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The purpose of this paper is to extend to ordinal and nominal outcomes the
measures of degree of necessity and of sufficiency defined by the authors for
dichotomous and survival outcomes in a previous paper. A cause, represented by
certain values of prognostic factors, is considered necessary for an event if, with-
out the cause, the event cannot develop. It is considered sufficient for an event
if the event is unavoidable in the presence of the cause. The degrees of neces-
sity and sufficiency, ranging from zero to one, are simple, intuitive functions of
unconditional and conditional probabilities of an event such as disease or death.
These probabilities often will be derived from logistic regression models; the
measures, however, do not require any particular model. In addition, we study in
detail the relationship between the proposed measures and the related explained
variation summary for dichotomous outcomes, which are the common root for
the developments for ordinal, nominal, and survival outcomes. We introduce
and analyze the Austrian covid-19 data, with the aim of quantifying effects of age
and other potentially prognostic factors on covid-19 mortality. This is achieved
by standard regression methods but also in terms of the newly proposed mea-
sures. It is shown how they complement the toolbox of prognostic factor studies,
in particular when comparing the importance of prognostic factors of different
types. While the full model’s degree of necessity is extremely high (0.933), its low
degree of sufficiency (0.179) is responsible for the low proportion of explained
variation (0.193).
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1 INTRODUCTION

The notions of sufficient and of necessary conditions are common in formal logic and mathematics, and in empirical
sciences such as medicine and epidemiology as well. For the latter, “conditions” are thought of as causes leading to out-
comes, often events like diseases or death. A cause is considered necessary for an event if, without the cause, the event
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T A B L E 1 Covid-19 disease after infection by
SARS-CoV-2 in Austria (as of July 22, 2020)

Age group

Number
SARS-CoV-2
positive

Number (%)
of deaths due
to covid-19

Number (%)
of latea deaths
due to covid-19

Below 65 13 323 38 (0.3%) 19 (0.1%)

65 or older 3712 656 (17.7%) 415 (11.2%)

Total 17 035 694 (4.1%) 434 (2.5%)

Note: Patients with potential follow-up of at least 6 weeks.
a
>1 week after diagnosis of infection.

F I G U R E 1 Kaplan–Meier estimates of survival from
diagnosis to death (censored at 6 weeks after diagnosis). Numbers at
risk given above x-axis

cannot develop. It is considered sufficient for an event if the event is unavoidable in the presence of the cause. In math-
ematics, sufficient and necessary conditions either fully apply (“100%”), or not (“0%”). In empirical sciences, the effects
of causes on events only exceptionally achieve the extremes of 0% or of 100%, the latter, for example, for fully determin-
istic relationships. Thus, it is of interest to quantify the degrees to which certain levels of prognostic factors (ie, potential
causes) are necessary or sufficient for events to occur.

In an earlier paper, we have introduced measures DN and DS for dichotomous outcomes which suitably quantify the
degrees of necessity and of sufficiency, respectively.1 Before reviewing them we motivate their use by means of data of
the covid-19 pandemic in Austria summarized by Table 1.2 We are interested in the effect of age (using an internationally
confirmed cutpoint of 65)3-5 on the survival of infected individuals.

This effect turns out to be very strong, in terms of relative risk it is RR = 62.1, however, the proportion of variation in
survival status attributable to age is relatively low: EV = 0.132. The explained variation (EV) quantifies on a 0-1 scale the
degree to which the outcome is determined by a prognostic factor.6 EV (=0.132) can be decomposed into the product of
DN (=0.930) and DS (=0.142).1 Thus the Austrian data confirm that age is quite necessary for a covid-19 death (most of
the deaths occurred in the age group 65 and beyond) but, fortunately, it is not sufficient for death as most of the elder age
group survived after infection. This is a simple illustrative summary of the data we will return to in Section 6.

Furthermore, the covid-19 data also contain individual information on the time from diagnosis (confirmed positive
test result) until covid-19 related death. Because of rather complete follow-up of covid-19 cases we decided to censor
all times by 6 weeks (a time frame of supposed medical interest), and assumed all individuals without recorded death
within this period to be alive at 6 weeks after infection. Estimates of cumulative incidences by age groups are shown in
Figure 1, the corresponding hazard ratio, according to Cox regression, being HR = 69.7. We obtain DNsurv

1 = 0.930 and
DSsurv

1 = 0.139 for the corresponding DN and DS measures for survival times,1 and V = 0.129, the corresponding variation
in survival, explained by age group.7 As with the dichotomous viewpoint, age ≥65 is almost definitely required to die, but
the outlook for these infected individuals is not fully daunting.

In Section 2 we provide a recap of the DN and DS measures proposed previously.1 In Section 3 we extend to ordinal
and in Section 4 to nominal outcomes. In Section 5 we examine the three-way relationships between DN, DS and EV ,
concentrating for simplicity on dichotomous outcomes. Section 6 gives a full analysis of the Austrian covid-19 data along
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with the values of the proposed measures with dichotomous outcomes, first introduced in our earlier paper in this journal,
and with ordinal and nominal outcomes introduced in Sections 3 and 4 of this paper.

2 RECAP OF THE MEASURES DN AND DS

The measures, quantifying the degrees of necessity and of sufficiency, DN and DS, respectively, and ranging from 0 to 1,
have been defined as follows:1

For a dichotomous outcome let D denote the event of interest (eg, death) with probability P(D)≠ 0, 1. For a
dichotomous or continuous prognostic factor X we propose to define DN and DS in a population as

DN1 =

√
E<

(
P(D) − P(D |X)

P(D) − 0

)2

(1)

and

DS1 =

√
E>

(
P(D |X) − P(D)

1 − P(D)

)2

(2)

where E< and E> denote expectation conditional on {X : P(D|X)<P(D)} and on {X : P(D|X)>P(D)}, respectively. Note that
X might also represent a predictor from several prognostic factors. Alternatively, we define

DN2 = E<

(
P(D) − P(D |X)

P(D) − 0

)
(3)

and

DS2 = E>

(
P(D |X) − P(D)

1 − P(D)

)
(4)

For an unfavorable outcome event D (like death) the range of values for X with P(D|X)<P(D) defines its protective
levels in the sense that for these levels the conditional death probability falls below the unconditional one. For a favorable
outcome the definition for DN above still applies but the same range defines harmful levels of X . It is therefore important
to clearly denote the level of the outcome to which DN and DS measures refer. In the remaining text we assume an
unfavorable outcome, if not explicitly stated otherwise, and designate levels of X with P(D|X)<P(D) as protective and
with P(D|X)>P(D) as harmful.

By explicitly using 0 in the denominator of (1) we emphasized that the actual departure of P(D|X) from P(D) is
standardized to the maximal (hypothetical) departure when P(D|X) assumes a value of 0. Likewise, the actual depar-
ture of P(D|X) from P(D) is standardized by the denominator of (2), to the maximal (hypothetical) departure when
P(D|X) assumes a value of 1. Thus, DN and DS achieve their maximal values of 1 if conditional death probabilities are
at the extreme values of 0 and 1, respectively. They share the same structure and are independently sensitive to relevant
characteristics of a data set. All pairs of values (DN, DS) are possible within [0, 1]2. The measures are defined inde-
pendent of the model or prediction tool used to produce conditional probabilities. DN and DS have been demonstrated
to provide an approximate, in some cases an exact multiplicative decomposition of explained variation,1 as defined by
Schemper for dichotomous outcomes.6 Furthermore, DN implicitly generalizes the established attributable fraction or
risk for dichotomous prognostic factors and dichotomous outcomes,8 to continuous prognostic factors. In a setting with
multiple prognostic factors marginal and partial results of DN and DS are provided akin to marginal and partial odds
ratios from multiple logistic regression.

We refer the reader interested in more detail to our earlier paper in this journal.1

3 DN AND DS FOR ORDINAL OUTCOMES

In this and the following section we present generalizations of DN and DS to ordinal and nominal outcomes. We will
restrict the presentation to variant 1 but note that analogous generalizations are possible for variant 2.
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For an ordinal outcome Y with categories k = 0, 1, … , K let us assume, without loss of generality, that 0 represents the
“best” and K the “worst” outcome category. Such an outcome might be intrinsically ordinal like, for example, the ECOG
performance status,9 ranging from 0 (fully active) to 5 (dead), or derived by categorization from a continuous or survival
scale. Compared to the case with dichotomous outcome, where unconditional and conditional probabilities, P(D) and
P(D|X), of the (unfavorable) event of interest, D, are contrasted, we now consider P(Y ≥ k) and P(Y ≥ k|X) for all k = 1,
… , K.

With I(.) denoting the indicator function, let Dk+ = I(Y ≥ k) for k = 1, … , K. For each of the resulting K ordered
dichotomizations Dk+ of the K + 1 levels of the ordinal outcome we define

DN1,k+ =

√
E<

(
P(Dk+) − P(Dk+ |X)

P(Dk+)

)2

(5)

DS1,k+ =

√
E>

(
P(Dk+ |X) − P(Dk+)

1 − P(Dk+)

)2

(6)

using (1) and (2), and E<(.) and E>(.) denoting conditional expectations over {X : P(Dk+|X)<P(Dk+)} and
{X : P(Dk+|X)>P(Dk+)}, respectively. DNord

1 and DSord
1 for ordinal outcomes can then be calculated as weighted averages

of DN1,k+ and DS1,k+, respectively:

DNord
1 = 1

P(Y > 0)

K∑
k=1

DN1,k+P(Y = k) (7)

DSord
1 = 1

P(Y > 0)

K∑
k=1

DS1,k+P(Y = k) (8)

Note that the weighted sums in (7) and (8) do not include P(Y = 0) in agreement with definitions (1) and (2) for DN1
and DS1, respectively, to which DNord

1 and DSord
1 specialize for dichotomous outcomes. The averaging on the original scale

of the DN1,k+ is motivated by the analogous approach used for survival outcomes (see Appendix A). Simulations indicate
that averaging on a quadratic scale would result in higher median absolute discrepancies between EV and DNord

1 ⋅DSord
1

(results not shown).
As with dichotomous outcomes it is possible and useful to calculate partial degrees of necessity and of sufficiency. We

propose to calculate the partial DNord
1 as the difference of DNord

1 values with and without the factor of interest, since the
weights P(Y = k) are the same in the model containing and the model not containing this factor.

For estimation of DNord
1 and DSord

1 we replace population values in (5) to (8) by estimates from a representative sample.
For a sample of n individuals let p̂k denote the unconditional probability for the kth outcome category, Ŝ(k) =

∑K
j=k p̂j, the

unconditional estimate of P(Y ≥ k), and Ŝ(k|xi) the corresponding conditional estimate for the ith individual (1≤ i≤n)
which could be obtained from a (multiple) ordinal logistic regression using covariate vector xi.10

We arrive at

D̂N
ord
1 = 1

Ŝ(1)

K∑
k=1

p̂k

⎡⎢⎢⎣ 1
n<(k)

n∑
i=1

I(Ŝ(k |xi) < Ŝ(k))

(
Ŝ(k) − Ŝ(k |xi)

Ŝ(k)

)2⎤⎥⎥⎦
1∕2

(9)

and

D̂S
ord
1 = 1

Ŝ(1)

K∑
k=1

p̂k

⎡⎢⎢⎣ 1
n>(k)

n∑
i=1

I(Ŝ(k |xi) > Ŝ(k))

(
Ŝ(k |xi) − Ŝ(k)

1 − Ŝ(k)

)2⎤⎥⎥⎦
1∕2

(10)

with n<(k) and n>(k) denoting the number of subjects i with Ŝ(k|xi) < Ŝ(k) and Ŝ(k|xi) > Ŝ(k), respectively.
Though it is obvious that the case with ordinal outcomes should at least be similar to the case of survival outcomes

without censoring,1 this is worked out in detail in Appendix A.
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In the same way, the explained variation measure for survival outcomes, V W ,7 simplifies in uncensored samples to
the appropriate measure for ordinal outcomes, EV ord:

EVord = 1
P(Y > 0)

K∑
k=1

EVk+P(Y = k) (11)

where

EVk+ = 1 − E[P(Dk+ |X)(1 − P(Dk+ |X))]
P(Dk+)(1 − P(Dk+))

(12)

which is analogous to the definition for dichotomous outcomes.6
We shall illustrate the approach for ordinal outcomes by means of the covid-19 example in Section 6.

4 DN AND DS FOR NOMINAL OUTCOMES

Similar to our approach for ordinal outcomes in the previous section also our proposals for nominal outcomes are based
on certain dichotomizations of the considered outcome Y ∈ {0,1,… ,K}.

If there is no reference category among the K + 1 categories, then each outcome category can be separately contrasted
to all remaining categories, that is, k vs ¬ k for all k = 0,… , K. By defining Dk = I(Y = k) for k = 0,… , K let

DN1,k =

√
E<

(
P(Dk) − P(Dk |X)

P(Dk)

)2

(13)

DS1,k =

√
E>

(
P(Dk |X) − P(Dk)

1 − P(Dk)

)2

(14)

However, we refrain from proposing a single measure given as a (weighted) average of the DN1,k (or DS1,k) since
the DN1,k (or DS1,k) neutralize each other across categories k. This is easily seen for the dichotomous case K = 1 where
DN1,0 = DS1,1 and DS1,0 = DN1,1. Depending on the weights P(Y = k) the weighted result might be misleading. The
inspection and comparison of the individual DN1,k and DS1,k for k = 0,… , K is favored instead.

If there is a unique reference category, say category 0, then each of the remaining (unordered) outcome categories
can be contrasted separately to this reference, that is, k vs 0 for all k = 1,… , K. By defining D′

k = I(Y = k ∣ Y ∈ {0, k}) for
k = 1,… , K let

DN′
1,k =

√√√√√E<

(
P(D′

k) − P(D′
k |X)

P(D′
k)

)2

(15)

DS′
1,k =

√√√√√E>

(
P(D′

k |X) − P(D′
k)

1 − P(D′
k)

)2

(16)

DNnom0
1 and DSnom0

1 for nominal outcomes with reference 0 are then given as weighted averages of DN′
1,k and DS′

1,k,
respectively:

DNnom0
1 = 1

P(Y > 0)

K∑
k=1

DN′
1,kP(Y = k) (17)

DSnom0
1 = 1

P(Y > 0)

K∑
k=1

DS′
1,kP(Y = k) (18)

Estimation of conditional probabilities of D′
k might be based on a generalized logit model (eg, by using the link= glogit

option in SAS proc logistic).
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The EV measure for nominal outcomes with reference category 0, EV nom0, is structurally identical to EV ord as defined
by (11) and (12):

EVnom0 = 1
P(Y > 0)

K∑
k=1

EV′
kP(Y = k) (19)

where

EV′
k = 1 −

E[P(D′
k |X)(1 − P(D′

k |X))]
P(D′

k)(1 − P(D′
k))

(20)

We shall illustrate the approach for nominal outcomes by means of the covid-19 example in Section 6.

5 DN, DS, AND EV FOR A DICHOTOMOUS OUTCOME

This section serves two purposes. First, the two variants of DN and DS, as given in Equations (1) and (2) on the one hand,
and in Equations (3) and (4) on the other hand, will be contrasted with each other. Second, based on these results we will
be able to gain a deeper understanding of the connection of DN and DS with EV for dichotomous outcomes.

5.1 The two variants of DN and DS

We first investigate the decomposition of EV into the variation (ie, difference) between predictions in the protective and
in the harmful range of a prognostic factor, and the variation of predictions within each of these ranges. In the following,
a similar decomposition for DN and DS will enable us to show that DN1 and DS1 comprise both, the “within” and the
“between” component, while DN2 and DS2 reflect only the latter.

For enhanced readability, we denote the conditional probability, expectation, and variance in the protective range of X
by P<(.), E<(.), and Var<(.), respectively, for example, P<(D) = PX (D|P(D|X)<P(D)). A similar notation is used for these
entities in the harmful range of X by P>(.), E>(.), and Var>(.).

An explained variation measure has been defined as6

EV = 1 − E[P(D |X)(1 − P(D |X))]
P(D)(1 − P(D))

(21)

which is equivalent to

EV = E(P(D |X) − P(D))2

P(D)(1 − P(D))
(22)

if global calibration of the “true” model, that is, E(P(D|X)) = P(D), is assumed.1 The numerator in Equation (22) is then
equal to the variance of P(D|X). In addition, we assume that the “true” model is also locally calibrated in the protective
and in the harmful range of X such that E<(P(D|X)) = P<(D) and E>(P(D|X)) = P>(D). With 𝛼 = PX (P(D|X)>P(D)) and
noting that

P(D) = (1 − 𝛼)P<(D) + 𝛼P>(D) (23)

we arrive at the following decomposition for the numerator of EV (see Appendix B):

Var(P(D |X)) = (1 − 𝛼)Var<(P(D |X)) + 𝛼Var>(P(D |X))
+ 𝛼(1 − 𝛼)[P>(D) − P<(D)]2 (24)

The first two terms of the right hand side of (24) are a weighted average of the variations of the conditional predictions
within the protective and the harmful ranges around their respective conditional expectations. The third term measures
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F I G U R E 2 Schematic representation of unconditional probability P(D)
and conditional probabilities P(D|X), P<(D) and P>(D). For xS and xN see text

the variation between the protective and the harmful range by means of the same conditional expectations. For scalar X ,
Figure 2 illustrates the unconditional and various conditional probabilities used in this decomposition.

Similarly, noting that (23) implies P(D)−P<(D) = 𝛼(P>(D)−P<(D)) the numerator of DN1
2 from (1) can be decom-

posed into

E<(P(D) − P(D |X))2 = Var<(P(D |X)) + 𝛼2[P>(D) − P<(D)]2 (25)

while that of DS1
2 from (2) is equal to

E>(P(D |X) − P(D))2 = Var>(P(D |X)) + (1 − 𝛼)2[P>(D) − P<(D)]2 (26)

Thus, in variant 1 the degree of necessity comprises the variation of conditional probability within the protective range
plus a proportion of the “between” variation, and analogously for the degree of sufficiency and the harmful range.

In contrast to variant 1, the numerators of DN2 and of DS2 cover only the “between” part:

E<(P(D) − P(D |X)) = 𝛼[P>(D) − P<(D)] (27)

and

E>(P(D |X) − P(D)) = (1 − 𝛼)[P>(D) − P<(D)] (28)

resulting in

DN2 = 𝛼

P(D)
[P>(D) − P<(D)] (29)

and

DS2 = 1 − 𝛼

1 − P(D)
[P>(D) − P<(D)] (30)

Thus, for obtaining high degrees of necessity or sufficiency in variant 2, a small “between” variation [P>(D)−P<(D)]
can only be compensated by a large harmful range for DN2, that is, large 𝛼 in relation to P(D), or a large protective range
for DS2.

However, this simple structure allows to interpret DN2 from (3) as the attributable risk at a value xN that results in
P(D|X = xN ) = P<(D):

DN2 = P(D) − P<(D)
P(D) − 0

= P(D) − P(D |X = xN)
P(D) − 0

(31)

For a monotone model P(D|X), xN is unique (see Figure 2). Analogously,

DS2 = P(D |X = xS) − P(D)
1 − P(D)

(32)

with xS such that P(D|X = xS) = P>(D), is interpretable as reverse attributable risk.1
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5.2 Discrepancy between EV and the product of DN and DS

In our previous paper we have shown that EV = DN1 ⋅DS1 = DN2 ⋅DS2 if a single dichotomous prognostic factor is used
for conditional prediction.1 In more general settings, however, discrepancies between EV and DN⋅DS were observed with
positive or negative sign, which, for real data applications, proved to be reasonably small. This elegant multiplicative
decomposition is conceptually interesting, and we now can provide further detail for the case of dichotomous outcomes
and continuous prognostic factors. This subsection presents theoretical and empirical results on the deviation from this
decomposition. As definitions of DN and DS for possibly censored survival outcomes and for ordinal and nominal out-
comes build on DN and DS for dichotomous outcomes, the conclusions from this section extend to these more complex
outcomes as well if the degrees of necessity and of sufficiency are homogenous across time or categories.

First, we are interested in Δ1 = EV −DN1 ⋅DS1. From Equations (1), (2), (25), and (26) we conclude:

DN1 =
√

Var<(P(D |X)) + 𝛼2[P>(D) − P<(D)]2∕P(D) (33)

DS1 =
√

Var>(P(D |X)) + (1 − 𝛼)2[P>(D) − P<(D)]2∕(1 − P(D)) (34)

Equations (22) and (24) result in

EV = Var(P(D |X))∕[P(D)(1 − P(D))]

= (1 − 𝛼)Var<(P(D |X)) + 𝛼Var>(P(D |X)) + 𝛼(1 − 𝛼)[P>(D) − P<(D)]2

P(D)(1 − P(D))
(35)

There is no simplified general expression for Δ1; for properties of Δ1 under special conditions see Appendix C.
Second, using Equations (27) and (28), EV can be decomposed into DN2 ⋅DS2 plus a non-negative term comprising

the “within” components:

Δ2 = EV − DN2 ⋅ DS2 = (1 − 𝛼)Var<(P(D |X)) + 𝛼Var>(P(D |X))
P(D)(1 − P(D))

≥ 0 (36)

Thus, the larger the variation of conditional probabilities for D within the protective and harmful levels of X , the
larger is Δ2. The identity of EV and DN2 ⋅DS2 is exact for dichotomous X (Var< = Var> = 0), though it approaches zero
for situations with extremely strong covariate effects and all probabilities stacked near zero or one. Furthermore, since
DN1 ≥DN2 and DS1 ≥DS2 it follows that Δ1 ≤Δ2, which is consistent with the fact that variant 2 does not contain any
“within” component.

In order to assess the magnitudes of Δ1 and Δ2, we assume the conditional predictions to come from a simple logistic
regression model

log
(

P(D |X)
1 − P(D |X)

)
= 𝛽0 + 𝛽1X (37)

with a single marginally standard normally distributed prognostic factor X . The regression coefficient 𝛽0 is set to 0, ±1,
±2, ±3, ±4, while 𝛽1 varies between −2 and+ 2 in steps of 0.1. As a result, P(D) equals 0.5 for 𝛽0 = 0, while it ranges from
0.65 to 0.73 for 𝛽0 = 1, and from 0.87 to 0.95 for 𝛽0 = 3, the maximum being obtained at 𝛽1 = 0, the minimum at 𝛽1 = ± 2.
All (conditional) expectations involved were numerically approximated using the integrate() function in R version 3.5.1.
The dependence of Δ1 and Δ2 on 𝛽0 and the odds ratio,OR = exp(𝛽1), is visualized in Figure 3.

For model (37) we conclude from Figure 3:

• The discrepancy between EV and the product of DN and DS is much smaller for variant 1.
• If the standardized odds ratio, OR = exp(𝛽1), equals 1 then Δ1 = Δ2 = 0. In this case EV = DN1 = DS1 = DN2 = DS2 = 0

holds, which is a required property for these measures.1

• Δ1 ≥ 0 and Δ2 ≥ 0

Although not apparent for the odds ratios shown, both Δ1 and Δ2 peak and then decline towards zero as either OR or
1/OR increase indefinitely.
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F I G U R E 3 Discrepancies between EV and DN1 ⋅DS1 (top
panel) and DN2 ⋅DS2 (bottom panel) for the logistic regression model
(37) and a single standard normally distributed prognostic factor

Further empirical investigations have shown that the marginal distribution of X can also affect the magnitude of Δ1
and Δ2, for example, within the range of OR considered in Figure 3 we observed values of Δ1 between −0.004 and 0.158
for log-normally distributed X . However, we refrain from presenting detailed results, and note that the linear predictor
from a multivariable regression model often also follows a normal distribution.

Generally, for the typical effect sizes with most clinical and epidemiologic studies (OR between 0.2 and 5) Δ1 is close
enough to zero. In addition, also more extreme effects (eg, OR> 50 in the data set of the next section) tend to result in only
negligible values for Δ1. Therefore, the conceptually interesting view of explained variation as a product of the degrees of
necessity and of sufficiency can be kept for variant 1 also for continuous prognostic factors.

6 FULL ANALYSIS OF THE AUSTRIAN COVID-19 DATA

The Austrian Ministry of Health made available their internal “Datenplattform COVID-19” for research purposes related
to covid-19 in Austria.2 We extracted information on age group (<20, 20-34, 35-49, 50-64, 65-79, ≥80), sex, place of resi-
dence (on the level of 32 groups of districts), time of positive covid-19 test (calendar week), and date of covid-19-related
death (if applicable) for 19 747 infected individuals. The data cover information from February 24th to July 22nd, 2020.
The first three age groups were merged due to extremely low numbers of deaths. Places of residence were summarized
as urban agglomerations (at least 200 000 inhabitants, that is, Vienna, Graz, and Linz) vs others. For the time between
positive test and death the Thursday of the respective calendar week was assumed as starting date. We restrict the data
set to the 17 035 infected individuals with potential follow-up of at least 6 weeks.

Our interest focused on the effect of age group, sex, place of residence and month of infection by SARS-CoV-2 on
mortality. While further prognostic factors such as comorbidities as well as more detail on the severity of the course of
disease (hospitalization and intensive care) would have been of interest, this information was not available. The informa-
tion available, however, permits an impression of the use of the measures of necessity and of sufficiency for dichotomous,
ordinal and nominal outcomes developed in the previous and the current paper. The application of these measures does
not replace standard statistical analysis tools but complements them. Therefore, here as well as in other applications,
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T A B L E 2 Covid-19 disease after infection by SARS-CoV-2 in Austria (as of July 22, 2020)

Austrian
pop. in
millionsa

# Tested
positive
(% of (1))

# Deaths
by covid-19
(% of (2))

Marginal
OR for
death by
covid-19

Partial
OR for
death by
covid-19b

# Latec

deaths by
covid-19
(% of (2))

Partial
OR for
ordinal
outcomed

Variable (1) (2) (3) (4) (5) (6) (7)

Age group

<50 5.25 8645 (0.16%) 7 (0.08%) 0.12 0.12 3 (0.03%) 0.12

50–64 1.96 4678 (0.24%) 31 (0.7%) 1.0 1.0 16 (0.3%) 1.0

65–79 1.22 2198 (0.18%) 238 (10.8%) 18.2 17.5 153 (7.0%) 17.5

≥80 0.47 1514 (0.32%) 418 (27.6%) 57.2 62.3 262 (17.3%) 60.8

Month of diagnosis

February, March — 8663 297 (3.4%) 1.00 1.00 195 (2.3%) 1.00

April — 6922 370 (5.3%) 1.59 0.96 220 (3.2%) 0.97

May, June — 1450 27 (1.9%) 0.54 0.58 19 (1.3%) 0.59

Sex

Female 4.52 8651 (0.19%) 309 (3.6%) 1.00 1.00 192 (2.2%) 1.00

Male 4.38 8384 (0.19%) 385 (4.6%) 1.30 2.02 242 (2.9%) 1.98

Place of residence

Other 6.49 12 807 (0.20%) 430 (3.4%) 1.00 1.00 268 (2.1%) 1.00

Urban agglomerationse 2.41 4228 (0.18%) 264 (6.2%) 1.92 1.84 166 (3.9%) 1.79

Total 8.90 17 035 (0.19%) 694 (4.1%) 434 (2.5%)

Note: Patients with potential follow-up of at least 6 weeks.
a Population as of January 1st, 2020.11
b Partial effects are adjusted by all other factors of the table.
c “Late” deaths occur between week 2 and 6 after diagnosis of covid-19.
d Levels of 3-category ordinal outcome analyzed by proportional odds logistic regression: survived, late death, early death (within first week after diagnosis of
covid-19).
e Urban agglomerations exceed 200 000 inhabitants (ie, Vienna, Graz, and Linz).

calculation of DN and DS values typically is embedded into standard analyses, often by appropriate types of regression
models.

6.1 Description and standard statistical analysis of the Austrian data

A statistical summary of covid-19 in Austria is given by Table 2, including some results from multivariable models
(none of the pair-wise interactions were included due to statistical non-significance taking into account multiplicity;
goodness-of-fit according to Hosmer-Lemeshow is not rejected). All calculations were done using SAS 9.4.

We learn from column 2 that, for the total population, fewer than two individuals per 1000 inhabitants had been
infected until 6 weeks before July 22nd, 2020. In agreement with international data,3,4,5 the risk of dying from covid-19
for infected individuals is negligible for ages below 50 - less than 1 per thousand in Austria. For the remaining age groups
50-64, 65-79, ≥80, this risk increases to roughly 1%, 10%, and 25%, respectively. This confirms the substantial effect of
advanced age on covid-19 mortality. The effects of all other potential prognostic factors available to us, though statistically
significant (all P< 0.001), are of much lower magnitude, in particular if looking at unadjusted and adjusted estimates of
odds ratios (columns 4 and 5): the adjusted odds for death are twice as high for men than for women, and almost twice as
high for covid-19 patients in urban agglomerations than in smaller and more rural settlements. The adjusted odds ratios
decline with later months of infections, likely due to increasing medical experience with treatment of covid-19 rather
than due to an increase in the extensive testing. The intensity of the latter had been relatively constant over the time
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Marginal Partial

Variable EV DN1 DS1 EV DN1 DS1

Age group (4 cat.) 0.170 0.932 0.166 0.183 0.614 0.148

Month of diagnosis (3 cat.) 0.003 0.253 0.013 0.001 0.000 0.001

Sex 0.001 0.123 0.005 0.014 0.000 0.008

Place of residence (2 cat.) 0.004 0.176 0.023 0.010 0.000 0.006

Full model 0.193 0.933 0.179 — — —

Abbreviation: cat., categories.

T A B L E 3 Explained
variation (EV), degree of
necessity (DN), and degree of
sufficiency (DS) for Austrian
covid-19 data for dichotomous
outcome “covid-19 related
death”

frame of interest.12 The testing had exceeded 1 million tests by the end of July. Also repeated prevalence studies based on
polymerase chain reaction antibody testing of SARS-Cov-2 in representative random samples in Austria indicate a very
low amount of missed infections.13 Thus substantial bias of any estimated effects on covid-19 mortality can be ruled out.

Spearman correlations between the four prognostic factors are close to 0, with one exception: urban agglomerations,
with 27% of the population, contributed at the beginning of the pandemic, in February and March, only 16% of new
covid-19 cases, but this proportion increased to 26% in April and to 69% in May and June. More important, the proportion
of patients ≥80 years is approximately twice as high among infected women compared to men (11.2% vs 6.5%) and in
April compared to the remaining months of diagnosis (13.1% vs 6.1% in February and March and 5.8% in May and June).
This explains the most striking differences between adjusted (partial) and unadjusted (marginal) odds ratios in Table 2.

In general, if individual survival times are available one would prefer the specialized methods for such outcomes
to methods for dichotomous or for ordinal outcomes. Nevertheless, by realistically assuming that infected individuals
without a recorded death within 6 weeks survived and by limiting the time horizon of interest to 6 weeks (resulting in
type 1 censoring at 6 weeks), we may correctly analyze the data also by methods for dichotomous and for ordinal outcomes,
and compare these approaches. For the ordinal outcome we classify survival times into a few, medically well interpretable
ordinal outcome categories: survived, died between 2 and 6 weeks (see column 6 of Table 2), died within 1 week after
diagnosis. Slightly less than half of the deaths observed occurred in the first week after positive testing.

A proportional odds logistic regression model seems plausible, since separate binary logistic models for death (early
or late) vs survived and for early death vs late death or survived result in reasonably close estimates of the slope parameter
(2.16 and 1.94, respectively). The last column of Table 2 shows that results by a proportional odds model agree very much
with those from binary logistic regression for the dichotomous outcome.

6.2 Analysis of the prognostic factors in terms of EV, DN, and DS

While in Table 2 the odds ratios from logistic regression for the four prognostic factors considered are reported, in Table 3
we present corresponding values of explained variation of the outcome (EV) and of the suggested measures of the degrees
of necessity (DN1) and of sufficiency (DS1). Note that for each of the prognostic factors in Table 3 a single value for each
measure permits intuitive and easy comparisons. By contrast, in Table 2 each non-reference category receives a separate
odds ratio estimate which hampers comparability between the prognostic factors.

We learn from Table 3 that age group definitely is the only relevant factor, and that the modest marginal DN1 values
of the other factors vanish if adjusted by age group. This is consistent with the fact that the values of the full model do not
substantially improve beyond the effect of age group. Furthermore, and consistent with the similarity of results of binary
logistic regression and proportional odds logistic regression (columns 5 and 7 of Table 2) the EV , DN, and DS values for
the latter model (EV ord = 0.148, DN1

ord = 0.937, and DS1
ord = 0.137 for the full model) roughly agree with those reported

by Table 3 for the dichotomous outcome. Finally, the multiplicative decomposition of EV into DN and DS (see Section 5.2)
clearly indicates that it is the low degree of sufficiency (DS1) of available factors which leads to low EV and thus makes
individual predictions of death difficult.

For the categorical age variable it is easy to identify the protective and harmful range, introduced in Section 2, for
the dichotomous outcome: The death rates of 0.08% and 0.7% in the two lower age groups (<65 years) are well below
the overall rate of 4.1%, marking these two groups as “protective”; in contrast the two higher age groups (≥65 years) are
marked as “harmful” with rates of 10.8% and 27.6%.
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For the ordinal outcome the homogenous effect across categories k assumed under proportional odds implies con-
sistent protective ranges across k (and thus also consistent harmful ranges). This is due to the fact that a proportional
odds model leads to a parallel shift of conditional probability estimates across categories k. If, in addition, the estimated
intercepts are ordered according to the order of categories, then the unconditional estimates of P(Dk+) are monotone
with k. In practice, these two effects nearly compensate each other such that the cutpoint between conditional and
unconditional estimates, and therefore between the protective and the harmful range, is nearly the same across k.
Applying the proportional odds model to our data, both the cutpoint for k = 1, that is, death (early or late) vs sur-
vived, and the one for k = 2, that is, early death vs late death or survived, is at 65 years. Simulations indicate that the
observed proximity of cutpoints across k is typical also for realistic settings with continuous prognostic factors (results
not shown).

We now demonstrate how the relations presented in Section 5 are realized in our data. If the dichotomized age variable
(<65 vs ≥65) is used as the only prognostic factor for death from covid-19, then Var<(P(D|X)) = Var>(P(D|X)) = 0 with
DN1 = 0.930, DS1 = 0.142. By replacing the dichotomized factor by the age group variable containing four categories
(see Table 2) the protective and the harmful range are unchanged as are P(D) = 0.041, P<(D) = 0.003, P>(D) = 0.177 and
𝛼 = 0.218. However, Var> now amounts to 0.0068 if we distinguish patients aged 65 to 79 (with death rate 10.8%) from
those at least 80 years of age (with death rate 27.6%). Thus, DS1 increases to 0.166 by using Equation (26). The increase in
DN1 is much smaller since the variance Var< induced by dividing the protective range at age 50 is negligible (death rates
of 0.08% vs 0.7%). Replacing the dichotomous age variable by the 4-category variant increases the discrepancy between EV
and the product of DN1 and DS1 from 0 toΔ1 = 0.015. By contrast, DN2 and DS2 do not change, since they are independent
of Var< and Var> (see Equations (27) and (28)). Accordingly, Δ2 = 0.092 is substantially larger.

We have so far considered the outcome as either dichotomous (survived, died) or as ordinal (survived, died within
2-6 weeks after positive test, died within the first week). If we are not convinced that prolonged survival for a few weeks
and mostly under intensive care is to be preferred to a quick death within a week, we could consider the polytomous
outcome as nominal, that is, without an assumed order. Such situations lead to gray zones between the preference for
ordinal or for nominal scales.14 For the covid-19 data the application of the nominal measures of Section 4 (with reference
category “survived”) results in very similar values (EV nom0 = 0.139, DN1

nom0 = 0.933, DS1
nom0 = 0.112 for the full model),

due to numerical dominance of the reference category.
The estimates of explained variation for all outcomes considered remind us again that little is determined by age group

on an individual level. All types of analysis show good numerical agreement, mainly because of the dominant proportion
of survivors.

7 DISCUSSION

We have argued that in many fields of study, especially empirical sciences, the concept of a cause being necessary or
sufficient for an effect is nuanced. We have proposed measures DN and DS that quantify the degrees of necessity and
sufficiency of a prognostic factor when the outcome is dichotomous, nominal, or ordinal. This allows, we hope, a more
informative exploration of the relationship between “explanatory” and outcome variables. As we have seen, there is a
close relationship between DN and DS and established measures of explained variation EV . Explained variation permits
comparisons of the importance of individual prognostic factors,15 also if measured on different scales and of different types
(dichotomous, continuous, or qualitative), and even the comparison of groups of related factors.16 By supplementing EV
with DN and DS we can determine for example whether low EV is a result of low DN, low DS, or low DN and DS.

Tables 2 and 3 were obtained as part of our analyses of the Austrian covid-19 data. We considered four potential
prognostic factors and confirmed the dominant role of age, with some marginal effects of the others, but no real partial
effects after age was allowed for.

Note that among the four potential prognostic factors available in our Austrian covid-19 data only the place of resi-
dence qualifies as a modifiable risk factor. However, even here a causal interpretation of DN in the sense of an attributable
risk (and DS as reverse attributable risk1) as well as a literal interpretation of the “harmful” (urban agglomerations) and
“protective” (other place of residence) range necessitate a careful multivariable analysis also considering further potential
prognostic factors such as comorbidities. Nevertheless, whether prognostic factors are seen as modifiable or not we regard
DN and DS as a useful additional characterization of them. With our covid-19 data they tell us that total explained vari-
ation and thus predictability of individual outcomes can only be increased markedly by the addition of highly sufficient
factors, presumably certain comorbidities, to our existing multivariable model.
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In order to simplify application R functions and SAS macros for calculating DN and DS are provided at https://cemsiis.
meduniwien.ac.at/en/kb/science-research/software/statistical-software/.
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We start with survival outcomes and precisely follow notation and definitions in our previous paper (Section 3)1: in a
given sample, let ti, 𝜂i, and xi denote observation time, censoring indicator, and vector of prognostic factors, respectively,
for individual i (1≤ i≤n). Assume there are m distinct survival times in the sample, at times t(j) (1≤ j≤m), with dj deaths
at t(j). Then at each distinct death time t(j) we estimate the degree of necessity as

D̂N1,t(j) =
⎡⎢⎢⎣ 1

n<(t(j))

n∑
i=1

I(F̂(t(j) |xi) < F̂(t(j)))

(
F̂(t(j)) − F̂(t(j) |xi)

F̂(t(j))

)2⎤⎥⎥⎦
1∕2

(A1)

with I(.) denoting the indicator function, F̂(t) and F̂(t|X) unconditional and conditional cumulative distribution func-
tions, and n<(t(j)) the number of subjects i with F̂(t(j)|xi) < F̂(t(j)) at time t(j).

An overall estimate of DN1 is obtained via a weighted average of the D̂N1,t(j) over survival times, with weights designed
to compensate the attenuation in observed death due to earlier censorship:

D̂N
surv
1 = w−1

m∑
j=1

Ĝ(t(j))−1djD̂N1,t(j) (A2)

with w =
∑m

j=1 Ĝ(t(j))−1dj, and Ĝ(t) denoting the Kaplan–Meier estimator of the censoring or “potential follow-up”
distribution.

Moving to ordinal categorical outcomes interpreted as uncensored survival outcomes, first, the function Ĝ(t) always
assumes values of 1 and therefore can be dropped. Second, to comply with notation of Section 3, we replace the m distinct
times t(j) (1≤ j≤m) with dj deaths at t(j) by K + 1 ordinal categories (0≤ k≤K), K = m− 1, with estimated probabilities
p̂k = dk+1∕w,

∑K
k=0 p̂k = 1.

Then we obtain

D̂N
surv
1 =

K∑
k=0

p̂k

⎡⎢⎢⎣ 1
n<(k+)

n∑
i=1

I(F̂(k |xi) < F̂(k))

(
F̂(k) − F̂(k |xi)

F̂(k)

)2⎤⎥⎥⎦
1∕2

(A3)

with n<(k+) denoting the number of subjects i with F̂(k|xi) < F̂(k) in category k.
Now, in the presentation of the measures for survival outcomes,1 large survival times are considered favorable, while

with ordinal outcomes large values are considered unfavorable (without loss of generalizability). To make both approaches
comparable we transform survival times T to ordinal categories Y in such a way that large (small) survival times receive
favorable (unfavorable) outcome scores. Therefore, the longest survival times are scored best, that is, are moved to category
“0,” the longest but one survival times are moved to the best but one category “1,” … , and finally, the shortest survival
times are moved to the “worst” category “K.” As a consequence F̂(k) =

∑k
j=0 p̂j in (A3) turns into Ŝ(K − k) =

∑K
j=K−k p̂K−j =∑k

j=0 p̂j in (A4) below; analogously for F̂(k|xi) and Ŝ(K − k|xi).
Furthermore, note that under no censoring F̂(K) = 1, F̂(K|xi) = 1 resulting in F̂(K) − F̂(K|xi) = 0 in (A3) which turns

into Ŝ(0) − Ŝ(0|xi) = 0 in (A4). Therefore, in the version for ordinal outcomes (A4) averages are taken over all categories
except 0 (ie, over K components), which always would contribute a value of 0. With survival outcomes averages (A2) are
taken over all distinct survival times (ie, over m=K + 1 components), which is necessary for the case of censoring. Without
censoring the component related to the longest survival time contributes 0 to the averaging and therefore, correctly, should
not be included. With the typically observed many distinct survival times the downward bias from including it in the
estimation of DN and DS should be small. With ordinal outcomes, however, often having as few as 3 to 5 categories, it is
essential not to include category 0 in the averaging. This results in

D̂N
ord
1 =

(K−1∑
k=0

p̂K−k

)−1

⋅
K−1∑
k=0

p̂K−k

[
1

n<((K−k)+)

n∑
i=1

I(Ŝ(K − k |xi) < Ŝ(K − k))
(

Ŝ(K−k)−Ŝ(K−k | xi)
Ŝ(K−k)

)2]1∕2

=
( K∑

k=1
p̂k

)−1 K∑
k=1

p̂k

[
1

n<(k+)

n∑
i=1

I(Ŝ(k |xi) < Ŝ(k))
(

Ŝ(k)−Ŝ(k | xi)
Ŝ(k)

)2]1∕2
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which is (9) of Section 3. The relationships for DSord and EV ord can be presented along the same lines.

APPENDIX B.

For proving (24) we start from its right-hand side which is equal to

(1 − 𝛼)E<(P(D |X) − P<(D))2 + 𝛼E>(P(D |X) − P>(D))2 + 𝛼(1 − 𝛼)[P>(D) − P<(D)]2

= (1 − 𝛼)[E<(P(D |X))2 − P<(D)2] + 𝛼[E>(P(D |X))2 − P>(D)2] + 𝛼(1 − 𝛼)[P>(D)2 − 2P>(D)P<(D) + P<(D)2]
= [(1 − 𝛼)E<(P(D |X))2 + 𝛼E>(P(D |X))2] − [𝛼2P>(D)2 + 2𝛼(1 − 𝛼)P>(D)P<(D) + (1 − 𝛼)2P<(D)2]
= E(P(D |X))2 − [𝛼P>(D) + (1 − 𝛼)P<(D)]2

= E(P(D |X))2 − P(D)2

= Var(P(D |X))

APPENDIX C.

Some properties of Δ1 = EV −DN1 ⋅DS1:

• If Var< = Var> then Δ1 ≤ 0 since

EV2 − DN2
1 ⋅ DS2

1 = −(2𝛼 − 1)2[P>(D) − P<(D)]2Var<∕[P(D)(1 − P(D))]2 ≤ 0

• If Var< = Var> and 𝛼 = 0.5 then Δ1 = 0 following from (33), (34), and (35).
• A slightly more general, but still only sufficient condition for Δ1 = 0 is given by

Var>(P(D |X)) = Var<(P(D |X)) + (2𝛼 − 1)[P>(D) − P<(D)]2

This results from setting the expressions under the square roots of (33) and (34) to be equal, in which case their product
equals the numerator of (35). However, with a logistic regression model and normally distributed X , this condition is
only fulfilled for the case Var< = Var> and 𝛼 = 0.5 (scenario 𝛽0 = 0; see the empirical investigation in Section 5.2).

• If Var< = Var> = 0, that is, X is dichotomous, then Δ1 = 0 independent of 𝛼.


