↑ = increase; n.d. = not determined. The references are only 
examples of published studies, but are not comprehensive. Differences in some study 
outcomes could be due to variations in production methods used (platelet-rich plasma 
vs BC/PCs or apheresis PCs), composition in storage solution—plasma vs platelet 
additive solution (in different concentration)—and assay procedures.
aAt end of storage.
bThrombus stability.
cAggregation.
dAgonist-dependent.
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Microvesicle (MR) Release
Platelets are known to generate heterogeneous populations of 
cell-derived MVs (119). Platelet MVs have a bilayered phospho-
lipid structure exposing procoagulant PS and expressing various 
membrane receptors, and they serve as cell-to-cell shuttles for 
bioactive molecules such as lipids, growth factors, microRNAs 
(miRNAs), and mitochondria (120). Further, the presence and 
quantity of MVs has been associated with the clinical severity of 
the atherosclerotic disease, diabetes, and cancer (6, 121). These 
features along with the observation that the number, function, 
and content of MVs in the components varies with age, gender, 
lipid, and hormone profiles of the blood donor (122) makes 
them one of the most discussed, controversial, and interesting 
topics in current blood banking and transfusion medicine (123). 
Different studies have demonstrated that all UV-based PI treat-
ments increase the release of MVs from platelets compared to 
untreated controls (36, 95, 112, 124). To our knowledge, no study 
has directly addressed the impact of INTERCEPT on the release 
of MVs during PC storage; however, Kanzler et al. found a reduc-
tion of MVs in the platelet product immediate after INTERCEPT 
treatment (125).

Role of Platelets in inflammation
Although once primarily recognized for their role in hemostasis 
and thrombosis, platelets have been increasingly recognized as 
a multipurpose cell. There is growing recognition of the critical 
role of platelets in inflammation and immune responses. Platelets 
release numerous inflammatory mediators such as RANTES or 
CD40L, modifying leukocyte and endothelial responses to a range 
of different inflammatory stimuli (88). Additionally, platelets form 

aggregates with leukocytes and form bridges between leukocytes 
and endothelium, largely mediated by platelet P-selectin. Through 
their interactions with monocytes, neutrophils, lymphocytes, and 
the endothelium, platelets are, therefore, important coordinators 
of inflammation and both innate and adaptive immune responses. 
As mentioned above, studies have shown that MIRASOL-treated 
platelets release such mediators (92, 93) and, therefore, might 
modulate inflammatory responses.

Mitochondria and Mitochondrial DNA 
(mtDNA) Release
Mitochondria are known as the powerhouse of cells and play a 
crucial role in maintaining platelet function throughout platelet 
storage (126). Mitochondria are released from activated platelets 
and upon hydrolysis of the mitochondrial membrane release 
mtDNA (127). MIRASOL-PI treatment also causes release of free 
mitochondria, mainly at the later stages of storage (95). Potentially 
associated with the mitochondria release, free mtDNA has been 
associated with AEs following platelet transfusion, and may be 
predictive of some types of AEs (128). mtDNA is a highly potent 
inflammatory trigger (128) that can be released from platelets 
during storage (129). Illumination of platelets with PI systems 
modifies mtDNA (129–131). Detection of PI-modified mtDNA 
using PCR assays can be used to monitor and confirm PI treat-
ment (131). Furthermore, the relationship of mtDNA levels and 
AEs related to immunomodulation should also be considered; 
with a recent study showing an association between mtDNA and 
the incidence of respiratory distress posttransfusion (132).

MicroRNA
MicroRNAs are small (~20–24 nucleotides) RNA sequences 
generated by ribonucleases in the nucleus (by Drosha) and 
cytosol (by Dicer 1) through sequential enzymatic trimming 
of double stranded miRNA precursors. miRNAs are thought to 
fine tune gene expression through degradation of their mRNA 
targets (133). Although platelets are anucleate, high-throughput 
sequencing has revealed that human platelets harbor a complex 
array of miRNAs, which are key regulators of mRNA translation 
in different cell types (134). Activated platelets can deliver mRNA 
regulatory Argonaute-2 miRNA complexes to endothelial cells 
via MVs leading to modulation of cell function (135).

INTERCEPT, but not MIRASOL PI treatment has been 
shown to affect the platelet mRNA transcriptome (27, 136). 
However, miRNA synthesis and function were not affected and 
no cross-linking of miRNA-sized endogenous platelet RNA spe-
cies was observed; rather miRNA levels were reduced (136, 137). 
Further, the reduction in the platelet miRNA levels induced by 
INTERCEPT correlated with platelet activation and an impaired 
platelet aggregation response to ADP (136). In contrast, a recent 
study presented by Arnason et  al. (138) demonstrated that 
INTERCEPT treatment did not change the quality or significantly 
altered the miRNA profile of PCs. These controversial results 
prompted further investigations and as the clinical significance 
of MV-associated miRNAs is unknown, and speculation of a 
negative effect of PI-treated platelets including long-term con-
sequences for recipients is as yet unwarranted. This is a relatively 
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FiGURe 1 | Current molecular model of signaling triggered by ultraviolet (UV)/riboflavin (MIRASOL) and UV/amotosalen (INTERCEPT) in platelets: UV can penetrate 
either directly or via surface/receptor proteins to activate p38MAPK kinase as one of the central players in the signaling cascade. Thus far it has been shown that 
p38 activation/phosphorylation (P-p38) is involved in regulating (1) degranulation, (2) release of free mitochondria, (3) the modulation of glycoproteins (GPs), (4) the 
expression levels of mRNAs and potentially protein synthesis, (5) microvesicle (MVs) release, and (6) the development of apoptosis via proapoptotic protein 
expression and caspase activation. This figure was modified from Ref. (150).

5

Schubert et al. Changes in Platelets Upon PI

Frontiers in Medicine | www.frontiersin.org May 2018 | Volume 5 | Article 129

new area of research, and additional studies are required to fully 
understand the impact of PI treatment on miRNA synthesis and 
the resulting impact on platelet quality.

mRNA Levels and Protein Synthesis
Although anucleate, platelets have the capacity to synthesize bio-
logically relevant proteins that are regulated via gene expression 
programs at the translational level in response to physiological 
stimuli (139–141). Recent studies have demonstrated that levels 
of specific mRNA species are reduced following MIRASOL PI 
treatment while others are less affected (142). Subsequent studies 
have revealed that this observation is mirrored in the platelet 
translatome, demonstrating that platelets are still capable of 
synthesizing proteins following PI treatment, suggesting that they 
may possess mechanism(s) to protect their mRNA from damage 
by the PI treatment (143). The clinical relevance of this finding, 
however, is still unknown.

impact of Pi Treatment on Platelet 
Lipidomics
Although the application of lipidomics to platelet biology is 
still in its infancy, seminal studies have shaped our knowledge 
of how lipids regulate key aspects of platelet biology, including 
aggregation, shape change, coagulation, and degranulation, as 
well as how lipids generated by platelets influence other cells, such 
as leukocytes and the vascular wall, and thus how they regulate 
hemostasis, vascular integrity, and inflammation, as well as con-
tribute to pathologies, including arterial/deep vein thrombosis, 
and atherosclerosis (144). Mapping the human platelet lipidome 
revealed cytosolic phospholipase A2 as a regulator of mitochon-
drial bioenergetics during activation (145). A recent study has 
demonstrated that psoralen and UV light increased the order of 
lipid phases by covalent modification of phospholipids, thereby 

inhibiting membrane recruitment of effector kinases such as BTK 
and Akt and consequently affecting GPVI- and PAR1-mediated 
signal transduction (99).

FURTHeR iNveSTiGATiONS TOwARD 
UNDeRSTANDiNG THe MOLeCULAR 
MeCHANiSMS OF Pi-iNDUCeD PLATeLeT 
ALTeRATiON: FROM PROTeOMiCS TO 
SiGNALiNG

A variety of untargeted proteomic approaches have been used 
to assess the impact of PI systems on platelets (146–148). The 
effect of the PI treatment on the proteome appears to be different 
according to the particular technology. A comparative analysis of 
proteomic data revealed that MIRASOL seems to impact proteins 
involved mainly in platelet adhesion and shape change while 
INTERCEPT affects proteins of intracellular platelet activation 
pathways and THERAFLEX influences proteins linked to platelet 
shape change and aggregation (149). These conclusions are based 
on a relatively small number of studies and further analyses are 
required for verification.

A more targeted approach using a phospho-kinase antibody-
based array demonstrated that a variety of kinases were activated 
by MIRASOL PI treatment (150). p38MAPK plays a central role 
in MIRASOL PI-mediated signaling by regulating a variety of 
platelet features, such as apoptosis (109), mitochondrial function, 
and release of free and MV-encapsulated mitochondria (95). The 
INTERCEPT system also triggers p38MAPK activation in plate-
lets, and the phosphorylation of the p38MAPK substrate Tace is 
directly linked to GPIb cleavage possibly explaining the reduced 
adhesion of those platelets under flow conditions (118). The role of 
p38MAPK in mediating PI-triggered signaling linked to features 
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of PSL is supported by studies demonstrating a regulatory role 
of p38MAPK in regulating PSL development (151) and platelet 
in vivo recovery and survival in mouse models (152). This body 
of work suggests that similar signaling pathways are activated 
by both of these PI systems as modeled in Figure 1. Although 
only a few studies to date have investigated the signaling aspect 
in platelets, it could be hypothesized that p38MAPK activation in 
response to the stress associated with the PI treatment may have 
a regulatory role in platelet life span (153) as inhibition of this 
protein leads to decreased apoptosis (109, 118).

CONCLUSiON AND FUTURe DiReCTiONS

Although there are numerous studies in the literature assessing 
the impact of UV-based PI systems on platelet in vitro and in vivo 
function, only a few conclusions can be drawn. All technologies 
seem to accelerate the development of some form of the PSL but 
this likely results through different modes of action; therefore, 
it is likely that many divergent, as well as overlapping molecular 
mechanisms are triggered. Most of the functional studies con-
ducted to decipher the role of signaling pathways in PI-treated 
platelets have been carried out using the INTERCEPT and 
MIRASOL system and thus the effects of the THERAFLEX 
system remain relatively unknown. However, it is clear that 
PI-treated platelets are different to untreated platelets, and the 
differences may go some way toward explaining some of the 
clinical observations following transfusion of PI-treated plate-
lets. Proteomic analyses and in future other -omics approaches 

such as metabolomics (154) will likely shed more light into the 
specific effects of PI treatment. Additional targeted approaches 
will guide the formulation of signaling models, which may ulti-
mately identify pathways known to impact platelet function upon 
illumination, and provide potential (protein) markers to assist 
with the fine-tuning of these technologies. We need to keep in 
mind, however, that the PI treatment does not only affect platelets 
per se, these procedures trigger the release of MVs, proteins, and 
nucleic acids in to the storage medium which also gets transfused. 
Whether any of these components will have deleterious effects on 
the recipients remains to be determined even though the initial 
clinical studies do not show significant clinical effects from PI 
treatment of PCs.
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