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A B S T R A C T

This study designed to assess the expression level of CATSPER2 and TEKT2 and to evaluate the levels of CatSper2
and Tektin2 proteins in human spermatozoa before and after cryopreservation. One hundred and twenty semen
samples were included in this study. All the samples were subjected to qPCR and Western blot analysis. The
results showed a significant reduction in the expression levels of CATSPER2 and TEKT2 in the cryopreserved
compared to the fresh samples (P= 0.0039 and P=0.0166, respectively), and the results showed down-reg-
ulation in the expression level of CATSPER2 and TEKT2 genes between the study groups. Moreover, the protein
levels of the CatSper2 and Tektin2 were lower in cryopreserved samples compared to fresh samples
(P= 0.0001). In conclusion, the reduction in the proteins level and expression level of the CATSPER2 and TEKT2
in cryopreserved samples could be used as an indicator of sperm motility loss.

1. Introduction

Spermatozoa cryopreservation is a procedure used to preserve
spermatozoa for a specific period of time. Cryopreservation is the
freezing of cells or tissues to sub-zero temperatures, exactly -196 °C.
During cryopreservation, all biological activity of the spermatozoa is
paused until it is thawed when needed. Cryoprotectant agents such as
glycerol, ethylene glycol, Dimethyl sulfoxide (DMSO), and di-
methylformamide are used to minimize the damage that may occur on
the spermatozoa during the freeze-thawing cycle [1–3]. Several studies
showed a reduction in the ability of frozen spermatozoa to successfully
fertilize an oocyte compared to fresh spermatozoa [4–6], as cryopre-
servation leads to a decreased number of motile spermatozoa and re-
duced velocity of those that remain motile [7]. This is due to changes
resulting from rupture of the plasma membrane by intracellular ice
formation [5]. Moreover, there are several factors responsible for the
loss of spermatozoa function during cryopreservation for example os-
motic stress/dehydration, formation of reactive oxygen species (ROS),
intracellular formation of ice crystals, and cryoprotectant toxicity [8,9].
These factors are responsible for 25–75% loss of sperm motility, de-
creased spermatozoa cryosurvival, and DNA fragmentation after
thawing [10]. Calcium is an important secondary messenger, and plays
a vital role in controlling of spermatozoa motility [11] and the acro-
some reaction [12]. An elevated intracellular Ca2+ concentration may

be a major factor underlying the suppressed motility of immature bo-
vine spermatozoa [13]. Semen contains a high concentration of cal-
cium, and this becomes further concentrated as water is removed by ice
formation. During cryopreservation process, the architecture of the
plasma membrane is perturbed by lipid crystallization, and the rate of
metabolism decreases. Both of these factors reduce the ability of the
cells to regulate their intracellular Ca2+ concentration. Therefore, it is
likely that cryopreservation alters the intracellular Ca2+ concentration
in spermatozoa, which may contribute to the observed changes in the
level of certain proteins, sperm motility, and fertility.

Cation channels of sperm (CATSPER) proteins are calcium ion
channels found in the flagellum of sperm. These channels are related to
two-pore channels, and distantly related to transient receptor potential
(TRP) channels [14]. The CatSper channel is formed by four subunits,
named CATSPER 1–4 [15,16], and at least three auxiliary subunits,
CATSPER β, CATSPER γ, and CATSPER δ [17–19]. Each of these are
essential for its function, contributing to the development of hyper-
activated spermatozoa motility, fertility in male mice, and required for
spermatozoa motility at longer times after capacitation [14]. The gene
encoding CATSPER2 is located on chromosome 2 and encodes a protein
of 588 amino acids [15]. The CATSPER2 is transcribed during the early
stages of spermatogenesis (pachytene spermatocytes) [20], and the
expression of CATSPER has been reported to be low in sub-fertile men,
characterized by reduced sperm motility (up to 3.5-fold difference)
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compared to those with no motility defects. This suggests a possible
correlation between lower CATSPER gene expression and defective
spermatozoa motility in a proportion of sub-fertile patients [21]. Sev-
eral previous studies have identified an absence of CATSPER channels
as one of the causes of infertility in mice [19,22], primarily due to an
inability of spermatozoa to become hyper-activated [23,24].

TEKTINS are proteins that make up the microtubules in cilia, fla-
gella, basal bodies, and centrioles [25–27]. Genes encoding Tektin have
been cloned in rodents, and five genes have been identified in humans
[28,29] including TEKT1, TEKT2, TEKT3, TEKT4, and TEKT5 [30].
Human TEKT2 (also named Tektin-t & h-tekB1) is present in the prin-
cipal piece of spermatozoa [31] and play a critical role in the formation
and development of the cilia or flagella of spermatozoa [27,32]. A
previous study reported that the mutation in the TEKT2 gene can cause
defects in flagella activity, which could have a detrimental effect on
spermatozoa motility, leading to male infertility [26].

The present study was designed to investigate the influence of
cryopreservation process on the expression level of the CATSPER2 and
TEKT2 in human spermatozoa. Additionally, to evaluate the levels of
damage on the Tektin2 and CatSper2 proteins in human spermatozoa
during the cryopreservation process.

2. Materials and methods

2.1. Ethics statement

The present study was approved by the Institutional Ethics
Committee of Saarland University (195/11), and written informed
consent was obtained from all males enrolled in the study. All of the
samples were analyzed by the Department of Obstetrics; Gynecology &
Assisted Reproduction Laboratory, University of the Saarland,
Germany. Samples were analyzed according to standard operating
procedures.

2.2. Samples collection and sample criteria

The semen samples were collected from males underwent to assisted
reproduction techniques for infertility treatment. In total, one hundred
and twenty semen samples were collected from males by masturbation,
directly in the next day of the 3-day of sexual abstinence. All of these
samples were divided into two part: the first part as fresh samples and
the other part of samples for cryopreservation (120 as a fresh semen
sample and 120 semen samples were exposed to liquid nitrogen). Based
on the medical records and questionnaire, males who had the following
characteristics were excluded from this study: cryptorchidism, child-
hood disease, varicocele and hydrocele, and/or environmental ex-
posure to radiation, smoking, and alcohol consumption, the presence of
anti-sperm antibodies, Y chromosome microdeletions, abnormal hor-
monal parameters, and abnormal body mass index,.

2.3. Sample preparation

The samples were allowed to liquefy at 37 °C for 30min and then
processed immediately by using a Meckler counting chamber (Sefi-
Medica, Haifa, Israel). The semen parameters were analyzed according
to the World Health Organization guidelines [33]. Briefly, Semen
samples were prepared using a discontinuous PureSperm gradient
(Nidacon International) by layering 2ml of 90% and 40% PureSperm
solutions and then centrifuged at 500 × g for 20min at room tem-
perature. The pellet was washed twice with Ham-F10 medium, and then
the samples were placed in an incubator at 37 °C for 45min. The upper
layer (supernatant) was then aspirated from the lower layer (pellet).
The supernatant for all samples was divided into two parts: part one
(n=120) was processed immediately as “fresh”, and part two
(n=120) was cryopreserved with liquid nitrogen at −196 °C for 30
days as “cry”.

2.4. Spermatozoa cryopreservation using a computerized program freezer

Spermatozoa cryopreservation was performed using a programmed,
slow machine–freezing method. The cryovials were placed vertically in
the freezing chamber of a semi-programmable freezing machine (Planer
kryo 10 series iii, United Kingdom). DeltaTV-6 software was used to
achieve cooling from 20 °C to −80 °C at a rate of 1.5 °C/min then 6 °C/
min for 12min. Once the freezing process was complete, the straws
were removed and the samples were stored in liquid nitrogen at
−196 °C. The cryopreservation procedure takes around 40min.

2.5. RNA expression level study

2.5.1. Isolation of RNA from spermatozoa and reverse transcription
Total RNA was isolated from all spermatozoa samples (before and

after cryopreservation) using the miRNeasy Mini kit (Qiagen, Germany)
with slight modifications. Briefly, 100 μl of culture medium (PAN
Biotech, Germany) containing 10×106 spermatozoa was homo-
genized in 700 μl Qiazol lysis reagent (Qiagen, Germany) for 7min to
ensure complete lysis of the spermatozoa. Thereafter, the procedure
was completed according to the manufacturer’s recommendations. The
quantity and purity of extracted RNA were assessed by using a
Nanodrop ND-2000 spectrophotometer (Thermo Scientific, USA) in
order to ensure that the quality and quantity of extracted RNA was
sufficient for qPCR analysis. Total RNA was converted into cDNA in a
25 μl reaction volume using miScript reverse transcription kit (Qiagen,
Germany), all procedures were carried out according to the manu-
facturer’s recommendations.

2.5.2. Quantitative PCR (qPCR-Screening study)
Quantitative PCR (qPCR) was performed for all fresh and cryopre-

servation samples to quantify the expression level of three genes,
namely CATSPER2, TEKT2, and the housekeeping gene GAPDH as a
reference gene (Qiagen, Germany), using a StepOnePlus™ System
(Applied Biosystems 7500Fast, USA). The cDNA served as the template
for qPCR analysis, which was performed using the QuantiTect primer
assay (Qiagen, Germany) according to the manufacturer’s re-
commendations. In addition, a no template control (NTC) and no re-
verse transcriptase control (NRT) were included in each run. Note: All
qPCR experiments were performed in triplicate and the resulting Ct
values were normalized to GAPDH.

2.6. Protein level study

2.6.1. Isolation of proteins from spermatozoa samples
Proteins were isolated from all spermatozoa samples (before and

after cryopreservation) using lysis buffer (400 μl of 2% SDS containing
1 μl of protease inhibitor mixture) for the Western blot analysis. Briefly,
200 μl culture media (PAN Biotech, Germany) contained 10× 106

spermatozoa. Spermatozoa samples were washed twice with 400 μl
phosphate-buffered saline (PBS) by centrifugation at 4000×g for 5min
to create a pellet. The protein concentration in the supernatant was
measured by Bradford protein assay (Bio-Rad, Germany).

2.6.2. Optimization the concentration of extracted protein and Western blot
analysis

In order to obtain a good signal of protein, three different con-
centrations of protein (50, 75, and 100 μg) were used to find the op-
timum concentration. As shown in Fig. 1, the most defined band was
observed when a concentration of 75 μg protein was used, therefore,
this concentration was chosen for this study. All protein samples that
extracted from the spermatozoa were analyzed by using Western blot to
evaluate the levels of CatSper2 and Tektin2 protein in sperm samples
before and after cryopreservation (fresh, n= 120 & cryopreserved,
n=120). Western blotting was performed as previously described in
the study of Abid and his colleagues [34].
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2.6.3. Incubation of antibodies and detection of proteins
After the protein transfer process was complete, immunoblotting

was performed as follows: The PVDF membrane was rinsed with water
then stained for 1 h with Ponceau S solution (Sigma-Aldrich, Germany)
to detect the proteins. The stain was rinsed off with three washes of
Tris-buffered saline containing 0.1% Tween-20 (TBS-T) until the
background had become clear. To block non-specific binding to the
membrane, a solution of 5% non-fat dried milk powder in TBS-T buffer
was used. The blots were incubated with mouse monoclonal Tektin2
antibody (1:1000 diluted in TBS; 54 kDa; ab60918; Abcam, UK) and
rabbit polyclonal CatSper2 antibody (1:100 dilution in TBS; 62 kDa;
ab150890, Abcam) overnight at 4 °C with shaking. The blots were
washed with TBS-T buffer, then incubated at room temperature for 1 h
with anti-rabbit and anti-mouse IgG H&L horseradish peroxidase
(HRP)-conjugated antibodies (ab6728 and ab6721; Abcam) against the
Tektin2 and CatSper2 proteins, respectively, diluted 1:5000 (optimized
dilution) in TBS-T. After the blots had been washed with TBS-T, de-
tection of proteins was carried out using the Molecular Imager® Gel
Doc™ XR+ system with Image Lab™ software (Bio-Rad, Germany), and
the signals were developed and visualized. For normalization, the same
blot was stripped and re-probed with mouse monoclonal β-actin (1:100)
antibody (Sigma-Aldrich, Germany). The membrane was first covered
with stripping buffer (0.19M glycine, 3mM SDS, and 10ml Tween 20;
pH 2.2) and incubated at room temperature for 1 h, followed by three
washes with PBS and one wash with PBS containing Tween-20 (PBST).
The blots were blocked with non-fat dried milk and probed with an
anti-β-actin antibody diluted 1:100 (optimized dilution) (Sigma-
Aldrich, Germany), followed by the mouse secondary antibody. For the
negative controls, parallel blots were incubated with TBS instead of the
monoclonal and polyclonal antibodies.

2.6.4. Imaging and normalization of protein bands
The Amersham ECL Prime Western blotting detection reagent

(Sigma-Aldrich, Germany) containing a chemiluminescent substrate
was applied to the blot according to the manufacturer’s recommenda-
tions. To control for variability during the protein loading step in the
Western blot, β-actin was used as a loading control (LC) for normal-
ization of the CatSper2 and Tektin2 proteins. The normalization steps
were conducted as previously described in the study of Liu and his
colleagues [35].

2.7. Statistical analysis

All data obtained from the Western blot and qPCR were analyzed
using IBM SPSS for Windows software package version 24.0 (SPSS Inc.,
USA). To avoid any statistical errors during data analysis the type of
data distribution was detected through the SPSS program by using the
following tests skewness test, Kurtosis test, Z-value, and Shapiro test.
The results of these tests showed that the samples included in this study
were not normally distributed (non-parametric). The Mann–Whitney U
test (Mann–Whitney test) was used to compare quantitative variables.
The results were accepted as statistically significant when the P-value
was less than or equal to 5% (P≤0.05). The relative RNA quantities in
the “cry” versus “fresh” samples were calculated separately by the
comparative ΔCt method. The threshold cycle (Ct) reflects the cycle

number at which the fluorescence curve generated within the reaction
crossed the threshold for qPCR. The ΔCt was calculated by subtracting
the Ct values of GAPDH from the Ct values of the RNA of interest, where
ΔCt = (Ct RNA of interest) - (Ct GAPDH). The ΔΔ Ct was then calculated
by subtracting the Δ Ct of “cry” samples from the ΔCt of the “fresh”
samples, where ΔΔCt = (ΔCt fresh - ΔCt cry). The fold-change for the
RNAs was calculated by the 2−ΔΔCt equation [36].

3. Results

The present study was prepared to determine the effect of cryo-
preservation on the expression levels of CATSPER2 and TEKT2 and
protein level in the human spermatozoa. The age of males included in
this study ranged between 24–50 years, with a mean age of 36.8 ± 6.3
years. The clinical characteristics of the study population are shown in
Table 1.

3.1. Expression level of CATSPER2 and TEKT2 gene in spermatozoa
samples before and after cryopreservation

In the qPCR study, 120 sample from the fresh and 120 sample from
the cryopreserved group were used, to determine whether there was
any change in the expression level of CATSPER2 and TEKT2 genes in
spermatozoa before and after cryopreservation. The results of this study
showed a significant decrease in the expression levels of CATSPER2 and
TEKT2 in the cryopreserved samples compared to the fresh samples
(P= 0.0039 and P= 0.0166, respectively) (Fig. 2). Also the present
results showed down-regulation in the expression level of TEKT2 and
CATSPER2 genes between fresh samples and cry samples with fold
change 11.08 and 30.48, respectively (Table 2).

3.2. Protein levels of CatSper2 and Tektin2 in human spermatozoa before
and after cryopreservation

The level of CatSper2 and Tektin2 protein in the human sperma-
tozoa before and after cryopreservation was evaluated using Western
blotting. The results of this study have been shown a single band at 62
and 54 kDa, the expected sizes of the CatSper2 and Tektin2 proteins,
respectively, were observed more clearly in the fresh samples compared
to cryopreserved samples (Fig. 3). Beta-actin was used as a loading
control to determine if the samples had been loaded equally across all
wells, and to confirm protein transfer during the Western blot protocol.
No bands were present in the negative control, confirming the specifi-
city of the bands. The levels of the CatSper2 and Tektin2 proteins were
lower in spermatozoa of cryopreserved samples compared to fresh
samples, with 0.44 ± 0.35 vs. 0.77 ± 0.25 (P=0.0001) and
0.58 ± 0.24 vs. 0.76 ± 0.09 (P= 0.0001), respectively; (Fig. 4).

4. Discussion

Cryopreservation of spermatozoa is a widely used technique to

Fig. 1. The optimization process of protein concentration for the Western blot
analysis, three protein concentrations were tested, 50, 75, and 100 μg.

Table 1
Clinical characteristics of the study population (n=120).

Variables Median Mean SD Min Max Range

Age (year) 35.00 36.8 6.3 24.00 50.00 26.00
Sperm count (million/ml) 78.00 84.93 55.92 1.70 226.00 224.30
Percentage of sperm total

motility
57.00 55.38 20.97 0.00 89.00 89.00

Percentage of sperm
progressive motility

42.00 38.40 22.56 0.00 82.00 82.00

Percentage of sperm non-
progressive motility

10.00 10.00 17.16 0.00 75.00 75.00

Sperm vitality test (Eosin
test)

55.15 55.15 17.14 0.00 87.00 87.00

SD: Standard deviation, Min: minimum, Max: Maximum.
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preserve the biological function of spermatozoa. During the cryopre-
servation process, the spermatozoa undergo a dramatic transformation
in their chemical and physical characteristics as the temperature drops
from +37 to -196 °C, thus risking cryo-damage. The speed of cooling
and thawing is a critical step, and inappropriate cooling or thawing
rates are negatively correlated with spermatozoa survival [37]. Several
proteins identified in human spermatozoa tails have been implicated in
the regulation of motility, and these belong to diverse protein classes
including ion channels, cytoskeletal proteins, cell signaling proteins,
and glycolytic enzymes [38]. CatSper2, a Cation ion channel that reg-
ulates Ca2+, and Tektin2, a membrane protein responsible for sper-
matozoa flagella movement, were the targets of this study. Previous
studies have reported that CatSper and Tektin are related to male in-
fertility problems, as they play an important role in sperm motility
[14,39]. Furthermore, Hildebrand and his colleagues identified sperm
motility defects due to the loss of CatSper channels, which are ex-
pressed in the principal piece of the spermatozoa flagellum [40].
Spermatozoa with a deficiency in CatSper channels can move through
the extracellular matrix of the oocyte, but cannot penetrate the zona
pellucida due to failure to achieve Ca2+-dependent hyper-activated
motility. In contrast, other study reported that Tektin2 is required for
dynein arm integrity in spermatozoa flagella, and the deficiency in
Tektin2 causes male infertility due to impaired sperm motility [31,41].

During the cryopreservation process, spermatozoa are subjected to
detrimental chemical and physical effects such as intracellular ice
crystal formation and dissolution, altered membrane permeability,
cellular dehydration, and osmotic injury [42]. The effects of freezing

and thawing can harm the spermatozoa, influencing their fertilization
capacity by damaging their cell membrane, DNA, and acrosomes, and
by severely impairing sperm motility [37]. The results of the present
study show decreased RNA expression of CATSPER2 and TEKT2 in the
cryopreserved samples compared to fresh samples. This finding is in
agreement with another study that found that cryopreservation affects
the mRNA–protein interaction and makes mRNA molecules more sus-
ceptible to degradation [43]. Besides that, other studies found sig-
nificantly higher levels of CATSPER2 and CATSPER3 mRNAs in high-
motility spermatozoa than in the low-motility fraction [44,45]. The low
CATSPER2 and TEKTIN2 mRNA expression observed in the

Fig. 2. RNA expression levels of CATSPER2 and TEKT2 in human spermatozoa.
ΔCt of the RNAs in the spermatozoa of cryopreserved (cryo) samples (n= 120)
compared to the fresh samples (n=120) of the same males as determined by
qPCR. Data were analysed by the Mann–Whitney (U test), and P≤ 0.05 was
considered significant.

Table 2
Expression of CATSPER2 and TEKT2 genes in spermatozoa samples after
cryopreservation samples compared to fresh samples.

TEKT2 CATSPER2

Fresh samples Mean Ct 34.18 33.45
ΔCt 4.59 4.75

Cryopreserved samples Mean Ct 33.2 34.86
ΔCt 8.06 9.68

ΔΔCt −3.47 −4.93
Fold change 11.08 30.48
Regulation Down Down

Ct: Cycle threshold.

Fig. 3. Protein levels of CatSper2 and Tektin2 in human spermatozoa before
and after exposure to cryopreservation, as determined by western blotting. The
proteins were separated on a 12.5% SDS-polyacrylamide gel then transferred to
a PVDF membrane. (A) CatSpar2, (B) Tektin2, and (C) β-actin bands were vi-
sualized with the appropriate antibodies on an ECL system. The CatSpar2 and
Tektin2 proteins were 62 and 54 kDa, respectively. The loading control, β-actin
(42 kDa), was used to confirm equal loading of protein in each lane. (D) The
negative control was incubated without primary antibodies to check for non-
specific binding. Pierce pre-stained protein molecular weight marker (Thermo
Fisher, Germany) was used. Cryo: cryopreserved sample; Fresh: fresh sample.

Fig. 4. CatSper2 and Tektin2 protein levels in human spermatozoa of cryo-
preserved samples compared to fresh samples.
Cryo: cryopreserved sample; Fresh: fresh sample,
P≤ 0.05 considered significant.
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cryopreserved spermatozoa samples of the present study suggest that
the reduced motility reported after freezing may result from impaired
transcription of these genes in some spermatozoa, related to sperm
motility. Valcarce and his colleagues studied the effect of cryopre-
servation on human spermatozoa mRNA expression and found a sig-
nificant effect on fertilization and early embryo development [46]. In
the present study, the levels of the Tektin2 protein were lower in the
spermatozoa of cryopreserved samples compared to fresh samples. This
result is in agreement with previous studies which reported that
membrane cytoskeletal components are sensitive to temperature,
causing damage to spermatozoa surface proteins [6,47]. Furthermore,
cryoprotectant toxicity can induce alterations in the spermatozoa
membrane components [48]. On the other hand, the result of the pre-
sent study showed down-regulation in the expression level of CAT-
SPER2 and TEKT2 gene in cryopreserved samples compared to fresh
sample and these results in matching with previous studies that iden-
tified four down-regulated proteins (TEKTIN1, VIM, ACO2, AND ENO1)
that were putatively involved in sperm motility, viability, acrosome
integrity, ATP, mitochondrial membrane potential, capacitation, acro-
some reaction, and intracellular calcium concentration. These marked
differences strongly suggest that dysfunctional spermatozoon after
cryopreservation may be due to protein degradation and protein
phosphorylation [6,49–51].

5. Conclusion

The results of the current study showed a significant reduction in
the expression level of the CATSPER2 and TEKT2 gene (down-regula-
tion) and in the level of Catsper2 and Tektin2 proteins in cryopreserved
samples compared to fresh samples. The reduction in the RNA expres-
sion level and protein levels of Catsper2 and Tektin2 may be used as
markers to explain the causes of motility loss in the spermatozoa after
cryopreservation process in the males who underwent to assisted re-
productive technology.
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