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Abstract: Worldwide, concerns about heavy metal contamination from manmade and natural sources
have increased in recent decades. Metals released into the environment threaten human health,
mostly due to their integration into the food chain and persistence. Nature offers a large range of
materials with different functionalities, providing also a source of inspiration for scientists working
in the field of material synthesis. In the current study, a new type of copolymer is introduced, which
was synthesized for the first time by combining chitosan and poly(benzofurane-co-arylacetic acid),
for use in the adsorption of toxic heavy metals. Such naturally derived materials can be easily and
inexpensively synthesized and separated by simple filtration, thus becoming an attractive alternative
solution for wastewater treatment. The new copolymer was investigated by solid-state nuclear
magnetic resonance, thermogravimetric analysis, scanning electron microscopy, Fourier transform
infrared spectroscopy, and X-ray photon electron microscopy. Flame atomic absorption spectrom-
etry was utilized to measure heavy metal concentrations in the investigated samples. Equilibrium
isotherms, kinetic 3D models, and artificial neural networks were applied to the experimental data
to characterize the adsorption process. Additional adsorption experiments were performed using
metal-contaminated water samples collected in two seasons (summer and winter) from two former
mining areas in Romania (Ros, ia Montană and Novăt,-Bors, a). The results demonstrated high (51–97%)
adsorption efficiency for Pb and excellent (95–100%) for Cd, after testing on stock solutions and
contaminated water samples. The recyclability study of the copolymer indicated that the removal
efficiency decreased to 89% for Pb and 58% for Cd after seven adsorption–desorption cycles.

Keywords: eco-friendly copolymer; poly(benzofurane-co-arylacetic acid); chitosan; heavy metals
removal; wastewater; Ros, ia Montană; adsorption mechanism

1. Introduction

It is well-known that anthropogenic impact causes water pollution, habitat loss or
degradation, and spread of invasive species, thus affecting marine ecosystems, wildlife, and
human health, and contributing to climate change and quantitative as well as qualitative
decrease of freshwater resources [1–3]. These effects are harmful not only to individual
species and populations but also to entire communities [4–6]. Nowadays, heavy metal pol-
lution has become a serious problem due to metals’ difficult natural degradation processes
and persistence in the environment, from where they are gradually released into water
bodies which serve as sinks for contaminant discharge [7]. Moreover, human exposure
to toxic concentrations of cadmium and lead can cause acute symptoms (e.g., irritation,
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abdominal pain, diarrhea, headache, nausea) and long-term effects (e.g., “itai-itai” dis-
ease, renal tubular dysfunction, encephalopathy, hypertensive disorders, cancer, coma,
and death) [8,9].

Nowadays, scientists find inspiration from the enormous variety of materials that na-
ture offers and their diverse uses. Adsorbents derived from biopolymers, including polysac-
charides, have the benefits of being biocompatible and biodegradable [10]. For instance, chi-
tosan is a polysaccharide synthesized through the deacetylation of chitin (the second most
abundant polymer in nature after cellulose) and is used in a variety of fields including
catalysis, biomedicine, veterinary medicine, pharmaceuticals, drug delivery, decontami-
nation, membrane and film synthesis, food science, and enzyme immobilization [11–14].
Chitin can be found in significant quantities in seafood processing waste produced in many
eastern and southeastern Asian countries [15]. Compared with conventional adsorbents,
chitosan is biocompatible, antibacterial, biodegradable, easily separable through filtration,
involves low costs, and has amino and hydroxyl functional groups that provide effec-
tive binding sites for contaminants, especially heavy metals (through chelation, i.e., ion
exchange) [16]. The nitrogen atom in amino groups is the donor of electrons, while metal
ions act as acceptors [17]. Chemical or physical modifications can improve chitosan’s poor
solubility and small surface area. Physical modification methods can enable processing into
membranes, beads, nanofibers, gels, nanoparticles, honeycomb, etc. [18,19]. The common
chemical modifications that can be applied to chitosan include N-alkylation, acylation, car-
boxylation, esterification using inorganic oxygen acids or anhydrides, grafting on polymers
such as poly(ethylene imine), polyaniline, poly(vinyl amine), poly(alkyl methacrylate),
poly(vinyl alcohol), triethylenetetramine, or polyacrylamide, crosslinking with glyoxal,
tripolyphosphate, ethylene glycol diglycidyl ether, formaldehyde, epichlorohydrin, glu-
taraldehyde, dimethyloldihydroxy ethylene urea, or isocyanates, etc. [20–33]. Several
studies have reported that pure chitosan has affinity for metals in the following order:
Hg > Cu > Fe > Ni > Ag > Cd > Mn > Pb > Co > Cr, while others have stated that after
cross-linking, this turns to Cu > Pb > Zn [34–38].

The present study introduces a new hybrid material, CHIT-PAAA, which was syn-
thesized through the modification of chitosan (CHIT) with poly(benzofurane-co-arylacetic
acid) (PBAAA), using simple green chemical methods. The obtained copolymer was
structurally and morphologically investigated by solid-state nuclear magnetic resonance
(ss-NMR), scanning electron microscopy (SEM), X-ray photon electron spectroscopy (XPS),
and Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA)
was used to evaluate the material’s thermal stability. Furthermore, the material was put to
use to remove heavy metals from contaminated water samples. Flame atomic absorption
spectrometry (FAAS) measurements were performed to determine the metal concentrations.
A preliminary adsorption study was conducted to check the suitability of this material for
environmental applications [39]. Pb and Cd were chosen for applying various isotherms
and kinetic models, and to observe the adsorption behavior of the material based on
the initial contaminant concentration and contact time. Furthermore, 3D adsorption rate
models and artificial neural networks (ANNs) were also generated to characterize the
adsorption process.

2. Materials and Methods
2.1. Chemical Reagents

PBAAA was synthesized by closely following a previously reported procedure [40],
being highly soluble in most commonly used solvents. Chitosan (medium molecular
weight), cadmium chloride hydrate 98% (CdCl2 × H2O), and lead chloride 98% (PbCl2)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). All reagents used were of
analytical grade, commercially available, and no further purification was involved.
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2.2. Synthesis of the Adsorbent Material

Preparation of the new copolymer through the modification of chitosan with PBAAA
is shown in Scheme 1. PBAAA (2 g) and chitosan (1 g) were placed in a 250 mL flask and
dissolved in a mixed solution of deionized water (150 mL) and methanol (20 mL). The
prepared solution was ultrasonicated for 1 h and then refluxed for 2 days. After the reaction
finished, the solvents were evaporated using a rotary evaporator. Furthermore, a mixture
of methanol and deionized water (2:1) was added to the remaining solid, and the solution
was ultrasonicated for 30 min. The solid material was filtered off and subsequently washed
with methanol. Finally, the product CHIT-PAAA was dried at room temperature and then
analyzed. The homopolymer was removed with the water–methanol mixture to evaluate
the efficiency of the graft copolymerization. Although there are no unified definitions for
calculating the parameters of the graft copolymerization, herein we report the use of the
grafting yield (G) and the copolymerization yield (Y) (Equations (1) and (2)) [41]:

G(%) =
WCHIT−PAAA − WCHIT

WCHIT
·100 (1)

Y (%) =
WCHIT−PAAA

WCHIT + WPBAAA
·100 (2)

where WCHIT-PAAA is the mass of the copolymer after grafting, WCHIT is the initial weight
of chitosan added in the copolymerization reaction, and WPBAAA is the initial weight of
PBAAA added in the copolymerization reaction.
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2.3. Characterization Methods
2.3.1. Solid-State Nuclear Magnetic Resonance

A Bruker Advance III 500 MHz wide-bore NMR spectrometer operating at room
temperature was used, with a 4 mm double resonance (1H/X) MAS probe. The material
was packed in 4 mm zirconia rotors, and the solid-state 13C and 15N NMR spectra were
recorded at 125.73 and 50.66 MHz Larmor frequencies. Standard RAMP 13C/15N CP-MAS
spectra were acquired at 14/7 kHz spinning frequencies, 2/4 ms contact times, and proton
decoupling under TPPM. For 13C spectra, the acquisition parameters were optimized to
the following values of relaxation delay and number of transients: 2 s/30,000 transients
for PBAAA and CHIT, and 2 s/50,000 transients for sample CHIT-PAAA. For 15N spectra
the relaxation delay and number of transients were: 2 s/31,000 transients for CHIT and
2 s/60,000 transients for CHIT-PAAA. The recorded spectra were calibrated relative to
the CH3 line in tetramethylsilane (TMS) and the 15NO2 line in nitromethane, through
an indirect procedure that used L-Glycine as an external reference (C=O of glycine at
176.5 ppm for 13C and −347.6 ppm for 15N), and line broadening was applied at 20 Hz (for
13C spectra) and 150 Hz (for 14N spectra).
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2.3.2. Fourier Transform Infrared Spectroscopy

FTIR investigation was conducted on a Jasco FTIR-6100 spectrophotometer (JASCO
Deutschland GmbH, Pfungstadt, Germany), recording the material’s spectra in the
400–4000 cm−1 spectral range. Pressed pellets prepared from polymer powder embedded
in KBr were used for this purpose.

2.3.3. Scanning Electron Microscopy

SEM analysis was performed on a Hitachi SU8230 High-Resolution Scanning Electron
Microscope (Hitachi Ltd., Tokyo, Japan) equipped with a cold field-emission gun. The
samples were placed on aluminum stubs and covered with a 10 nm gold coating for
morphological analysis.

2.3.4. Thermo-Gravimetric Analysis

TGA was conducted in air, using TA Instruments SDT Q 600 equipment (TA Instru-
ments Inc., New Castle, DE, USA), in the temperature range 30 ◦C–800 ◦C, with a heating
rate of 10 ◦C min−1 in air.

2.3.5. X-ray Photon Electron Spectroscopy

An XPS spectrometer SPECS (SPECS Surface Nano Analysis GmbH, Berlin, Germany)
equipped with a dual-anode X-ray source Al/Mg, a PHOIBOS 150 2D CCD hemispherical
energy analyzer, and a multi-channeltron detector with vacuum maintained at 1 × 10−9 torr
was used to record XPS spectra. XPS investigations were conducted using the Al Kα X-ray
source (1486.6 eV) operating at 200 W. The XPS survey spectra were captured at 30 eV pass
energy, 0.5 eV/step. The high-resolution spectra for individual elements were recorded
by accumulating 30 scans at 30 eV pass energy and 0.1 eV/step. The powder samples
were pressed on an indium foil to allow the XPS measurements. The sample surface was
cleaned by argon ion bombardment (300 V) and the spectra were recorded before and after
the cleaning. Data analysis and curve fitting were performed using CasaXPS software
(Casa Software Ltd., Teignmouth, UK) with Gaussian-Lorentzian product functions and
a non-linear Shirley background subtraction.

2.3.6. Brunauer-Emmett-Teller Surface Area Analysis

The total surface area (St), pore volume (Vp), and pore radius (Rm) of N2 adsorption–
desorption isotherms (recorded at −196 ◦C) were determined using the Brunauer–Emmett–
Teller (BET) technique for measuring St, and the Dollimore–Heal model. A Sorptomatic
1990 device (Thermo Electron Corporation, Waltham, MA, USA) was used to record the
isotherms. Prior to analysis, samples were degassed at 70 ◦C for 5 h at a pressure of 1 Pa to
eliminate any physisorbed contaminants from the surface.

2.3.7. Flame Atomic Absorption Spectrometry

FAAS was used in batch experiments to determine the heavy metal concentrations.
The samples were atomized using an atomic absorption spectrophotometer AAS Spectra
AA110 (Varian, Australia) in a flame of air and acetylene. The analysis method closely
followed the protocol described in detail in the standard SR ISO 8288/2001. In brief, the
samples were digested in nitric acid, and five-point calibration curves were drawn for
each metal, with the range of concentrations between 0.05 mg L−1 and 0.4 mg L−1 for Cd,
and between 0.25 mg L−1 and 2.50 mg L−1 for Pb. Dilutions were made for samples that
had concentrations exceeding the intervals previously mentioned. The reference material
used for standard preparation (for the calibration curves) was 1000 mg L−1 Spectro Econ
Chem Lab Stock Solution (Chem Lab, Zedelgem, Belgium), while 1000 mg L−1 Merck Stock
Solution (Merck KGaA, Darmstadt, Germany) was used for quality control. The method’s
detection limits were 0.03 mg L−1 for Cd and 0.25 mg L−1 for Pb.
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2.4. Batch Adsorption Experiments

Stock solutions of metal contaminants (Pb, Cd) were prepared at six different concen-
trations (10, 20, 40, 60, 80, and 100 mg L−1) using Pb and Cd salts (PbCl2, CdCl2 × H2O) and
Milli-Q ultrapure water (Millipore, Bedford, MA, USA) with pH adjusted to 5.0. The effects
of two parameters (initial metal concentration and contact time) were investigated to study
the adsorptive behavior of CHIT-PAAA. Pb and Cd adsorption assays were performed
on the synthesized material CHIT-PAAA under magnetic agitation (at 600 rpm rotational
speed) and normal atmospheric conditions (room temperature). Afterwards, samples were
filtered off (on Rotilabo folded filters, type 113 P, membrane Ø 150 mm, Macherey-Nagel
GmbH, Dueren, Germany), and heavy metals in the supernatant were analyzed by FAAS.
An AAS Spectra AA110 atomic absorption spectrophotometer was used to determine the
metal concentrations in the solutions.

The removal efficiencies (adsorption percentages) and sorption capacities were calcu-
lated based on the following equations:

R (%) =
Ci − Cf

Ci
· 100 (3)

q
(

mg g−1
)
=

(Ci − Cf)· V
w

(4)

where R is the removal efficiency (%); Ci is the initial concentration (before adsorption)
(mg L−1); Cf is the final concentration (after adsorption) (mg L−1); q is the sorption capacity
(mg g−1); V is the volume of solution (L); w is the amount of sorbent (material) used (g).

2.5. Equilibrium Adsorption Isotherms

Pb and Cd adsorption equilibrium studies were carried out using 0.04 L metal stock
solutions of six different concentrations (10, 20, 40, 60, 80, and 100 mg L−1) and 0.02 g
adsorbent material for 24 h contact time. Linear and nonlinear forms of Langmuir [42],
Freundlich [43], Dubinin–Radushkevich [44], Temkin [45], Khan [46], Redlich–Peterson [47],
Sips [48], Toth [49] and Koble–Corrigan [50] isotherm models were applied to fit the CHIT-
PAAA experimental adsorption data. Table S1 summarizes the equations of the isotherms
used in the current study. For the linear forms, the values of each isotherm constant
were obtained from the slope and intercept of various plots: Ce/qe versus Ce (Langmuir
1st type), ln(qe) versus ln(Ce) (Freundlich), ln(qe) versus ε2 (Dubinin–Radushkevich),
qe versus ln(Ce) (Temkin), ln(Ce/qe) versus ln(Ce) (Redlich–Peterson), ln(qe)/(qmax−qe))
versus ln(Ce) (Sips).

The separation factor was also determined, because it highlights the essential
characteristics of Langmuir isotherm (the shape of the isotherm and the nature of the
adsorption process):

RL =
1

1 + KL Ci
(5)

where RL is the separation factor, Ci is the initial concentration of the metal ion solution
(mg L−1), and KL is the Langmuir constant (L mg−1). The nature of the adsorption process
can be categorized as unfavourable (RL > 1), linear (RL = 1), favourable (0 < RL < 1), or
irreversible (RL = 0) [51,52].

2.6. Kinetic Studies

The prediction of batch adsorption kinetics was essential to describe the adsorption
rates and sorbate interactions. The CHIT-PAAA kinetic experiments were conducted using
0.04 g adsorbent material and 0.08 L metal solutions of 10, 20, 40, 60, 80 and 100 mg L−1

concentrations. Samples were collected from each solution after 1 min, 5 min, 10 min,
20 min, 30 min, 45 min, 1 h, 3 h, 6 h, 9 h, 12 h, and 24 h of contact time, and heavy metals
were determined via FAAS. Four types of kinetic models were applied to characterize the
adsorption behaviour of CHIT-PAAA, namely the pseudo-first order [53], pseudo-second
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order [54], Weber–Morris intra-particle diffusion [55], and Elovich model [56]. Table S2
summarizes the equations of the models used to determine the adsorption kinetics of Pb
and Cd onto CHIT-PAAA. Another useful kinetic parameter is the adsorption half-time
(τ 1

2
) which represents the amount of time needed to attain half the adsorption progress or

half the equilibrium value [57,58]. This parameter can be calculated as follows:

τ1/2[min] =
1

k2· qe
(6)

2.7. Statistics

The results of all equilibrium and kinetic models used in this study were evaluated
through the least-square method and correlation coefficient (R2) analysis. The statistical
evaluation was performed using Origin v.2018 (OriginLab Corporation, Northampton, MA,
USA). The root mean square error function was also determined in order to establish the
best-fitting models [59]:

RMSE =

√
1
n
· ∑n

i=1
(qcalc(i) − qexp (i))

2 (7)

where RMSE represents the root mean square error; qcalc is the calculated amount of
pollutant adsorbed per unit mass of material (mg g−1); qexp is the measured amount of
pollutant adsorbed per unit mass of material (mg g−1).

2.8. Recyclability Studies

Seven adsorption–desorption cycles were conducted to check the reusability of CHIT-
PAAA. For this purpose, 10 mg L−1 Pb and Cd aqueous solutions were shaken at 600 rpm
for 1 h with specific amounts of copolymer. Afterwards, the material was separated from
the contaminated solutions through filtration and subsequently washed with 30 mL 0.1 M
HNO3 solution and distilled water. The filtrated solutions were analysed using FAAS.

2.9. 3D Adsorption Rate Models

A 3D adsorption rate model is a representation providing a clear overview of the
adsorption process and the factors that influence the sorption capacities of a studied
material [60]. Herein, contact time and initial metal concentration were considered the
main parameters affecting CHIT-PAAA adsorption rates. The 3D adsorption rate models
were generated with a resolution of 1 mg L−1, over a range of initial metal concentrations
from 1 to 100 mg L−1 for each pollutant.

2.10. Artificial Neural Networks Models

The high complexity of the adsorption process makes it difficult to model only through
statistical methods. Therefore, computational intelligence models such as adaptive fuzzy
inference systems (ANFIS), least square support vector regression (LSSVR), random for-
est (RF), or artificial neural networks (ANNs), which rely on artificial intelligence (AI)
prediction, represent some of the best methods for modeling complex datasets [61–68].
ANNs were first introduced by McCulloch and Pitts [69], inspired by the structure and
functions of biological neural networks, and have become a powerful tool for predicting
system behaviors and for analyzing processes [69–72]. In general, ANNs consist of artificial
neurons with specific weights, placed in various layers, interconnected through a system of
artificial synapses that train interrelationships between inputs and outputs [73].

A multilayer perceptron (MLP), one of the most common types of ANNs, includes
an input layer, an output layer, and one or more hidden (intermediate) layers. The numbers
of layers and neurons, the networks’ structure, the transfer function, and the training com-
ponent form the architecture of an ANN [74]. ANNs undergo a training algorithm to enable
them to predict the correlation between inputs and outputs and to reproduce known and
unknown data. The MLP network is a feed-forward ANN, because data are processed from
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the input to the output layers [60]. The most common ANN structures used for adsorption
experiments are multilayer feed-forward neural networks (MLFFN) [75]. Collected data is
usually divided into 70–80% training data (for generating the output values) and 20–30%
testing data (for examining the parameters of the trained ANN). The performance of the
ANN model can be checked and improved by adjusting the mean squared error function
(MSE) and the correlation coefficient defined by the following equations [76]:

MSE =
1
n ∑n

i=1

(∣∣Ŷi − Y
∣∣)2 (8)

R2 = 1 − ∑n
i=1
(
Ŷi − Y

)
∑n

i=1
(
Ŷi − Yav

) (9)

where n is the number of data, Ŷ represents the predicted data, Y is the actual output data,
and Yav is the average of the experimental values.

For the current study, a three-layer ANN (two inputs and one output) was developed
by using the Neural Network Toolbox of MATLAB 7.6 (R2008a) mathematical software
(MathWorks, Natick, MA, USA). The three layers consisted of two neurons in the input
layer represented by the initial metal concentration (10, 20, 40, 60, 80, or 100 mg L−1)
and contact time (0–1440 min), and one neuron in the output layer (the amount of metal
adsorbed). The ANN was trained with 840 data points and validated with 180. Algorithms
involved 1000 iterations with tangent sigmoid transfer functions (tansig) and linear transfer
functions (purelin) for training the MLFFN.

2.11. Adsorption Assays on Metal-Polluted Water Samples

Four water samples (Table S3) were collected in two seasons (summer and winter 2020)
from two former mining areas in Romania (Novăt,-Bors, a and Ros, ia Montană, Figure 1).
The map with the sampling points was developed using ArcGIS 10.6.1 (ESRI, Redlands,
CA, USA). Novăt,-Bors, a is located in northern Romania, in the Maramures, Mountains
(Maramures, County), close to the border with Ukraine. It has been an important source
of lead and zinc ores (associated with copper, antimony, bismuth, cadmium, gold, and
silver). Ros, ia Montană is situated in western Romania, in the Apuseni Mountains (Alba
County) and has been exploited for its gold and silver ores. These two sampling areas
were selected because they are considered among the most polluted sites in Romania,
with soil, groundwater, and surface waters often reported to contain significant loads of
heavy metals.

The CHIT-PAAA adsorption experiments using the collected metal-polluted water
samples were carried out in similar conditions as the stock solution assays. After fol-
lowing the adsorption protocol, the metal content in the water samples was determined
with FAAS.
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3. Results and Discussion
3.1. Synthesis and Characterization of the Adsorbent Material

Graft polymerization represents one approach to the fabrication of chemically bonded
natural–synthetic copolymer compositions. Grafting has been utilized as an important
technique for modifying the chemical and physical properties of polymers. Graft copoly-
mers are increasingly gaining importance due to their tremendous industrial potential. The
current study explored the possibility of obtaining a new eco-friendly material, insoluble
in water and easily separable via filtration, by opening the lactone rings in the PBAAA
polymer chain [40] with the free amino groups of chitosan in an uncatalyzed reaction. The
grafting yield determined for CHIT-PAAA copolymer was 140% and the copolymerization
reaction yield was 83%.

Considering the fact that CHIT-PAAA is solid and insoluble in water or organic
solvents, NMR-spectra were recorded in solid state, i.e., as 13C ss-NMR and 15N ss-NMR
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spectra. As shown in Figure 2, there is only one signal in the 15N ss-NMR spectrum of
chitosan, whereas two signals for nitrogen atoms can be observed in the spectrum of the
final copolymer. The peak at −347.4 ppm of the copolymer is attributed to the −NH2
group of the chitosan chain, and the weaker broad peak at −259.5 ppm is assigned to the
new amide bond (-NH-C=O), which appears after the covalent linkage of chitosan to the
PBAAA by opening the lactone ring.
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Figure 2. 15N ss-NMR spectra of the: CHIT (red line) and CHIT-PAAA (blue line).

Significant changes were also seen in the 13C ss-NMR spectrum of the final copolymer
compared with the starting materials (Figure 3). As a result of the attachment of the
chitosan to the PBAAA chain, the peaks at around 50 ppm in the 13C ss-NMR spectra
of PBAAA, typical for the –CH in the lactone units, do not appear in the 13C ss-NMR
spectra of copolymer CHIT-PAAA. The peak in the 15–25 ppm region indicates -CH groups
belonging to the chitosan chain. It was also present in the spectrum of the copolymer
but was hidden under the sideband. Moreover, a significant additional change in the 13C
ss-NMR spectrum of the copolymer was also observed in the aromatic part, where the
signals for the peaks belonging to the benzene ring of PBAAA appeared due to the covalent
linkage of the chitosan on the polymer chain.

Figure 4 shows the FTIR spectra of PBAAA, CHIT and CHIT-PAAA. The latter con-
tains both sets of bands of the starting materials CHIT and PBAAA, showing the linkage of
both moieties. In addition, the absorption band around 1620 cm−1 belonging to the amide
bond of CHIT-PAAA was more intensive than in the case of CHIT. This demonstrates the
covalent attachment of the polymer chain to chitosan. Furthermore, a decrease in band
intensity at 1800 cm−1 attributable to the lactone C=O bond was observed in comparison
with the copolymer with r, indicating the opening of lactone rings. Also, this is due to the
linkage of the amino group of chitosan to the lactone ring of r. The FTIR bands located
between 1381–1457 cm−1 are attributed to the –C-H bond of the -CHOH-group, while
those between 991–1078 cm−1 for the copolymer are typical for the –C-O-bond in the
–COH group.
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Figure 5 presents the TGA curves of CHIT, PBAAA and CHIT-PAAA, ranging from
room temperature to 800 ◦C. CHIT underwent three degradation phases; first, between
39 ◦C–151◦C (9.9% weight loss) corresponding to the elimination of water adsorbed in the
polysaccharide structure; second, between 230 ◦C–360 ◦C (39% weight loss); and third,
above 360 ◦C, attributed to total degradation. An increment in the decomposition trend
of organic matter was observed in the case of CHIT-PAAA compared to PBAAA, due to
the higher number of hydroxyl groups present after the covalent linkage of the polymer
to the chitosan chain. Thus, an initial weight loss of 6.9% at 284 ◦C was recorded for
PBAAA, associated with a decarboxylation process, followed by continuous degradation
until 570 ◦C. Regarding the new material CHIT-PAAA, a 61% weight loss was observed in
two steps; first, between 45 ◦C–105 ◦C (13% weight loss) and then between 200 ◦C–550 ◦C
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(48% weight loss), corresponding to the decomposition of the polysaccharide structure of
the chitosan. The whole copolymer structure collapsed at 570 ◦C.
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PBAAA, CHIT, and CHIT-PAAA were also investigated through SEM (Figure 6). Ma-
jor morphological differences can be seen: PBAAA resembles an arboreal self-assembling
structure, while CHIT has a flat, uniform folded surface, and CHIT-PAAA forms aggre-
gates with a cauliflower-like aspect. The rough, heterogeneous surface of CHIT-PAAA
with many pores makes it suitable as an adsorbent for different applications.
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3.2. Metal Removal Assays on Stock Solutions

The experiments on stock solutions started with investigation of the effects induced by
contact time and Pb and Cd initial concentrations on the adsorption efficiency and sorption
capacity of CHIT-PAAA. As indicated in Figure 7a, Pb recorded very high removal efficien-
cies (90.63–96.07%) for a range of metal concentrations between 10–60 mg L−1. However,
a decreasing trend (76.71–84.60%) can be noticed at high concentrations (80–100 mg L−1).
Cd also recorded better adsorption efficiencies (62.20–68.60%) at low concentrations, com-
pared with those obtained with elevated concentrations. As expected, sorption capacity
increased proportionally to metal concentration (153.42 mg g−1 and 102.26 mg g−1 were
obtained at 100 mg L−1 for Pb and Cd, respectively; Figure 7b).
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The Pb and Cd sorption capacities of the newly synthesized copolymer determined
in the current study are comparable to the results reported in the literature for other
chitosan-based materials, as listed in Table 1. CHIT-PAAA recorded excellent adsorption
capacities for both investigated metals compared with most adsorbents tested by other
researchers [77–87]. Moreover, the copolymer registered sorption capacities up to 18 times
higher than CHIT, the parent component, as seen in Table 1.

The changes occurring in the CHIT-PAAA structure after Pb and Cd sorption could
easily be noticed in the infrared spectra of the copolymer (Figure S1). Equal amounts of
material were used to make the pellets used for FTIR determination, and all obtained spectra
were normalized after recording. Important modifications emerged in the 350–600 cm−1

wavenumber range, namely the intensification of Pb-O, Cd-O bands at 462 cm−1 and
505 cm−1. Furthermore, other rises were seen in the bands belonging to C-O, C=C bonds
from the benzene ring, and in the C-N, -N-H-, C=O bonds, located at 1072 cm−1, 1156 cm−1,
1245 cm−1, 1377–1435 cm−1, and 1513–1617 cm−1.

Figure 8 and Figure S2 show the effects of contact time on the evolution of Pb and Cd
adsorption onto CHIT-PAAA. For both investigated metals, adsorption occurred quickly
in the first hour of interaction with the new material. Maximum adsorption efficiency was
registered after 45 min of contact time for Pb and 60 min for Cd, after which equilibrium
was reached.
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Based on the results obtained from the adsorption experiments, 3D adsorption models
were developed for each metal. As can be seen in Figure 9, sorption capacity was directly
influenced by contact time and initial metal concentrations, highlighting proportional
dependencies between these variables.

Table 1. Comparison of Pb and Cd adsorption capacities reported in the literature for different
adsorbent materials.

Heavy Metal qmax (mg g−1) Adsorbent Material Reference

Cd 1.06

Chitosan

[88]

Cd 9.9 [89]

Cd 94 [90]

Pb 7.64 [77]

Pb 34.98 [79]

Pb 55.5 [91]

Pb 34.13 Epichlorohydrin crosslinked chitosan [78]

Pb 63.33 Chitosan–magnetite [80]

Pb 112.98 Magnetic chitosan nanocomposites [81]

Pb 142.67 Geopolymer–alginate– chitosan [82]

Pb 189.60 Magnetic chitosan functionalized with EDTA [92]

Pb 334.90 Crosslinked carboxylated chitosan–carboxylated nanocellulose
hydrogel beads [93]

Pb 441.20 Polydopamine-modified chitosan [94]

Cd 344.00 Chitosan–activated-
carbon–iron bio-nanocomposite [95]

Pb 11.98 Chitosan bead-supported MnFe2O4 nanoparticles [83]Cd 9.73

Pb 13.23 Polyaniline-grafted chitosan [84]Cd 12.87

Pb 86.09
Chitosan-coated cotton fibers [85]Cd 14.14

Pb 96.62 Chitosan-g-methylenebisacrylamide/poly(acrylic acid) [86]Cd 80.57

Pb 125.40 Activated carbon–chitosan complex [87]Cd 69.40

Pb 395.00 Crosslinked glucan–chitosan [96]Cd 269.00

Pb 447.00 Chitosan–sulfhydryl-functionalized graphene oxide composites [97]Cd 177.00

Pb 170.07
CHIT-PAAA Current Study

Cd 180.51
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The results obtained from the equilibrium study (Figure 10) show that the linear form
of the Langmuir isotherm best fitted the (R2 = 0.998) Pb experimental sorption data. In
contrast, linear Sips (which is a combination of the Langmuir and Freundlich models)
was more suitable (R2 = 0.999) for Cd. The constants and correlation coefficients resulting
from the linear plots of the applied isotherms are summarized in Table S4. The maximum
sorption capacities of CHIT-PAAA were 170.068 mg g−1 for Pb and 180.505 mg g−1 for
Cd. Pb and Cd adsorption processes could both be categorized as favorable based on the
calculated values of the separation factors (RL ranged from 0.00006 to 0.00058) (Figure S3).
The Sips model indicated that at low Ce values (SSS between 0–1), the isotherm reduced to
Freundlich characteristics, while at high Ce values (SSS approaches 1), it highlighted the
Langmuir monolayer sorption features [98].

The nonlinear fitting of the experimental data is presented in Figure 11. Best fit was
recorded with Sips and Koble–Corrigan isotherms (R2 = 0.999; RMSE = 1.339) for Pb
adsorption data and with the Khan isotherm (R2 = 0.999; RMSE = 0.636) for Cd. Pb and Cd
isotherm shapes were generally attributed to the class L subgroup 2 type, with and without
strict plateaus, respectively, based on Giles et al. [99] and Essington [100] categorizations.

Kinetics is one of the most important characteristics of the adsorption process and de-
scribes the uptake rate depending on the contact time. Linear regression was performed on
the four kinetic models applied to the Pb and Cd adsorption data (Figures 12 and 13). The
correlation coefficients (R2) and the differences between the calculated (qe) and experimen-
tal amounts of metals adsorbed (qe1, qe2) were taken into consideration to determine the ki-
netic model that best described the sorption process onto CHIT-PAAA (Table S5). Compar-
ing the correlation coefficients obtained, the data followed the sequence: Pseudo-second or-
der kinetics (R2 varied between 0.999–1) > Elovich kinetics (R2 varied between 0.774–0.898)
> Weber–Morris intra-particle diffusion (R2 varied between 0.450–0.670) > pseudo-first
order kinetics (R2 varied between 0.387–0.715). Pseudo-second order kinetics provided the
most appropriate model for the characterization of both Pb and Cd sorption mechanisms,
indicating that chemisorption was the process influencing the rates of adsorption. This
fact was also supported by the BET measurements (St < 1 m2 g−1), highlighting that for
CHIT-PAAA the mechanism of adsorption relies mainly on the chelation of metal ions by
the functional groups present in the structure of the copolymer. Nevertheless, the results
obtained for τ1

2
showed that CHIT-PAAA required between 1s–2 min and 4–7 min to reach

half the adsorption capacities for Pb and Cd, respectively.
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The conducted recyclability study showed that CHIT-PAAA removal efficiency de-
creased from 97.18% to 89% for Pb and from 70% to 58% for Cd after seven cycles of
adsorption–desorption (Figure 14).
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The ANN architectures developed for models of Pb and Cd adsorption onto CHIT-
PAAA are presented in Figure 15. Eight algorithms were trained for each ANN: Levenberg–
Marquardt backpropagation, resilient backpropagation, Fletcher–Reeves conjugate gradi-
ent backpropagation, Polak–Ribiére conjugate gradient backpropagation, Powell–Beale
conjugate gradient backpropagation, scaled conjugate gradient backpropagation, BFGS
Quasi-Newton gradient backpropagation and one-step secant backpropagation (Table S6).
It was determined that the Levenberg–Marquardt design was the most suitable algorithm
to model both metals’ adsorption processes (Figure S4). The algorithm selection was
achieved by checking the highest R2 values and the lowest MSEs for Pb R2 = 0.999 and
MSE = 8.88 10−2, and for Cd R2 = 0.999 and MSE = 7.89 10−2. The optimum number of hid-
den neurons was five in the case of Pb and six for Cd sorption. The predicted ANN results
were very close to the experimental data, highlighting a good fit and a low MSE (Table S7).
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3.3. Assays on Metal-Polluted Water Samples

Adsorption assays were performed on the collected contaminated water samples after es-
tablishing the initial metal composition. As can be seen in Figure 16, Ros, ia Montană water sam-
ples registered significant amounts of Fe (11.48–460.81 mg L−1), Mn (26.34–185.22 mg L−1),
Cu (0.06–1.55 mg L−1), and Ni (0.24–0.89 mg L−1), while Novăt,-Bors, a samples were rich in Fe
(35.21–70.2 mg L−1), Zn (1.77–50 mg L−1), Cu (0.11–0.94 mg L−1) and Pb (0.01–0.40 mg L−1).
In general, high concentrations were measured for Fe, Mn, and Zn in all investigated sam-
ples. Important metal inputs could be noticed during the winter season due to the increase
in water flow from rain and snow. Each mining area had a specific metal composition
profile as a result of its local geology and geochemistry, and Ros, ia Montană water samples
recorded higher metal concentrations compared with Novăt,-Bors, a samples.
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On the other hand, excellent removal efficiencies (100%) were obtained for Ni, Pb,
Cd, and Cu in water samples collected from both locations (Figure 17). This fact indicates
a better adsorption performance of CHIT-PAAA at low metal concentrations. Nonetheless,
very good adsorption efficiencies were also determined for Fe (up to 95%) in Ros, ia Montană
water samples and Zn (up to 85%) in Novăt,-Bors, a samples.
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3.4. XPS Results

XPS analysis evidences the formation of the copolymer CHIT-PAAA and the adsorp-
tion of Pb into this copolymer. Figure 18 shows the high-resolution XPS spectra for C1s, O1s,
and N1s for the copolymer CHIT-PAAA. The best fit for the C1s spectrum was obtained
with four components; the component located at 284.8 eV corresponded to C-C, C-H; that at
285.78 eV corresponded to C-N, C-O; the component at 287.6 eV corresponded to the amide
group N-C=O which demonstrates the copolymer formation; the higher binding energy
component located at 289.2 eV corresponded to the O-C=O group. The N1s spectrum
exhibited three components assigned to the nitrogen atoms, from NH2, N-C=O groups,
and protonated nitrogen NH3

+.
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Figure 18. High resolution XPS spectra of C1s, O1s and N1s core levels from CHIT-PAAA.

The adsorption of Pb on CHIT-PAAA is evidenced by the high-resolution XPS spectra
shown in Figure 19. The Pb spectrum from Figure 19 exhibits the doublet Pb4f5/2 and
Pb 4f7/2 located at 143.7 eV and 138.8 eV, corresponding to Pb. A comparison of the XPS
spectra from Figures 18 and 19 shows changes in the relative intensities of the component
peaks, especially for O1s and N1s. This fact suggests that the mechanism of Pb adsorption
on CHIT-PAAA involved the interaction of O and N atoms with metallic ions.
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Figure 19. High-resolution XPS spectra of C1s, O1s, N1s and Pb4f core levels from CHIT-PAAA after
adsorption of Pb2+.

4. Conclusions

In conclusion, a new hybrid material was synthesized by green methods through
the modification of CHIT with PBAAA. Successful results were achieved regarding the
material’s efficiency and selectivity in retaining Pb (96.07–100%), Cd (76.71–100%), Fe (95%),
Zn (85%), Ni (100%), Cu (100%) from batch solutions and contaminated mining water
samples. Maximum adsorption was reached quickly, after only 45 min contact time for Pb
and 60 min for Cd. The applied 3D, equilibrium, and kinetic models suggested that the
sorption capacity of CHIT-PAAA was directly dependent on the contact time and initial
metal concentrations, and chemisorption was the rate-limiting process. Similar results
were generated with the neural network architectures developed, highlighting a high level
of trust in the ANN models for both Pb and Cd adsorption. The reciclability study of
the copolymer indicated that the removal efficiency decreased to 89% for Pb and 58% for
Cd after seven adsorption–desorption cycles. The results of the present investigation
suggest that the newly synthesized material is cost-effective, eco-friendly, and has excellent
performance in removing metal ions, being suitable for applications in the field of water
and wastewater treatment technologies. Therefore, this new copolymer can be used to
remediate the issue of contaminated waters, reducing heavy metal pollution, and promoting
sustainable development.
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