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a b s t r a c t   

The heterogeneous phenotypes among patients with coronavirus disease 2019 (COVID-19) has drawn 
worldwide attention, especially those with severe symptoms without comorbid conditions. Immune re-
sponses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative virus of COVID-19, 
occur mainly by the innate immune response via the interferon (IFN)-mediated pathways, and the adaptive 
immunity via the T lymphocyte and the antibody mediated pathways. The ability of the original Wuhan 
SARS-CoV-2 strain, and possibly more so with new emerging variants, to antagonize IFN-mediated antiviral 
responses can be behind the higher early viral load, higher transmissibility, and milder symptoms compared 
to SARS-CoV and are part of the continued clinical evolution of COVID-19. Since it first emerged, several 
variants of SARS-CoV-2 have been circulating worldwide. Variants that have the potential to elude natural 
or vaccine-mediated immunity are variants of concern. This review focuses on the main host factors that 
may explain the immune responses to SARS-CoV-2 and its variants in the context of susceptibility, severity, 
and preexisting immunity. 
© 2022 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health 
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Introduction 

Since the emergence of coronavirus disease 2019 (COVID-19) in 
December 2019, it has caused a rapid worldwide emergency [1]. 
Unlike previous pandemics, the cause of the infection was promptly 
identified; the International Committee on Taxonomy of Viruses 
named the causative virus of COVID-19 as severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2) based on its genetic simi-
larity to SARS-CoV (80%) [2]. The major impact worldwide was 
mostly due to the high transmission rate and a high number of cases. 
However, the fatality rate of SARS-CoV-2 (5%) is lower, in compar-
ison to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 
(10%), and Middle East Respiratory Syndrome Coronavirus (MERS 
CoV) (30%) [3,4]. However, SARS-CoV-2 transmission has also been 
reported even among asymptomatic patients [5]. Mutations in the 
SARS-CoV-2 receptor binding domain which has given rise to new 
SARS-CoV-2 variants including B.1.1.7, B.1.351, P.1, B.1.526, B.1.427 and 
B.1.429, has been suggested to have increased the binding affinity of 
the virus to Angiotensin-converting enzyme 2 (ACE2), and increased 
virus infectivity as compared to its most genetically related virus, 
SARS-CoV and earlier variants of SARS-CoV-2 [6]. The clinical man-
ifestations of COVID-19 range from being asymptomatic to critically 
ill, such as pneumonia, severe acute respiratory distress, multi-organ 
damage, and, possibly, death [7]. An estimated 15% of all confirmed 
cases progress to present a severe form of the disease with a higher 
percentage seen among the elderly [8]. In COVID- 19 patients, the 
dysfunction, dysregulation, over activation, and intertwining of the 
different mechanisms of innate and adaptive immunity are thought 
to lead to severe pneumonia [9,10], which suggests that COVID-19 
induced pneumonia can be considered as an immune-mediated 
disease [11,12]. The phenomenon of the cytokine storm is thought to 
be responsible for the most severe forms of SARS-CoV-2 infec-
tion [13–16]. 

The objective of this review is to explore how specific immune 
mechanisms play a role in the: (1) severity of COVID-19 phenotype 
among patients that lack comorbidities of the infection, (2) devel-
opment of cytokine storm in a subset of patients, (3) clinical pre-
dictors of severe COVID-19 phenotype and associated immune 
components, and (4) immune response to the different emerging 
SARS-CoV-2 variants of concern (VOC) in relation to evading natural 
and/or vaccine induced immunity. In this review, to be able to de-
monstrate the impact of the notable variants on the immune system, 
we will first present the foundational roles of the major immune 
components involved in COVID-19 infection and their contribution 
to the severity of the disease. We will also shed light on different 
variants of SARS-CoV-2, cross-reactivity and its possible role in the 
pathogenesis of COVID-19 infection. 

Innate immune response in COVID-19 

Innate immunity is the first line response to protect host cells 
from viral infection. The features of this response elicit nonspecific 
immune reactions that determine the outcome of the infection and 
the heterogeneous clinical phenotypes [17]. Innate defense me-
chanisms were found to be sufficient to control SARS-CoV infection, 

in the absence of CD4+ T cells, CD8+ T cells and antibodies [18–20]. In 
fact, the response to SARS-CoV has been reported to be mainly 
through the innate inflammatory response, rather than the specific 
adaptive immune response, due to possibly a lack of cytokine ac-
tivity [21]. However, viruses have evolved to either evade or in-
activate the innate immune responses or lead to a hyperactivated 
inflammatory response [22]. SARS-CoVs are single-stranded RNA 
(ssRNA) viruses that stimulates innate immune responses and are 
excessive when compared to other viruses, such as influenza [23,24]. 

Regions of the SARS-CoVs genome were shown to work as im-
munostimulants for several components of innate immunity 
through the activation of Toll-like receptors, such as TNF-α, IL-6 and 
IL-12 [25,26]. In comparison to other ssRNA viruses, this im-
munostimulant activity is two-fold higher [23]. A major factor re-
lated to disease outcome is the ability to resolve the initial 
inflammatory response [27], demonstrating that a strong innate 
immune response is not necessarily the best response [28]. Several 
components of the innate immune response have been found to play 
an important role in the progression and clinical presentation of 
COVID-19 infection. 

Pattern recognition receptors, neutrophils, and macrophages 

The innate immune response to SARS-CoV-2 infection is medi-
ated via alveolar macrophages and dendritic cells which express 
pattern recognition receptors (PRR) which recognize Pathogen- 
Associated Molecular Patterns (PAMPs) and Damage-Associated 
Molecular Patterns (DAMPs) [29]. During this recognition, the NOD- 
like receptor family, pyrin domain-containing 3 (NLRP3) inflamma-
some is activated [30,31]. This activation of the NLRP3 inflamma-
some plays a vital role in the early stages of infection to efficiently 
limit virus replication by subsequent inflammation [32,33]. Limited 
or dysfunctional NLRP3 inflammasome activation has an essential 
role in the pathogenesis of severe organ injury [31,33–35]. Although 
activation of the NLRP3 inflammasome and its mediated in-
flammation is necessary for the defense against viruses, impaired/ 
excessive activation can also mediate damage and adverse disease 
outcomes [31,33–35]. In SARS-CoV-2 infection, despite the lack of 
data regarding any direct association between the NLRP3 in-
flammasome and COVID-19, several studies suggested the involve-
ment of NLRP3 and cytokine storm and cell apoptosis [30,36–39]. 
The activation of inflammasome in macrophages, epithelial cells, and 
endothelial cells results in the releases of pro‐inflammatory cyto-
kines, most notably, IL‐1β and IL‐18, leading to the characteristic 
feature of neutrophilia and leukopenia seen in severe COVID-19 
cases [40,41]. 

Mannose-binding lectin (MBL) protein is also a contributor to 
pattern-recognition molecules and plays a critical role in the first- 
line host defense against SARS-CoV, before antibody production. 
MBL deficiency has been linked to an increased susceptibility to 
SARS-CoV infection [42–44], and correlated with an increased ge-
netic predisposition to SARS-CoV [43]. In COVID-19 patients, MBL 
pathway-mediated complement activation has been shown to con-
tribute to thrombosis and coagulopathy in patients with severe 
COVID-19 [45]. In addition, Toll-Like Receptor (TLR) sense viral RNA 
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that results in the activation of TLR3, TLR7, TLR8, and TLR9, and 
consequently activates the Nuclear Factor kappa B (NF-κB) pathway. 
A large number of pro-inflammatory cytokines play a major role in 
triggering virus-induced inflammation [46]. The increased secretion 
of the pro-inflammatory cytokines and chemokines recruits mainly 
monocytes and T lymphocytes, but not neutrophils to the infected 
site, elucidate the presentation of lymphopenia and the high neu-
trophil-lymphocyte ratio seen in most COVID-19 patients [47]. 

Interferons and cytokines 

In most COVID-19 patients, recruited immune cells controls the 
infection in the pulmonary tissue that terminates the immune re-
sponse, and leads to recovery from the viral infection. However, in a 
subset of patients, evasion of innate immunity occurs and a later 
excessive/dysfunctional immune response is triggered, culminating 
into a cytokine storm during which an unusual lack of IFN and a 
massive elevation of Granulocyte Colony-Stimulating Factor (G-CSF), 
IP-10, MCP-1, Macrophage Inflammatory Protein 1α (MIP-1α) and 
Tumor Necrosis Factor-alpha (TNF-α), IL-2, IL-6, IL-7, IL-10 are ob-
served [47,48]. The exact mechanism of how SARS-CoV-2 evades the 
innate immunity and causes excessive inflammatory response that 
result in a higher degree of viral load is yet to be determined, but 
antagonism of the interferon signaling pathway have been high-
lighted [47]. Another mechanism could be the significantly high N 
protein expression in SARS-CoV-2–infection [49]. N protein was re-
ported to antagonize IFNβ response in SARS-CoV infected cells [50]. 
IFN synthesis and signaling have also been found to be antagonized 
by SARS-CoV open reading frame (Orf) 3b and Orf6 [51]. Innate 
immunity is mainly mediated via interferons (IFN), which are the 
first line of defense against viral infections by activating macro-
phages and natural killer (NK) cells. This interferes with the pro-
duction of viral proteins by presenting antigens to cytotoxic T-cells 
that can directly bind and destroy the virus-infected host cells, 
hence preventing severe consequences of the disease [4,52]. 

Crosstalk between macrophages, conventional dendritic cells and 
plasmacytoid dendritic cells are a major cellular pathway for the 
control of severe and fatal cytopathic virus infection [53]. All three 
types of interferons (I, II, and III IFNs) share a common signal 
transducer and activator of transcription 1 (STAT1) that control the 
expression of several IFN regulated genes [54]. Deletion of any of the 
signaling components involved in the STAT1 signaling pathway 
significantly weakens the innate immune response and increases 
susceptibility to several pathogens, including viruses [55]. STAT1 has 
also been reported to play a role in adaptive immune processes, 
especially those seen in SARS-CoV patients with severe infection  
[55]. MERS-CoV, SARS-CoV and SARS-CoV-2 have been found to 
encode proteins that contribute to the suppression of IFN by 
avoiding interferon-stimulated gene (ISG) effector functions and 
evading antiviral innate immune pathways [52,56–62]. This occurs 
in severe outcome patients that showed lower ISG and im-
munoglobulin gene expression levels, persistent chemokine levels, 
and deficient anti-SARS spike antibody production [63,64]. However, 
during SARS-CoV-2 infections, levels of IFN-I and IFN-III have also 
been shown to be low despite sufficient ISG expression, which re-
sulted in a decrease in the innate antiviral response [65,66]. This low 
IFN level was accompanied with elevation in proinflammatory cy-
tokines, which culminated in an inadequate antiviral response in a 
hyperinflammatory setting that can explain the pathogenicity of 
severe COVID-19 cases [65]. In patients with severe COVID-19 en-
hanced expression of TNF-α, macrophage inflammatory protein 1-α 
(MIP-1α), GM-CSF, IL-2, IL-6, MCP3, and IP-10 were detected. Ex-
cessive levels of chemokines (CXCL1, IP-10, CXCL5, CCL2/MCP1, 
CXCL10) were also demonstrated among those patients with severe 
COVID-19 [13,67–70]. 

The higher the infectiveness of SARS-CoV-2, the lower the levels 
of IFNs and proinflammatory cytokines/chemokines are, compared 
to SARS-CoV (52). SARS-CoV-2 reportedly does not trigger any IFN 
response, and only significantly activates 5 of the 13 proin-
flammatory mediators, compared to 11 of the 13 that are activated 
during SARS-CoV infection. The low degree of innate immune acti-
vation can also explain the asymptomatic or mild symptoms in more 
than 80% of COVID-19 patients [71]. The angiotensin converting 
enzyme 2 (ACE2) receptor, which is utilized by both SARS-CoV and 
SARS-CoV-2 for cell entry, is also down regulated by IFN-γ and in-
terleukin-4 (IL-4) [72]. However, unlike IFN-γ that may not be acti-
vated, IL-4 acts early during the replication cycle of the virus [72]. 

Immune complexes and complement system 

Pathogenic levels of immune complexes (ICs) are commonly seen 
in several disorders, such as serum sickness or viral diseases where 
IC deposition and excessive inflammatory reactions have been re-
ported [73]. The involvement of ICs in the pathogenesis of severe 
cases of SARS-CoV-2 infection is supported by the late development 
of the cytokine storm, especially endotheliitis and disseminated 
microvascular thrombosis, which affects multiple organs, including 
the heart, brain, and kidney [74–76]. Complement proteins bind to 
erythrocytes that then carry ICs to phagocytes in the liver and the 
spleen. The role and activation of the complement and coagulation 
pathways in the setting of SARS-CoV-2 infection are controversial; 
despite most studies confirming an essential role [77–80]. Ad-
ditionally, to activate the innate type-I interferon and IL-6 dependent 
inflammatory immune responses, complement function was found 
to modulate and predict immunity, susceptibility, and clinical out-
come associated with SARS-CoV-2 infection [81]. For example, the 
activation of the complement protein, C3, occurs early and con-
tributes to the prothrombotic and proinflammatory states culmi-
nating in end organ damage seen in severe cases of COVID-19 [82]. In 
severe COVID-19 cases, high inflammatory markers were associated 
with pathologically low levels of C3 and C4 complement compo-
nents. These low levels were concluded to be a result of excessive 
activation of the complement pathway with the consequent lung 
pathology, which resulted in declining C3 level [80]. 

Adaptive immune response in COVID-19 

Lymphocytes 

T lymphocytes are of high importance for clearing an infectious 
process that has begun, as their plasma levels correlate with higher 
survival [83,84]. Activated killer T cells in response to SARS-CoV-2 
have the ability to prevent the spread of the virus from the upper 
respiratory tract. Hence, the efficiency of this response will de-
termine the fate of the symptom severity, host viral load and 
transmission rates into the community. Leukopenia and lymphocy-
topenia have been proposed as a way the virus evade the host im-
mune response [85–87]. At the time of SARS-CoV infection, CD8+ T 
cell depletion did not affect viral clearance or replication, whereas 
CD4+ T cell depletion resulted in pathologic consequences re-
presented by interstitial pneumonitis and delayed clearance of in-
fection from the lungs [18]. This CD4+ T cell depletion and delay in 
viral clearance was found to be associated with a reduction in the 
production of cytokines, neutralizing antibodies, and the recruit-
ment of lymphocytes to lung tissue [18], highlighting the impact of 
COVID-19 on CD4+ T lymphocyte [79,88]. 

Severity, mortality, and dysregulated immunological response 
towards SARS-CoV-2 induces lymphopenic community-acquired 
pneumonia (L-CAP), and the presence of lymphopenia and hy-
percytokinemia indicates poor control of the pathogen [7,48,89,90]. 
This has also been seen in patients with severe SARS-CoV infections  
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[63,64]. The low lymphocyte counts have been suggested to be due 
to the direct cytotoxic action of the virus by preventing cytokine 
storm and dampening the innate immune responses [90–92]. Mul-
tiple genes involved in apoptosis and P53 signaling were found to be 
upregulated in patients with COVID-19, which may help explain the 
development of lymphopenia in these patients [70]. In addition, host 
factors have also been reported to contribute to the lymphopenic 
state in severe SARS-CoV-2 infections, as patients requiring intensive 
care generally have comorbidities such as hypertension, diabetes, 
cardiovascular and cerebrovascular disease and are commonly older 
than those with mild disease presentation [7]. Both older age and 
comorbidities are associated with endothelial dysfunction, which 
increases the risk of enhanced leukocyte adhesion and extravasation 
and contributes to lymphopenia seen in severe SARS-CoV-2 infec-
tions [93,94]. During severe SARS-CoV infection, an unusual con-
version of B lymphocytes to macrophage-like cells leads to inability 
of the humoral and cellular component of the immune system to 
respond in time to neutralize viral infection [95,96]. This is thought 
to be driven by the spike protein of SARS virus, and the local hypoxia 
seen in patients with severe SARS-CoV infection [96]. COVID-19 has 
led to an exhaustion of effector T cells, negatively affecting their 
defense against SARS-CoV-2 [97,98]. This loss of effector T cell 
function is either due to the increased expression of inhibitory re-
ceptors on the surface of T cells due to cytokine activity or a re-
duction in regulatory T cells [79,99]. 

T cells and pre-existing immunity 

The membrane (M), spike (S), nucleocapsid (N), open reading 
frame (ORF), mainly ORF3a, and ORF8 proteins, and non-structural 
proteins (NSP), specifically NSP3 and NSP4, are all proteins targeted 
by SARS-CoV-2−specific CD8+ and CD4+ T cells. The presence of S- 
reactive CD4+ T cells was reported in 83% of patients with SARS-CoV- 
2 infection. Interestingly, the detection of SARS-CoV-2−reactive CD4+ 

T cells in healthy controls highlighted possible cross-reactive T cell 

recognition between circulating CoV and SARS-CoV-2 [100]. Studies 
have demonstrated the presence of SARS-CoV-2-reactive CD4+ T cells 
in 20% of SARS-CoV-2 seronegative healthy donors in the Nether-
lands [88], 34–81% in Germany [101,102], 40–60% in the United 
States of America [100], 51% in Singapore [103], and 30% in the 
United Kingdom [104]. However, a study from the UK did not detect 
any SARS-CoV-2-reactive T cell responses in unexposed healthy vo-
lunteers [105], and a study from Wuhan failed to detect any spike- 
specific T cell responses before vaccination on 108 volunteers 
without pre-exposure to COVID-19 [106]. 

Antibodies 

Humoral response against SARS-CoV-2 has been found to be 
comparable to other CoVs, SARS-CoV in particular [107–111]. During 
SARS-CoV-2 infections, SARS-specific immunoglobulin M (IgM) an-
tibodies were found to appear two weeks (can be as early as 
3–6 days) after the onset of the infection, last one month before they 
gradually start to disappear until the end of week 12 [107,109–111] 
(Fig. 1). Immunoglobulin G (IgG) was produced 16–18 days after the 
onset of infection [107,109] (Fig. 1) and to last for a longer but limited 
time in COVID-19 patients [107]. Overall, the antibody responses for 
SARS-CoVs do not last for a very long time [112–114]. SARS-CoV 
antibodies were not detectable in 91% of tested samples when 
measured six years after SARS-CoV infection [115]. In SARS-CoV-2 
infected patients, detection of both IgM and IgG antibodies are used 
to identify the stage of the infection. While it is still unclear on how 
long antibodies to SARS-CoV-2 will be present in the system, a re-
cent study reported the level of anti-SARS-CoV-2 antibodies reduced 
by half-life during week 4–12 following the start of infection [116]. 
However, studies have shown that patients can recover from SARS- 
CoV-2 infection without functional B cells, highlighting that despite 
the importance of the antibody response, it is not essential [117,118]. 

While CoV infections were shown to trigger an antibody re-
sponse, this usually results in the formation of neutralizing or 

Fig. 1. The time relationship between viral load, viral infection, IgG, IGA, IgM, CD4 + , and CD8 + .  
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enhancing antibodies as seen in SARS-CoV and MERS-CoV [119–121]. 
Enhancing antibodies and neutralizing antibodies can counteract 
each other’s function [122]. Neutralizing antibodies exert their ac-
tion via blocking the entry, egress, or the fusion of the virus into the 
host cell; for example, recognition of spike protein RBD by neu-
tralizing antibodies blocks viral entry [123]. Even though virus- 
specific antibodies are considered to have antiviral effects and aid in 
viral clearance, the presence of specific antibodies can enhance viral 
infections through antibody-dependent enhancement (ADE) [124]. 
ADE was correlated with an increase in the level of proinflammatory 
mediators and a decrease in anti-inflammatory mediators [125]. In 
SARS-CoV infection, ADE was facilitated by the engagement of Fc 
receptors on different immune cells, which facilitated viral entry  
[126–130]. Whether the triggered antibodies will have enhancing or 
neutralizing properties, is proposed to be a function of antibody 
quality and quantity. Antibodies produced with higher concentra-
tions, and those with higher affinity are less likely to result in ADE  
[131]. In the setting of ADE, engagement of Fc receptors of immune 
cells is proposed as an ACE2 independent path of viral entry into 
host cells [130] (Figs. 2,3). 

Autoimmunity 

SARS-COV-2 antigenic mimicry with human tissue has received 
attention recently. It was found that several host tissue antigens had 

strong reactions with the SARS-CoV-2 antibodies; this highlighted 
that not only pulmonary tissue antigens, but several other tissue 
antigens cross-reacted with SARS-CoV-2 proteins [132,133]. Specifi-
cally, the relationship between SARS-CoV-2 spike, nuclear proteins 
and autoimmune target proteins highlighted the possibility of an 
autoimmune reaction against human tissues resulting in the ex-
tensive organ, tissue, and cellular damage seen in severe SARS-COV- 
2 infections, this significant reaction can potentially result in an 
autoimmune reaction against host proteins and tissues such as 
pulmonary surfactant proteins, connective tissue, the respiratory, 
digestive, cardiovascular, and nervous systems [132–135]. It is worth 
mentioning that a recent study demonstrated that the risk of de-
veloping severe COVID-19 phenotype among patients with auto-
immune diseases concluded no difference compared to controls  
[136]. This can be due to their concomitant use of immune sup-
pressant, which can play a role in modulating cytokines storm in 
severe COVID-19 cases. 

Antibodies and pre-existing immunity 

The cross-reactivity between CoVs, SARS-CoV, MERS-CoV, and 
SARS-CoV-2 is unclear. A study of COVID-19 specific humoral im-
mune response has shown that the patient’s produced IgM and IgG 
antibodies, cross-reacted with SARS-CoV, but not with other human 
CoVs (HCoVs) [137]. If cross-reactivity exists between pre-existing 

Fig. 2. The possible roles of preexisting immunity in the protective and excessive immune response (cytokine storm) against SARS-CoV-2.  

Fig. 3. The relationship between symptom severity, cross-reactivity, neutralizing antibodies, and antibody dependent enhancement. A. Neutralizing antibodies (NAb) bind to 
SARS-CoV-2, neutralize it, and prevent its binding to ACE2 on host cells, the NAb-virus complex is engulfed and degraded by phagocytes. B. A demonstration of antibody- 
dependent enhancement (ADE) where non- neutralizing antibodies (non-NAb) bind to SARS-CoV-2 but lack the ability to neutralize it, the NAb-virus complex binds to immune 
cells via the Fc receptors (FcR) on their surface, this results in marked increase in the release of inflammatory cytokines (cytokine storm) and suppression of anti-inflammatory 
cytokines. If cross-reactivity with other human coronaviruses (hCoV) exists and triggers high concentration of antibodies with strong affinity this results in an efficient immune 
response and subside SARS-CoV-2. If cross-reactivity with other hCoV exists but rather triggers low concentration of antibodies with low affinity this results ADE where non-NAb 
mediate massive increase in inflammatory cytokines which results in severe SARS-CoV-2 infection with cytokine storm as a hallmark. Created with BioRender.com. 
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antibodies against other CoVs, then cross-reactive ADE is possible 
where infection with the new SARS-CoV-2 can be enhanced, re-
sulting in a more severe illness or a faster adaptive immune response 
(Figs. 2,3). The higher prevalence of common CoVs in previous years 
in some regions in the world, might explain the higher pathogenicity 
of SARS-CoV-2 infection in these affected regions based on the as-
sumption of ADE with pre-existing enhancing antibodies against 
those common CoVs. For example, the link between early response 
with higher titers and older age may indicate a priming effect from 
existing antibodies against other endemic strains [128]. The HCoV 
circulate continuously, therefore, it is sensible to assume that CoVs 
antibodies are higher in older people compared to children, in-
cluding enhancing antibodies [138]. Children infected by SARS-CoV- 
2 usually have milder presentation of the disease [139]. However, we 
do not have enough evidence to conclude such role of ADE. 

This possibility of ADE makes it doubtful that the use of con-
valescent plasma to treat SARS-CoV-2 infection is of benefit, as 
theoretically, it can potentially lead to transmission of enhancing 
antibodies from individuals who recovered from SARS-CoV-2 infec-
tion, hence worsening of the disease in recipients. Some studies 
reported a lack of effectiveness of convalescent plasma and induc-
tion of endothelial damage, while clinical studies did not reveal any 
deleterious effects of using convalescent plasma to treat SARS-CoV-2 
infection which makes the possibility of transmission of enhancing 
antibodies unlikely [122,140]. The mutations present at the spike 
level of SARS-CoV-2 variants are of concern and have been cate-
gorized as immune escapes. It is possible that these mutations in-
fluence ADE antibody elicitation, thus making the human host more 
or less susceptible to infection and reinfection irrespective of pos-
sible cross-reactivity of antibodies. Nevertheless, the issue of en-
hancing antibodies is of great importance for the development of a 
vaccine against SARS-CoV-2, which ideally should not aim to induce 
enhancing antibodies in healthy individuals [130]. To date, studies 
on currently available vaccines excluded the possibility of vaccine 
triggering enhancing antibodies. Nevertheless, identifying the SARS- 
CoV-2 neutralizing, cross-neutralizing, and enhancing epitopes is 
essential for any vaccine design to minimize the risk of ADE. Epi-
topes of T cell should also be recognized to outline protective im-
munity [122,141]. 

Cross-reactivity and COVID-19 susceptibility and severity 

The potential cross-reactivity between seasonal HCoVs, SARS- 
CoV and MERS-CoV and the pandemic SARS-CoV-2 can have im-
plications on the course of COVID-19 natural infection. While the 
immunity to some HCoVs such as HCoVOC43 and HCoVHKU1 has 
been shown to fade within one-year [25,142], SARS-CoV and MERS- 
CoV infections can potentially induce longer-lasting immunity  
[143,144]. Memory T-cell responses specific for SARS-CoV have been 
detected two years after recovery [64]. In general, betacoronaviruses 
have the potential to trigger immune responses against one another 
by sharing antigen epitopes for presentation to the immune system 
via major histocompatibility (MHC) class I receptors [145]. This is 
why significant titers of cross-reactive antibodies against other be-
tacoronaviruses were detected in sera of SARS-CoV patients  
[143,145,146]. SARS-CoV and HCoV-OC43 infections have been 
shown to result in cross-reactive antibodies against MERS-CoV and 
SARS-CoV, respectively [143,146]. However, some studies reported 
that antibodies induced by SARS-CoV are unable to cross-neutralize 
MERS-CoV [147]. The strongest cross-reactivity was detected be-
tween SARS-CoV-2 and MERS-CoV/SARS-CoV antibodies due to ge-
netic sequence identity [148]. Nevertheless, cross-reactivity of 
antibodies against SARS-CoV-2 with MERS-CoV, SARS-CoV, HCoV- 
OC43, and HCoV-HKU is controversial [109,144,148,149]. While some 
studies demonstrated that the sera of SARS-CoV patients concluded 
no cross-neutralization against SARS-CoV-2 implicating the lack of 

cross-protection, others have reported that SARS-CoV-2 antibodies 
cross-reacted with SARS-CoV [109,144,146,148,150]. 

It is unknown whether cross-reactive memory T cells may ex-
acerbate COVID-19 disease or reduce its severity [151]. Increased 
severity of COVID-19 due to cross reactivity can be due to poor 
avidities of T cell receptors or abnormal T cell polarization. The 
concept of cross-reactivity is of great importance however, since 
taking measures to contain COVID-19 will mean less spread of SARS- 
CoV-2, it also means less spread of herd immunity to HCoV  
[152,153]. The consequence of this is the presence of low levels of 
cross-immunity between other betacoronaviruses and SARS-CoV-2. 
Ultimately, the result could be that SARS-CoV-2 will start to fade 
before a resurgence after some time [145]. 

It is important to note that cross-reactivity does not necessarily 
mean cross-protection. Cross-reactivity has also been reported be-
tween Dengue virus (DENV) and Zika virus (ZIKV) as their im-
munological cross-reactivity is expected due to the similarity in their 
geographic distributions and high sequence homology. While T cell 
responses may help explain the cross-protection against Zika virus 
from a previous Dengue virus infection, cross-reactive antibody re-
sponses may increase the risk of severe secondary Dengue virus 
infections [154]. Similarly, it was shown that ADE triggered by a 
previous CoV infection could increase susceptibility to and the se-
verity of SARS-CoV-2 infection [155,156]. Thus, the development of 
cross-reactive T cell responses and cross-reactive antibodies may 
prevent or promote severe disease, depending on their precise bal-
ance upon the secondary infection with a different serotype (Fig. 3). 
Subset alteration of lymphocytes were found to be associated with 
both clinical characteristics and treatment efficacy of COVID-19  
[157]. Specifically, cytotoxic T lymphocytes have been reported to be 
an independent predictor for COVID-19 severity and treatment ef-
ficacy [157]. Cross-reactivity may explain the vital involvement of 
humoral immune response in vaccine-mediated protection against- 
and recovery from SARS-CoV infection, which should be accom-
panied by the development of a neutralizing antibody response  
[158–161]. These SARS-CoV-specific neutralizing antibodies devel-
oped during convalescence were found to prevent the reinfection 
with the virus in animal models [162]. A study from the United 
States reported reinfection in a patient with two distinct strains of 
the SARS-CoV-2 virus, and suggested that previous exposure to the 
virus would not result in total immunity [163]. 

Susceptibility to SARS-CoV-2 can be difficult to define due to 
largely unknown pre-existing cross-protective immunity in in-
dividuals exposed to antigenically related pathogens, including 
viruses [164]. Reduction in symptom severity and transmission rates 
of homologous and heterologous HCoVs have been reported in the 
setting of prior immunity by previous exposure to one HCoV  
[25,165,166]. However, cross-protective immunity with HCoV is not 
thought to be long-lasting [167], as repeated infections have been 
reported in all age groups with both homologous and heterologous 
HCoVs [25,26]. This might explain the age-related susceptibility to 
and increased severity of COVID-19 among the elderly as higher 
HCoV infection rates are seen in children [166,168,169] and reported 
to be associated with relative protection from SARS-CoV-2 [170]. 
Despite the scarcity of data regarding the relationship between aging 
and the host response to virus infection, few studies provided a 
potential explanation for the increased susceptibility and more se-
vere lung pathology following SARS-CoV infection. Baas et al. re-
ported an age-dependent innate immune response to SARS-CoV in 
mice. Innate immune response to SARS-CoV was found to differ with 
the age of the host; older mice respond with a faster and ex-
acerbated innate immune response than younger mice but had a 
delay in the virus clearance [18,55,171,172]. Animal and human 
studies are yet to confirm these findings in SARS-CoV-2 infection. 
Most importantly, a second wave of a biphasic response in aged mice 
was found to trigger a subset of genes that is responsible for the 
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activation of T lymphocytes leading to severe histopathologic 
changes in the lungs [18,55,171–173]. 

Similarly, higher levels of PGD2 seen in the lungs of older patients 
with severe respiratory infections have been found to negatively 
affect the initial innate immune and the later adaptive immune re-
sponses [174]. Studies in macaques using SARS-CoV also concluded a 
more robust innate immune response in older macaques, while IFN- 
β expression as an anti-inflammatory cytokine was found to be low 
in older macaques [175]. Despite rare deaths and better prognosis in 
children younger than 15 years, among the rare severe cases, they 
were found to have more severe symptoms than those displayed by 
older children [139]. Higher ACE2 activity in younger children  
[25,26,145,146,165–170], compared to those older than 13, have been 
noticed and suggested to explain the more severe symptoms among 
the younger children [176]. This higher ACE2 activity is not believed 
to result in severe complications in children as in adults [177]. In 
addition, SARS-CoV-2 has been shown to be associated with a de-
creased count of CD4 cells; children have been found to have higher 
numbers of CD4 cells compared to adults, this may explain their 
better prognosis [178,179]. Although rare, severe cases of COVID-19 
among children have been reported, SARS-CoV-2 in these cases has 
been associated with triggering Kawasaki disease and toxic shock 
syndrome [141,180]. 

Notable variants of SARS-CoV-2 

Over the past 18 months, the SARS-CoV-2 virus has started to 
acquire mutations, approximately two single-letter mutations per 
month in its genome, resulting in new variants. Several significant, 
more fit to survive, variants have emerged. As SARS-CoV-2 began to 
spread rapidly, the number of immune individuals was insignificant, 
so the variant with more efficient transmission prevailed and gained 
an advantage over other circulating strains. With the greater spread 
of infection, and as the number of immune individuals increased, the 
virus started to gain benefits from evading naturally induced im-
munity where it can potentially reinfect the same individual, so 
variants with better ability to evade naturally induced immunity 
have better chances for survival in the new host. Those variants have 
been labeled by the World Health Organization as variants of con-
cern (VoC). With the initiation of a global vaccination program, those 
VoCs can potentially threaten to elude vaccine-induced immunity, 
which may jeopardize vaccination efficacy. Eventually, when much 
of the susceptible population is vaccinated with effective vaccines, 
the variant better suited for survival in the new host will be the one 
with a better ability to evade the vaccine-induced immunity. 
However, variants that are able to evade vaccine-induced immunity 
have not yet been reported and may not necessarily emerge [181]. 

One of the first identified variants includes the D614G mutation 
in the Spike (S) protein modification [182,183]. This mutation targets 
amino acid 614, which is located outside the receptor binding do-
main (RBD) and is known to enhance viral infectivity by shifting the 
S protein conformation towards ACE-2 binding fusion state to allow 
viral entry and replication [182,184,185]. Another variant that 
emerged in North Jutland, Denmark but with very limited spread is 
the Cluster 5 SARS-CoV-2 variant which was related to infection 
spread in mink farms and was transmitted to humans. This variant 
has been shown to have a combination of mutations that have not 
been observed before. To date, following extensive investigation and 
surveillance, Danish authorities have identified only 12 human cases 
of the Cluster 5 variant up to September 2020, and it does not appear 
to have spread widely. 

More recently, a combination of mutations and deletions have 
appeared in the RBD region, which contains a N-terminal domain of 
S protein and a receptor-binding motif (RBM). The B.1.1.7 variant or 
the Alpha VOC of SARS-CoV-2 emerged in the United Kingdom, (also 
previously known as S gene negative, 20I/501Y.V1, or VOC 202012/ 

01), has notable mutations that include N501Y, where asparagine (N) 
has been replaced with tyrosine (Y) at position 501 of the RBD of the 
S protein. This variant has a 69/70 deletion, which can result in 
conformational changes in the spike protein, and a mutation in 
P681H, which occurs in a highly variable region in coronaviruses, 
near the S1/S2 furin cleavage site. This S gene negative variant is now 
replaced by the Delta VOC (also known as the B 1.617.2) [186]. 

The B.1.351 variant of SARS-CoV-2 has emerged independently in 
South Africa (also termed 20H/501Y.V2). B.1.351 variant contains 
several mutations in the spike protein, which include E484K, K417N, 
and N501Y. A resurgence of the COVID-19 in Manaus, Brazil, is also 
associated with a new variant (known as P.1 lineage). The P.1 lineage 
began circulating in Manaus and has seventeen unique mutations 
detected; three of these mutations were identical to the B.1.351 
variant and were reported in the RBD of the spike protein: K417T, 
E484K, and N501Y. Variant B.1.17, B.1.351, P.1 have been declared as 
variants of concern (VoC) by the WHO, as these variants share 
common characteristics, including escape mutations and impact 
neutralization efficacy. While variant B.1.1.7 has been shown to be 
more sensitive to neutralization, it does not appear to evade the 
immune system [187,188]. Mutations present in the B.1.351 and P.1 
variant (K417T, E484K, and N501Y) are highly concerning, since they 
have shown to compromise neutralization that was generated by a 
previous infection or vaccination and may increase viral infectivity 
and fitness [189–191]. Two other SARS-CoV-2 sequences belonging 
to the B.1.1.207 lineage have been reported recently in Nigeria. These 
sequences have been shown to share one non-synonymous mutation 
in the spike protein (P681H) in common with the UK B.1.1.7 variant; 
none of the other 22 unique mutations of the B.1.1.7 lineage was 
detected in these sequences. The P681H mutation occurred at the 
highly variable region near the S1/S2 furin cleavage site [192]. 

Immune response and VoC 

Among the many concerns of the emergence of new variants, the 
ability to evade natural or vaccine-induced immunity is of most 
concern. To be able to evade natural or vaccine-induced immunity, 
the virus will need to accumulate several mutations in the spike 
protein to be able to overcome the polyclonal immune response to 
several parts of the spike protein triggered by vaccines or natural 
infection with SARS-CoV-2. The most dominant mutation worldwide 
is presented as SARS-CoV-2 with the D614G variant. In vitro studies 
indicate that this mutation confers greater infectivity, while mole-
cular epidemiology correlates it with an increase in transmissibility 
with no evidence to date for increased virulence. This variant was 
shown to be highly sensitive to natural or vaccine-derived neu-
tralizing antibodies, which can be due to the effect of this mutation 
on the S protein [184,193], so this variant is unexpected to threaten 
the antibody-mediated immunity produced in response to the ori-
ginal D614 S protein. The Denmark cluster 5 variant has been sug-
gested to have the potential to reduce virus neutralization in 
humans and consequently decrease the duration of immunity trig-
gered after natural infection or vaccination. Mutations that target 
regions located outside the RBD have not been associated with in-
creased severity; however, they have been reported to result in in-
creased infectivity and transmissibility [194]. Several studies 
concluded that SARS-CoV-2 with the D614G variant is highly sensi-
tive to neutralizing antibodies, natural or vaccine-derived, which can 
be due to the effect of this mutation on the S protein [184,193]. The 
RBD is immunodominant and accounts for 90% of serum neutralizing 
activity [195]. Mutations in the RBD have been reportedly associated 
with a higher potential of evading the immune system. The RBD 
variant N439K has been found to result in enhanced RBD affinity for 
ACE2 and higher viral load, it also was concluded to be able to evade 
antibody-dependent immunity, but no change in disease severity 
was associated with this variant. B.1.1.7 variant (Alpha variant) that 
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first emerged in the UK before it spreads to several other countries 
has been shown to be associated with an increased fatality com-
pared with other variants [192]. For the B.1.351variant (Beta variant) 
of SARS-CoV-2 that has emerged in South Africa, there is no evidence 
of any impact on disease severity. There is some evidence though, 
that linked E484K, one of the spike protein mutations, with an effect 
on neutralization by some polyclonal and monoclonal antibodies  
[196,197]. 

At the time of P.1 variant (Gamma variant) emergence, Manaus, 
Brazil was expected to have surpassed the theoretical herd im-
munity threshold (67%) [198]. It was reported that this variant might 
influence the transmissibility and antigenic profile of SARS-CoV-2, 
which may affect the ability of antibodies generated through pre-
vious natural infection or through vaccination to recognize and 
neutralize the virus; a study reported that this variant might have 
the ability to elude the human immune response that was triggered 
by the previous variant. Although sequencing of the variants that 
emerged in Nigeria (B.1.1.207) has shown no signs of increased 
virulence, it is still unknown whether these variants have any impact 
on the transmission or disease severity of SARS-CoV-2 in Nigeria  
[192]. Table 1 displays the main variants of SARS-CoV-2 and the 
consequent change in transmissibility, virulence, and antigenicity. 
Further studies must investigate the impact of the new variants of 
concern on reinfection, resurgence, cross-reactivity, and ADE. In- 
vitro evidence demonstrates that the presence of the E484K muta-
tion reduces the neutralization of multiclonal antibodies in con-
valescent sera [190]. It is noteworthy to mention that lack of 
neutralization does not essentially mean lack of protection from 
disease antibodies; although important, they are not the only im-
mune component in the fight against SARS-CoV-2. The marginal 
amount of antibodies can still protect from SARS-CoV-2, in fact, the 
possibility of reinfection can also provide an immunity boost that 
has been seen in other viral infections such as rubella, where re-
infection was shown to be clinically insignificant, patients were 
noninfectious and boosted immunity against the virus [199]. 

It is also of high importance to take T cell responses into con-
sideration when talking about immunity towards these new var-
iants. A recent study has shown that, compared to antibodies [200], 
T cells can be more resilient to threats from emerging variants. This 
proposed resilience is reportedly due to the fact T cells generated in 
response to SARS-CoV-2 were found to target at least 15–20 different 
fragments of coronavirus proteins which hinders the virus’s ability 
to escape cell recognition. In fact, a recent study reported that most 
T-cell responses are unlikely to be altered by the mutations in 
emerging variants [201]. 

Conclusion 

Understanding the mechanisms associated to the innate im-
munity provides us a better understanding of the pathogenesis of 
the disease and a promising therapeutic treatment. Despite the in-
creasing number of studies on the immunologic aspects of SARS- 
CoV-2 infection, more studies are still needed to adequately help 
predict the progression of the infection into asymptomatic or critical 

phenotypes. An early inadequate IFN antiviral response, and a later 
overproduction of proinflammatory cytokines, ADE, infection of in-
nate immune cells, recruitment of uninfected cells from the circu-
lation to the primary site of infection, and/or the consequent 
massive immune reactions induce hyperinflammation, may play a 
vital role in the progression to life-threatening complications seen in 
severe COVID-19 cases. The roles which SARS-CoV-2-specific T cell 
phenotypes, autophagy, ADE, and cross-reactivity may play against 
SARS-CoV-2 needs to be further investigated. Currently, there is also 
a lack of details of the roles of the hyperactivation of the immune 
system to the lung and the systemic damage that can lead to pa-
tients’ death [142,202]. 

The increased virus infections provide the basis for SARS-CoV-2 
to mutate and better evade host immunity, which has led to new 
variants showing higher transmissibility rates. Any future global 
immunization program will need to cover immunity against new 
coronavirus variants to ensure the effectiveness of these vaccination 
programs. Further research must be conducted the investigate the 
transmission, virulence, and antigenicity of the VoC’s, and its asso-
ciation to the COVID-19 heterogeneous phenotypes. 
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