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Simple Summary: In the present study, we provide a detailed characterization of Lilrb4 expression
in microglia and peripheral myeloid cells. Our data demonstrate that LILRB4 is a marker for
microglia activation, as evidenced by upregulation after lipopolysaccharide treatment and inhibition
of microglial TGFβ signaling. Moreover, we provide evidence that microglia express low levels of
Lilrb4 in vivo and high levels in vitro, and we clearly demonstrate that LILRB4 is also expressed
by bone marrow-derived monocytes and, to a greater extent, by peritoneal macrophages, defining
LILRB4 as a surface marker of myeloid cells and not as a microglia-specific marker.

Abstract: As resident innate immune cells of the CNS, microglia play important essential roles
during physiological and pathological situations. Recent reports have described the expression of
Lilrb4 in disease-associated and aged microglia. Here, we characterized the expression of Lilrb4 in
microglia in vitro and in vivo in comparison with bone marrow-derived monocytes and peritoneal
macrophages in mice. Using BV2 cells, primary microglia cultures as well as ex vivo isolated
microglia and myeloid cells in combination with qPCR and flow cytometry, we were able to provide
a comprehensive characterization of Lilrb4 expression in distinct mouse myeloid cells. Whereas
microglia in vivo display low expression of Lilrb4, primary microglia cultures present high levels
of surface LILRB4. Among the analyzed peripheral myeloid cells, peritoneal macrophages showed
the highest expression levels of Lilrb4. Moreover, LPS treatment and inhibition of microglial TGFβ
signaling resulted in significant increases of LILRB4 cell surface levels. Taken together, our data
indicate that LILRB4 is a reliable surface marker for activated microglia and further demonstrate
that microglial TGFβ signaling is involved in the regulation of Lilrb4 expression during LPS-induced
microglia activation.
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1. Introduction

Microglia are specialized resident innate immune cells which mediate immune surveil-
lance of the central nervous system (CNS) and play important roles under physiological
and pathological conditions [1,2]. During early embryonic development, PU.1 and IRF8 are
necessary for primitive macrophages to arise from the yolk sac [3,4]. Prior to birth, these
microglia precursor cells actively migrate toward the developing CNS in dependence of
the interleukin-34 (IL-34) and colony-stimulating factor 1 receptor (CSF1R) ligand-receptor
axis [5,6]. Within the first postnatal weeks, microglia mature and start to establish a unique
and cell-specific gene expression signature that clearly distinguishes these resident CNS
immune cells from other macrophage populations and is characterized by the increased
expression of genes such as transmembrane protein 119 (Tmem119), purinergic receptor P2Y12
(P2ry12), olfactomedin-like 3 (Olfml3), sal-like 1 (Sall1), G-protein receptor 34 (Gpr34), hex-
osaminidase beta (Hexb), and Fc receptor-like S (Fcrls) [7–10]. Interestingly, Tmem119 and
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Olfml3 have been described to be direct TGFβ1-Smad2 target genes, and recent studies
have confirmed that the microglia maturation process is dependent on neural TGFβ1, mi-
croglial TGFβ signaling, and proper extracellular TGFβ1 processing and binding [9,11–13].
TGFβ1 has been proven to be a central factor for microglia homeostasis and maintenance,
regulating immune reactions and activation states of microglia in vitro and in vivo [14,15].
Microglia are constantly controlling their local microenvironment, reacting to disturbances
triggered by endogenous and/or exogenous factors [16]. Damage-associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) have been classi-
fied and are sensed by microglial surface receptors, including Toll-like receptors (TLRs)
or NOD-like receptors (NLRs), resulting in microglia activation [17]. Initially, microglia
activation was compared with macrophage M1 and M2 polarization, and several in vitro
studies supported this classification of microglia activation [18–21]. However, sophisticated
in vivo studies using (single-cell) RNA sequencing have resulted in the description of a
highly conserved transcriptional profile under neurodegenerative conditions, including
the upregulation of ApoE, Axl, Clec7a, Cst7, Cybb, Ctsd, Il1b, Itgax, Lgals, Lilrb4, Lpl, Nos2,
Spp1, Trem2 as well as Tyrobp [22,23]. Based on these data, microglia are present as homeo-
static microglia under basal conditions and adopt an activation profile under pathological
conditions that characterizes them as disease-associated microglia (DAM). Depending on
the pathology and the severity, these DAMs can further shift toward neurodegenerative mi-
croglia (MGnDs) [24]. It is noteworthy that several studies have demonstrated that DAMs
and aged microglia show an overlapping expression profile which includes upregulation
of the leucocyte immunoglobulin-like receptor B4 (Lilrb4) [25–27].

LILRB4, also referred to as CD85k, ILT3, or GP49B, belongs to the family of leucocyte
immunoglobulin (Ig)-like receptors (LILRs), which are able to associate with membrane-
anchored adaptors to induce signaling via cytoplasmic immunoreceptor tyrosine-based
inhibitory motifs (ITIMs). Thus, expression of Lilrb4 is considered to mediate inhibitory
and immunoregulatory functions in the distinct immune cell type [28]. Expression of
Lilrb4 has been demonstrated in a plethora of peripheral immune cells including B cells, T
cells, dendritic cells, mast cells, macrophages, and monocytes [28]. Although the ligands
for human LILRB4 remain unknown, murine LILRB4 has been described to interact with
integrin avb3 [29,30]. However, the functions of LILRB4 in the context of immunologic
responses is not well understood. Studies with Lilrb4-deficient mice have demonstrated
exacerbated responses to bacterial lipopolysaccharide (LPS) in a model for acute lung injury
and increased cytokine and chemokine productions in LPS-induced synovitis [31,32].

In the present study, we provide a comprehensive characterization of LILRB4 expres-
sion in mouse microglia in vitro and in vivo in comparison with peritoneal macrophages
and bone marrow-derived monocytes. We could clearly demonstrate the microglia show a
distinct but weaker LIRLB4 surface expression compared with peripheral immune cells.
Moreover, we show that LPS induces upregulation of Lilrb4 in microglia and that inhi-
bition of TGFβ signaling also results in increased expression of LILRB4. Together, our
data indicate increased expression of Lilrb4 as a hallmark of microglia activation and
define LILRB4 as a common immunologic surface receptor of microglia and peripheral
monocytes/macrophages.

2. Materials and Methods
2.1. Animals

NMRI mice used for establishment of primary microglia cultures as well as for the
isolation of peritoneal macrophages and bone marrow-derived monocytes at indicated
postnatal stages were purchased from Janvier (Le Genest-Saint-Isle, France). All mice
were kept at 22 ± 2 ◦C under a 12 h light/dark cycle with ad libitum access to chow
and water. Animal experiments were conducted in accordance with the German Federal
Animal Welfare Law and local ethical guidelines of the University of Rostock. Experiments
involving mice have been approved by the animal experimentation committee of the
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University of Rostock and the Landesamt für Landwirtschaft, Lebensmittelsicherheit und
Fischerei Mecklenburg-Vorpommern (7221.3-1-064/18).

2.2. Reagents

Cultures of primary microglia and BV2 cells were treated with the following factors
and reagents: TGFβ1 (100-21C, Peprotech, Hamburg, Germany) 5 ng/mL, LPS (L8274,
Sigma-Aldrich, Schnelldorf, Germany) 1 µg/mL, TGFβ receptor type I inhibitor (TβRI,
616454, Calbiochem, Merck, Darmstadt, Germany) 500 nM.

2.3. Microglia Cultures

Cultures of primary microglia were generated as described previously [14]. Brains
from P0/P1 NMRI mice were washed with Hank’s balanced salt solution (HBSS, 240201117,
Thermo Fisher Scientific, Bremen, Germany) and meninges and vessels were removed.
Dissected brains were collected in ice-cold HBSS and further digested using 1× Trypsin-
EDTA (25300054, Invitrogen, Darmstadt, Germany) for 10 min at 37 ◦C. An equal amount of
ice-cold fetal calf serum (FCS) and DNase (M0303S, New England BioLabs, Frankfurt/Main,
Germany) at a final concentration of 0.5 mg/mL were added before dissociation of the
brains with Pasteur pipettes. Dissociated cells were centrifuged, collected and resuspended
in DMEM/F12 medium containing 10% FCS and 1% penicillin/streptomycin (P06-07050,
PAN Biotech, Aidenbach, Germany). Finally, cells were transferred into poly-L-lysine-
coated (P2636-25MG, Sigma-Aldrich, Schnelldorf, Germany) tissue culture flasks with a
density of 2–3 brains per 75 cm2 flask or 1 brain per 25 cm2 flask.

2.4. BV2 Cell Culture

The mouse microglia cell line BV2 was cultured in DMEM/F12 (11320033, Gibco,
Darmstadt, Germany) supplemented with 10% heat-inactivated FCS and 1% penicillin/
streptomycin (Sigma-Aldrich, Schnelldorf, Germany). Cells were incubated at 37 ◦C in
a 5% CO2 and 95% humidified atmosphere. Prior to serum-free treatment with TGFβ1
and/or LPS, BV2 cells were rinsed with PBS and kept under serum-free conditions for at
least 2 h prior to further treatment.

2.5. Ex Vivo Microglia Isolation

Ex vivo isolation of microglia was performed on 7 day (P7) and 30 day (P30) old
male and female NMRI mice, as recently described [33]. Mice were killed by cervical
dislocation, and brains were immediately dissected, washed with ice-cold PBS and collected
in cold buffer (1x HBSS, 1% BSA, 1 mM EDTA). Brains were homogenized using a glass
homogenizer and filtered through a 70 µm cell strainer (Falcon, Fisher Scientific, Bremen,
Germany). After centrifugation (12 min at 300× g, 4 ◦C), the cell pellet was resuspended in
5 mL 37% Percoll (P1644, Sigma-Aldrich) in PBS, underlaid with 4 mL 70% Percoll solution
and overlaid with 4 mL 30% Percoll in a 15 mL tube. Gradients were centrifuged for 30 min
at 600× g and 4 ◦C without acceleration and deceleration. Finally, the microglia cell layer
was collected from the 70% and 37% Percoll interface and transferred to FACS buffer (PBS,
1% FCS).

2.6. Isolation of Peritoneal Macrophages (PMs) and Bone Marrow-Derived Monocytes (BMMCs)

Peritoneal macrophages (PM) were isolated by the modified protocol published by
Koerten et al. [34]. A total of 3–4 mL PBS was injected into the peritoneal cavity of NMRI
mice, and the abdomen was tapped several times to release macrophages from peritoneal
surfaces. Finally, PBS containing PMs was collected in a 15 mL tube and an equal volume of
FACS buffer was added. Bone marrow-derived monocytes (BMMCs) were collected using
the protocol reported by Wagner and colleagues [35]. Briefly, the femurs of NMRI mice
were dissected, disinfected with 96% ethanol and perfused with 4 mL PBS. The suspension
was collected in a 15 mL tube and an equal volume of FACS buffer was added.
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2.7. Flow Cytometry

Microglia, peritoneal macrophages (PMs) and bone marrow-derived monocytes
(BMMCs) were incubated with primary antibodies directed against F4/80 (5 µL, MCA497A488,
AbD Serotech, dilution 1:40) and LILRB4 (144906, Biolegend, San Diego, CA, USA, dilution
1:40) at 4 ◦C for 15 min. Fc receptor blocking was performed for all samples using TrueS-
tain fcX (101319, BioLegend, dilution 1:20) to avoid unspecific antibody binding. Finally,
cells were rinsed and analyzed using a CytoFlex cytometer (Beckman Coulter, Krefeld,
Germany) and the CytExpert software (version 2.4, Beckman Coulter, Krefeld, Germany).

2.8. RNA Isolation, Reverse Transcription and Quantitative RT-PCR

After treatment, total RNA was isolated from BV2 cells and primary microglia us-
ing TRIzol (15596026, Invitrogen, Darmstadt, Germany) according to the manufacturer’s
instructions. RNA concentrations were determined using Photometer (Eppendorf Bio-
Photometer D30). Reverse transcription was performed using the ProtoScript II First
Strand cDNA Synthesis Kit (M0368L, New England BioLabs, Frankfurt/Main, Germany)
according to the manufacturer´s instructions. Quantitative RT-PCR (qPCR) was performed
using the CFX Connect System (Bio-Rad, München, Germany) in combination with the
Luna Universal qPCR Master Mix (M3003L, New England BioLabs). All qPCR reactions
were performed in duplicates and results were analyzed using the CFX Connect System
software and the comparative CT method. All data are presented as 2−∆∆CT for the gene
of interest (Lilrb4) normalized to the housekeeping gene Gapdh and presented as fold
change relative to the control groups. The following primers have been used: Lilrb4for
5′-ATGGGCACAAAAAGAAGGCTAA-3′, Lilrb4rev 5′-GGCATAGGTTACATCCTGGGTC-
3′(NM_013532.3), Gapdhfor 5′-AGGTCGGTGTGAACGGATTTG-3′, Gapdhrev 5′- TGTA
GACCATGTAGTTGAGGTCA-3′(NM_008084).

2.9. Statistics

All presented data are given as means ± SEM. Multiple group analysis for samples
with variance homogeneity was performed using one-way ANOVA followed by Tukey´s
multiple comparison test. Samples with lack of variance homogeneity were analyzed
using the nonparametric Kruskal–Wallis test followed by Dunn´s multiple comparison
test. p-values < 0.05 were considered to be statistically significant. Statistical analyses were
conducted using GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA).

3. Results
3.1. Expression of Lilrb4 in Primary Microglia In Vitro

In order to address the question whether Lilrb4 is expressed in microglia, primary
mouse microglia were used. As depicted in Figure 1A, mixed glia/microglia cultures
were treated with a TGFβ receptor inhibitor (TβRI 500 nM) or lipopolysaccharide (LPS,
1 µg/mL) for 3, 5 and 7 days. Microglial surface expression of LILRB4 was analyzed after
microglia shake off from mixed cultures using flow cytometry. Figure 1B shows that most
F4/80+ microglia were also positive for LILRB4 under basal conditions (84.59% ± 7.585%)
and further treatment with TβRI (83.56% ± 5.855%) or LPS (88.45% ± 10.11%) did not
result in significant changes in LILRB4+ microglia. However, a strong tendency to-
ward increased numbers of F4/80+/LILRB4+ microglia was detected after treatment
with TβRI (97.41% ± 1.333%) and LPS (97.28% ± 0.61%) for 7 days. To detect differ-
ences in total LILRB4 surface levels, the mean fluorescence intensities (MFI) were ana-
lyzed for the indicated time points and treatments (Figure 1C,D). Flow cytometry his-
tograms indicate that treatment with TβRI and LPS resulted in increased LILRB4 fluo-
rescence intensity in microglia (Figure 1C). Quantifications revealed that treatment with
TβRI and LPS resulted in significant increases of LILRB4 fluorescence intensities after
3 days (control = 106,587 ± 4579, TβRI = 128,808 ± 4100, LPS = 295,697 ± 36,951), 5 days
(control = 131,503 ± 8375, TβRI = 159,147 ± 10,956, LPS = 324,011 ± 35,995), and 7 days
(control = 183,403 ± 3417, TβRI = 295,910 ± 17,962, LPS = 514,716 ± 64,637). Of note, LPS
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treatments always provoked a stronger LILRB4 fluorescence intensity as compared to
inhibition of TGFβ signaling, reaching statistical significances after 5 days (p = 0.0278) and
7 days (p = 0.0168, Figure 1D). Together, these data demonstrate that virtually all primary
microglia express Lilrb4 and show LILRB4 surface localization. Moreover, microglia activa-
tion induced by LPS or pharmacological inhibition of microglial TGFβ signaling resulted in
time-dependent increases in LILRB4 on microglia surfaces, further indicating upregulation
of Lilrb4 during microglia activation processes.
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Figure 1. Expression of Lilrb4 in primary microglia. Schematic of the experimental design to analyze
LILRB4 expression in primary microglia. Created with BioRender.com (A). Percentages of LILRB4+

microglia (out of F4/80+ cells) after 3, 5, and 7 days (B). Representative flow cytometry histograms of
control cells and after treatment of microglia with TβRI and LPS (C). Quantifications and statistical
analyzes of mean fluorescence intensities (MFI) of LILRB4 after indicated treatments and time points
(D). All data are given as means ± SEM for at least three independent experiments. p-values derived
from nonparametric Kruskal–Wallis tests followed by Dunn’s multiple comparison tests are * p < 0.05,
** p < 0.01, and *** p < 0.001.

3.2. TGFβ1 Inhibits LPS-Mediated Transcriptional Upregulation of Lilrb4

After the observation that LPS treatment as well as inhibition of TGFβ signaling
increased LILRB4 surface expression, we used the microglia cell line BV2 as well as primary
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microglia cultures to address whether treatment with recombinant TGFβ1 is able to inter-
fere with the LPS-induced upregulation of Lilrb4. Therefore, BV2 cells were treated either
with TGFβ1 (5 ng/mL), LPS (1 µg/mL) or the combination of both factors for 6 h, 12 h, and
24 h. As shown in Figure 2A, TGFβ1 treatment significantly downregulated (p = 0.0025)
the expression of Lilrb4 but did not significantly inhibit the LPS-induced upregulation of
Lilrb4 in BV2 cells after 6 h. Similar results were obtained after treatment for 12 h. TGFβ1
treatment significantly downregulated (p = 0.0497) the expression of Lilrb4 and significantly
blocked (p = 0.0244) the LPS-induced upregulation (Figure 2B). After 24 h, LPS treatment
resulted in a significant (p = 0.0198) but less pronounced upregulation of Lilrb4, and TGFβ1
treatment seemed to interfere with the LPS effects without reaching statistical significance.
However, in this case, the conclusion could be affected by the relatively small number of
samples per group. In order to validate these results, primary microglia cultures were
further treated either with TGFβ1 (5 ng/mL), LPS (1 µg/mL) or the combination of both
factors for 6 h and 24 h. Figure 2D shows that TGFβ1 significantly inhibited (p = 0.0305)
the LPS-induced upregulation (p = 0.0002) of Lilrb4 in primary microglia after 6 h. After
treatment for 24 h, TGFβ1 alone significantly downregulated (p = 0.0091) Lilrb4 expression
and further significantly abrogated (p = 0.0488) the increase of Lilrb4 expression triggered
by LPS. In summary, TGFβ1 treatment alone results in rapid downregulation of Lilrb4 and
further blocks the LPS-mediated transcriptional upregulation of Lilrb4 in BV2 cells.
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Figure 2. TGFβ1 inhibits LPS-induced upregulation of Lilrb4 in BV2 cells and primary microglia.
Expression of Lilrb4 after treatment of BV2 cells with TGFβ1 (5 ng/mL), LPS (1 µg/mL) or the
combination of both factors (LPS + TGFβ1) for 6 h (A), 12 h (B), and 24 h (C). Expression of Lilrb4
after treatment of primary microglia with TGFβ1 (5 ng/mL), LPS (1 µg/mL) or the combination of
both factors (LPS + TGFβ1) for 6 h (D) and 24 h (E). Data are given as means ± SEM for at least three
independent experiments. p-values derived from one-way ANOVA followed by Tukey’s multiple
comparison tests are * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3.3. Lilrb4 Is Highly Expressed in Peripheral Macrophages

To address the question of whether the expression of Lilrb4 is restricted to microglia,
NMRI mice (7 days old (P7) and 30 days old (P30)) were used for further experiments, and
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primary microglia, bone marrow-derived monocytes (BMMCs), and peritoneal macrophages
(PMs) were acutely isolated as described in the material and methods section; additionally,
surface expression of LILRB4 was analyzed using flow cytometry (Figure 3A). A shown
in Figure 3B, virtually all ex vivo isolated microglia from P7 (98.86% ± 0.879%) and P30
(99.16% ± 0.46%) mice were positive for LILRB4 and, thus, were similar to in vitro cultured
primary microglia. However, analysis of the MFIs revealed significantly lower expression
levels of Lilrb4 in ex vivo isolated microglia (P7 = 7262± 731.1, P30 = 5777± 509) compared
to cultured primary cells after 3 days (106,587 ± 4579), 5 days (131,503 ± 8375), and 7 days
(183,403 ± 3417) in vitro (Figure 3C,D). Moreover, the expression of LILRB4 in ex vivo
microglia seemed to decrease as microglia mature, whereas primary microglia in vitro
increased LILRB4 surface expression levels after longer incubation periods (Figure 3C).
Next, we compared the percentages of LILRB4+ microglia in P7 (98.86% ± 0.879%) and P30
(99.16% ± 0.46%) with aged-matched BMMCs and PMs. Similar to microglia, all BMMCs
(99.98% ± 0.02%) as well as PMs (99.98% ± 0.015%) are LILRB4-positive (Figure 3E).
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BioRender.com (A). Percentages of LILRB4+ microglia (out of F4/80+ cells) after 3, 5, and 7 days in vitro as well as 7 days
and 30 days ex vivo (B). Quantifications and statistical analyses of mean fluorescence intensities (MFI) of LILRB4 at indicated
time points (C). Representative flow cytometry histograms (D). Comparison of percentages of LILRB4+ microglia, PMs, and
BMMCs (E). Quantifications and statistical analyses of MFIs of LILRB4+ microglia, PMs, and BMMCs (F). Representative
flow cytometry histograms (G). All data are given as means ± SEM for at least three independent experiments. p-values
derived from one-way ANOVA followed by Tukey’s multiple comparison tests (E,F) or nonparametric Kruskal–Wallis tests
followed by Dunn´s multiple comparisons tests (B,C) are # p < 0.05, * p < 0.05, ** p < 0.01, *** p < 0.0001, and **** p < 0.00001.
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Comparison of MFIs clearly demonstrated that peritoneal macrophages (PMs) display
the highest expression levels and surface localizations of LILRB4 among these different
cell types at P7 (40,751 ± 2855) as well as P30 (32,073 ± 3018, Figure 3F,G). Taken together,
these data indicate that expression of Lilrb4 is not restricted to microglia, and that BMMCs
and PMs also show Lilrb4 expression. Of note, the highest expression of Lilrb4 was detected
in peritoneal macrophages, and the lowest expression levels were obtained in microglia. A
summary scheme for LILRB4 surface expression and regulation by LPS and TGFβ signaling
is given in Figure 4.
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4. Discussion

In the present study, we have provided a detailed characterization of Lilrb4 expression
in mouse microglia, peritoneal macrophages and bone marrow-derived monocytes. Using
flow cytometry, we were able to demonstrate that all of the abovementioned immune cells
display LILRB4 on their cell surfaces. However, expression levels vary among distinct
subsets of cells. Whereas primary microglia and bone marrow-derived monocytes show
low surface expression of LILRB4, peritoneal macrophages showed the highest levels
of surface LILRB4. A detailed comparison of primary microglia from in vitro cultures
and acutely ex vivo isolated microglia from postnatal mice revealed that the expression of
LILRB4 was detected in virtually all microglia, at least at low levels. The most striking result
obtained here was that microglia from in vitro cultures showed the highest expression of
LILRB4 amongst all cell types analyzed throughout this study. Interestingly, expression
levels significantly increased depending on the duration of microglia culturing. Moreover,
the surface levels of microglial LILRB4 further increased in vitro after treatment with LPS
or inhibition of microglial TGFβ signaling under serum-containing culture conditions.
Using the microglia cell line BV2, we could demonstrate that treatment with LPS induces
rapid transcriptional upregulation of Lilrb4 which was inhibited by additional treatment
with recombinant TGFβ1. Overall, our data indicate that LILRB4 is a reliable marker for
microglia activation, but not a microglia-specific surface molecule, and further suggest
that TGFβ signaling is involved in inhibition of Lilrb4 upregulation during the microglia
activation process.
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The first reports showing upregulation of Lilrb4 in microglia analyzed the gene expres-
sion signature of disease-associated microglia (DAM) in vivo [26,27] and, thus, this surface
receptor is part of the DAM molecular signature [24]. Moreover, high expression of Lilrb4
has further been reported in aged mice, indicating that aged microglia and DAMs show
at least in part a similar expression pattern [23,25]. Interestingly, conditional knockout of
the essential TGFβ signaling receptor Tgfbr2 in microglia resulted in strong upregulation
of Lilrb4 in microglia with impaired TGFβ signaling [15]. Based on these results, we an-
alyzed the effect of TGFβ signaling on expression of Lilrb4 in primary microglia in vitro.
The results presented in the present study clearly reveal that TGFβ1 alone transcription-
ally downregulates Lilrb4 and further blocks LPS-induced upregulation of Lilrb4 in BV2
cells. Pharmacologic inhibition of TGFβ signaling over several days resulted in increasing
LILRB4 surface levels in primary microglia. Given that LILRB4 is a microglia activation
marker, our results further underline the essential role of TGFβ1 as an anti-inflammatory
and immune-modulatory factor for microglia in vitro and in vivo [14,20,36,37]. It remains
unclear whether Lilrb4 is a direct target gene for microglial TGFβ signaling or whether the
TGFβ1-induced downregulation is an indirect effect of TGFβ interfering with inflammatory
signaling pathways.

It is difficult to speculate about the possible functions of LILRB4 in microglia. Re-
cent studies addressing LILRB4 functions using Lilrb4 knockout mice have exclusively
focused on peripheral immune cells in distinct disease models. Lack of Lilrb4 resulted in
exaggerated LPS-induced intravascular aggregation of neutrophils which subsequently
caused cutaneous microangiopathy in a model of proliferative synovitis. Moreover, total
amounts of IL-1β, macrophage inflammatory protein 1α (MIP-1α), and MIP-2 were signifi-
cantly higher in joint extracts from Lilrb4-deficient mice [31]. A study using atherosclerotic
lesions from human coronary arteries described upregulated expression of LILRB4 in
macrophages. In aortic roots from mice with Lilrb4 deficiency, significantly accelerated
development of atherosclerotic lesions and increased instability of plaques associated with
increased infiltration of lipids and decreased collagen components and smooth muscle
cells were observed. Interestingly, the development of atherosclerosis was promoted by
Lilrb4-deficient bone marrow-derived monocytes, which triggered pro-inflammatory effects
by increased activation of NF-κB signaling due to decreased Shp1 phosphorylation [38].
Similar results were obtained in a model for acute lung injury (ALI) induced by LPS.
Loss of LILRB4 exacerbated ALI and enhanced lung inflammation by inflammatory bone
marrow-derived monocytes/macrophages (BMDMs) displaying increased activation of
NF-κB signaling [32]. In microglia, activation of NF-κB signaling has been extensively
described as a hallmark of reactive microglia and disease-associated microglia (DAMs) [39].
Interestingly, upregulation of the protein tyrosine phosphatase Shp1 has been reported in
activated microglia, and Shp1-mutant mice show enhanced microglia and astroglia acti-
vation [40]. Furthermore, LPS-induced activation of microglia with reduced Shp1 activity
resulted in the increased release of nitric oxide (NO), tumor necrosis factor α (TNFα) and
IL-1β [41]. These data indicate that upregulation of Lilrb4 might be involved in regulating
the extent of microglial reactivity and the associated cytokine release after LPS treatment.
Recent data further suggest that LILRB4 suppresses Fc receptor-dependent monocyte
functions via its ITIMs [30], and co-ligation of LILRB4 with FcγRI was associated with
suppression of Fc receptor-dependent uptake of antibody-opsonized bacterial particles [42].
This could put LILRB4 functions in microglia in context with engulfment of pathogens
and/or cellular debris and myelin and might explain the observed Lilrb4 upregulation in
aged cortical microglia [25]. Genome-wide association studies of late-onset Alzheimer’s
disease risk predicted OAS1, LAPTM5, ITGAM/CD11b and LILRB4 as four new risk genes
for this neurodegenerative disease. In particular, LILRB4 showed increased transcripts in
the presence of amyloid plaques similar to the increase of the average microglial transcripts
and the increase in microglia numbers [43]. These data suggest that amyloid plaques can
trigger microglial LILRB4 upregulation and—based on the potential role of LILRB4 during
Fc receptor-mediated phagocytosis—might be involved in the engulfment of amyloid.
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However, the molecular mechanisms of microglial LILRB4 function, the interaction
partners as well as the involved intracellular signaling components remains unclear and
need to be elucidated in future studies employing Lilrb4-deficient mice. Taking advantage of
newly developed sophisticated techniques, microglia phenotypes in conditional knockout
mice using microglia-specific Cre lines such as Tmem119-Cre or Hexb-CreERT2 [44,45] to
silence Lilrb4 will further elucidate the role of LILRB4 in microglia under physiological and
pathological conditions.

Taken together, the present study provides a detailed characterization of Lilrb4 expres-
sion in microglia. Our data demonstrate that LILRB4 is a marker for microglia activation,
as evidenced after treatment with LPS and inhibition of microglial TGFβ signaling. Further,
we provide evidence that microglia express low levels of Lilrb4 in vivo and high levels
in vitro, supporting the notion that primary microglia cultures in vitro are pre-activated.
Moreover, we could clearly demonstrate that LILRB4 is also expressed by bone marrow-
derived monocytes and to a greater extent by peritoneal macrophages, defining LILRB4 as
a surface marker of myeloid cells and not as a microglia-specific marker.
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