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Cancer is a complex genetic disease that develops from the accumulation of geno-

mic alterations in which germline variations predispose individuals to cancer and

somatic alterations initiate and trigger the progression of cancer. For the past 2 dec-

ades, genomic research has advanced remarkably, evolving from single-gene to

whole-genome screening by using genome-wide association study and next-genera-

tion sequencing that contributes to big genomic data. International collaborative

efforts have contributed to curating these data to identify clinically significant alter-

ations that could be used in clinical settings. Focusing on breast cancer, the present

review summarizes the identification of genomic alterations with high-throughput

screening as well as the use of genomic information in clinical trials that match can-

cer patients to therapies, which further leads to cancer precision medicine. Further-

more, cancer screening and monitoring were enhanced greatly by the use of liquid

biopsies. With the growing data complexity and size, there is much anticipation in

exploiting deep machine learning and artificial intelligence to curate integrative

“�omics” data to refine the current medical practice to be applied in the near future.
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1 | INTRODUCTION

Cancer is the most common genetic disease that results from the

accumulation of genetic alterations. These genetic alterations are

divided into 2 major categories: germline and somatic. Germline

alterations are found in the germ cell; hence, this type of alteration

can be inherited from parents to offspring; somatic mutations are

cellular alterations that are randomly acquired throughout the

lifetime after exposure to various carcinogens or aging that damage

the DNA. Both germline and somatic alterations play pivotal roles in

predisposing individuals to cancer and to the initiation as well as to

progression of cancer. Therefore, genetic alterations could serve as

effective biomarkers for early detection, monitoring and prognosis of

cancer.

Cancer precision medicine aims to provide the right dose of the

right drug for the right patient at the right time, based on the

genetic profiles of cancer and the individual.1 To realize this vision,

rapid advancement of bioinformatics and biotechnology that con-

tribute to the great expansion of the “omics era” makes it possible

to magnify screening from a single gene to the whole genome by

using genome-wide genotyping for genome-wide association studies

(GWAS) or next-generation sequencing (NGS) for cancer genome

profiling studies. Equally, this also starts the requirement for a super-

computer/high-performance cluster computing system and use of

cloud space to accommodate the analyses and to store the rapidly

accumulating big genomic data. Notably, just like finding a needle in

a haystack, the greatest challenge of handling big genomic data is to

curate and identify clinically significant variants that could be
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implemented in clinical settings. Several open-access databases such

as the GWAS catalog,2 NCI Genomic Data Commons,3 ClinVar4 and

ClinGen5 have been established to allow researchers to access as

well as to assist with the curation of large-scale genomic data.

The current review summarizes the accumulation and achieve-

ment of big genomic data and how these could be part of the vision

of cancer precision medicine by using breast cancer as a disease

model. Breast cancer is the most common malignancy among women

worldwide. It is well known that breast cancer is a complex polygenic

disease and besides the reported risk factors that include age, age at

menarche, ethnicity, reproductive and menstrual history, oral contra-

ceptive use, hormone therapy, radiation exposure, alcohol intake, diet-

ary folate intake, physical activity and benign breast diseases, genetic

factors play an important role in disease etiology and pathogenesis.6

2 | GERMLINE VARIATION: TRANSITION
FROM THE CANDIDATE GENE APPROACH
TO GWAS AND NGS

Identification of germline mutations began 3 decades ago by examin-

ing rare but highly penetrant mutations that inherit with cancer in

large families that showed Mendelian modes of inheritance. These

hereditary cancers account for approximately 5%-10% of all cancer.7

The majority of these mutations are inherited in an autosomal domi-

nant manner. Genetic linkage analysis has successfully localized

BRCA1 and BRCA2 as highly penetrant cancer susceptibility genes

for hereditary breast-ovarian cancers.8,9 Individuals who possess

mutations in these highly penetrant genes have a significantly higher

risk of developing cancer than those in the general population. Nev-

ertheless, mutations in high-penetrance genes explained only a frac-

tion of the heritability of human cancers.10 Even though the

candidate gene approach, which focuses on the DNA damage

response pathway and cancer-related genes, the mutations in

CHEK2, PALB2, PTEN and ATM11-14 confer moderate effects on

breast cancer, indicating the necessity to uncover more genetic alter-

ations that are associated with this complex cancer.

2.1 | CommonVariants-CommonDisease: Emergence
of Gwas and NGS

Approximately 99.9% of the DNA sequence is identical in the 3.2

billion base pairs of the human genome across different individuals,

the remaining 0.1% consists of mostly common variants showing sig-

nificant inter-individual variability. These common variants are mostly

represented by a single nucleotide polymorphism (SNP) that occurs

in every 300-1000 nucleotides, and the human genome comprises

approximately 10 million SNP. The common disease-common vari-

ants hypothesis presumed inheritance by the cumulative number of

alleles that conferred a modest increase in disease risk (relative risk

ranged from 1.1 to 1.5). Besides explaining inter-individual external

phenotypic features such as eye color, height, size of the head and

many others, these common variants could be used as predictive

markers for disease susceptibility, drug response and drug-induced

toxicity.

To better understand genetic inheritance, linkage disequilibrium

(LD), which is nonrandom association of alleles at nearby loci, was

intensely studied. In the year 2001, the International HapMap Pro-

ject was started to characterize the LD patterns of individuals from

4 major continents that included Caucasians, Africans, Chinese and

Japanese.15 The database that was established from the HapMap

project enabled the selection of representative SNP (tagSNP) for LD

blocks, which lead to the possibility of carrying out GWAS by evalu-

ating a reduced number of tagSNP that represented the whole gen-

ome. To uncover all SNP for the whole genome, the untyped SNP

could be inferred by referring typed SNP of GWAS to the whole

genome reference sequence from the 1000 genomes reference data-

base by using genotype imputation analysis.16 Figure 1 summarizes

the workflow of carrying out GWAS that includes phenotype selec-

tion, genome-wide genotyping, data quality control and visualization

as well as subsequent post-GWAS analyses. GWAS arise as the ini-

tial stage of accumulating big data when study groups have started

to increase the sample size up to hundreds of thousands through

collaborative studies.

As the effect size of a variant varies among populations,

GWAS are mostly carried out in a population-specific way, with

the majority of GWAS reported from European descendants fol-

lowed by East Asians, Africans and Latin Americans. Nevertheless,

a great number of meta-analyses were carried out through interna-

tional consortium networks with the purpose of identifying shared

genetic susceptibilities among different populations for various

complex diseases. For breast cancer, the Breast Cancer Association

Consortium (BCAC) and Asia Breast Cancer Consortium were

started to assess the associations of common genetic variations

with breast cancer.

Breast cancer was the very first GWAS that was published

among other cancer GWAS. A total of 28 studies reported and iden-

tified 70 loci for transethnic populations, 70 for Europeans, 8 for

East Asians, 3 for Africans, 2 for Latinos and 1 for Ashkenazi Jews

that were reported to be associated with susceptibility for breast

cancer. Table S1 (with references) summarizes the genetic loci that

are associated with breast cancer from different populations and

meta-analyses with P-value ≤ 5.0 9 10�8. Among the reported loci,

2 most consistently associated with breast cancer in various popula-

tions are fibroblast growth factor receptor 2 (FGFR2) on chromo-

some 10q26 (OR = 1.35, 95% CI = 1.31-1.40)17 and TOX high

mobility group box family member 3 (TOX3)-cancer susceptibility 16

(CASC16) on chromosome 16q12 (OR = 1.31, 95% CI = 1.22-1.41).18

Association of FGFR2 contributes up to 16% of all breast cancers

indicating a significant disease burden. FGFR2 is overexpressed in

5%-10% of breast tumors.19 System biology approach suggests a link

between FGFR2 germline variants could reduce a cell’s ability to

respond to estrogen activation.20 In contrast, TOX3 expression is

highly up-regulated in luminal breast cancer compared to normal

breast tissues or basal-like tumors.21 SNP rs4784227 alters the

expression of TOX3 by disrupting the enhancer function through
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forkhead box A1 (FOXA1) affinity modulation in which FOXA1 is

central to the establishment of transcriptional programs responding

to estrogen stimulation in estrogen receptor 1 (ESR1)-positive breast

cancer cells.22 Notably, various GWAS also identified the association

of variants on ESR1 that encodes estrogen receptor alpha (ER-alpha)

with breast cancer risk.23 ER-alpha is known to act as a transcrip-

tional regulator by interacting with estrogen. Taken together, the

findings from different GWAS have successfully identified novel

gene involvement in various pathways that are related to breast can-

cer carcinogenesis.

Among the novel loci identified by breast cancer GWAS, 2 loci,

8q24.21 and 5p15.33, are of particular interest as they showed

pleiotropic effects with multiple cancer susceptibility.24,25 In locus

8q24.21, 14 independent significant associations were identified

from cancer GWAS of breast, prostate, colon, ovarian, bladder, pan-

creatic cancers and chronic lymphocytic leukemia.24 All of these vari-

ants are clustered within a large gene desert with 2 nearest genes,

family with sequence similarity 84 member B (FAM48B) and MYC

proto-oncogene (MYC). Several studies hypothesize that the risk

regions possess a regulatory element to the well-known

F IGURE 1 Summary workflow of genome-wide association studies (GWAS). GWAS starts from the determination of phenotypes. Genomic
DNA extracted from samples was genotyped with chips that contained up to hundreds of thousands of single nucleotide polymorphisms (SNP).
Quality control (QC) was carried out on samples and SNP before association studies. Sample quality control includes: (1) sample quality to
exclude poorly genotyped samples; (2) identity-by-state analysis to exclude close relatedness samples; and (3) principal component analysis to
evaluate population stratification of the sample sets to obtain a homogeneous sample set before carrying out the association study. SNP QC
were set to exclude SNP if: (1) they were of low genotype quality; (2) if SNP deviated from normal distribution by evaluating the Hardy-
Weinberg equilibrium in control samples; and (3) if they contained non-polymorphic SNP (minor allele frequency = 0). To evaluate the
association distribution, quantile-quantile plots (Q-Q plot) of observed P-value vs expected P-value and genomic inflation factor (k value) were
evaluated to eliminate the possibility of population substructure. Manhattan plots of P-value (�log10) vs chromosome loci were used to depict
an overview of the GWAS, with each dot representing a SNP and each color representing a chromosome. Post-GWAS included: (A) a meta-
analysis that combined multiple studies to identify significantly associated SNP; and (B) functional analysis. Two of the most common
functional analyses of the identified variants are: (i) electrophoretic mobility shift assay (EMSA) to check the existence of proteins, mainly
transcription factors, binding to SNP-contained DNA fragments; and (ii) luciferase reporter assay (comparison of relative luciferase activity) to
assess the associated SNP that could affect differential gene expression (as shown in the figure). (C) Other analyses, including gene-based
analysis, pathway analysis, polygenic risk estimation, SNP-SNP interaction, SNP-environment interaction etc. could be carried out after GWAS
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proto-oncogene, MYC. Variants on this region showed differential

binding to transcription factor 7-like 2 (TCF7L2) that physically inter-

acts with MYC and Wnt-regulated transcription factor. Transcription

factor 4 (TCF4) indicates the possibility of the enhancement of the

Wnt signaling pathway that subsequently regulates MYC.24 Never-

theless, the direct relationship between susceptibility SNP and MYC

expression has not been elucidated. The second locus is telomerase

reverse transcriptase (TERT)-cleft lip and palate transmembrane pro-

tein 1-like protein (CLPTM1L) on 5p15.33 that is found to be signifi-

cantly associated with breast, lung, melanoma, prostate, pancreatic,

ovarian, testicular cancers, chronic lymphocytic leukemia, glioma and

glioblastoma.25 TERT functions to maintain telomere length and

integrity as well as promoting epithelial cell proliferation.26 Telom-

erase is found to counteract the process of telomere shortening that

is known to increase cancer risk and death.27 Hence, associated vari-

ants that affect the expression of TERT are of significance in pre-

venting or enhancing tumorigenesis. Thus far, there is no concrete

evidence that suggests the role of CLPTM1L in predisposing individu-

als to various types of cancer. Pleiotropic effects in multiple cancers

would not be able to be assessed without the accumulation of vari-

ous data from several GWAS that enhance the contributions of big

genome data.

Even though imputation analysis using the GWAS dataset could

uncover most of the common variants for the whole genome with

high accuracy, it still stands as a challenge to impute relatively rare

variants. To gain information for all types of variants, NGS, also ter-

med as massive parallel sequencing, has progressed rapidly in the

last decade to allow simultaneous sequencing of up to millions of

DNA fragments. NGS could generate data based on gene-panels

that sequence only the number of genes of interest, whole exome

sequencing (WES) that sequence only the exons, and whole genome

sequencing (WGS) that cover the entire genome. The involvement

of NGS in breast cancer is mostly focused on hereditary breast and

ovarian cancer (HBOC) that uses cancer gene-panels because of its

cost-efficiency and relatively straightforward bioinformatics pipeline.

Table 1 summarizes the results from various gene-panels screened

by NGS. All studies consistently found BRCA1 and BRCA2 confer a

moderate to high risk, whereas PALB2 and CHEK2 confer an incon-

sistently low to moderate risk for HBOC. Rare mutations are also

found in TP53, ATM, RAD51C, MSH2, MSH6, PMS2, MRE11A,

RAD50, NBS1, CDH1, BARD1, NBN, BRIP1, MUTYH, MLH1 and

CDKN2A.28-32

Notably, Aloraifi et al33 established a gene panel that consisted

of 312 genes, which gathered the genes from hereditary, GWAS,

somatic, methylated and gene candidates reported from other stud-

ies, and screened 104 subjects that were known to be BRCA1/2

negative. As a result, the most frequently mutated genes in heredi-

tary breast cancer are ATM, RAD50, CHEK2, TP53, PALB2 and

MRE11A, and among GWAS genes are CDKN2B-AS1, AP3K1, CASP8,

RAD51B, FGF10, NOTCH2, CCDC170, CYP1B1, LEPR, MYHFR and

NQO1. Taken together, a gene-panel that could screen for high pen-

etrative mutations and common genetic alterations on a larger sam-

ple size are anticipated to identify individuals who are at risk for

breast cancer.

Although individual common variants confer only moderate

increased risk, the cumulative effects of these variants could be eval-

uated through a polygenic genetic risk score. In breast cancer, with

the variants that are identified to date, women in the highest 1% of

the distribution have a 3.5-fold greater risk of breast cancer com-

pared to the population average. Such a risk prediction model could

be informative as early detection and subsequent preventive mea-

sures could be carried out.34

2.2 | Pharmacogenomics Studies Identify Germline
Variations for the Prediction of Drug Response and
Drug-Induced Adverse Events

Pharmacogenomics is the study of how genetic variants in genes

encoding drug metabolism and drug transporters that affect drug

availability at the target site (drug pharmacokinetics) as well as

drug target proteins, such as receptors, enzymes, and intracellular

signaling proteins, affect a patient’s sensitivity to a drug (drug

pharmacodynamics). Hence, pharmacogenomics studies play an

important role in cancer precision medicine, which provides the

right medication to a patient with a good response and a low inci-

dence of adverse drug reaction. In recent years, the US Food and

Drug Administration has started to revise drug labels based on var-

ious pharmacogenomics studies; for example, information that

includes the recommendation to carry out TPMT and UGT1A1

genotyping before the use of 6-mercaptopurine and camptothecin,

respectively, to predict the occurrence of severe adverse events

before treatment.35,36

Similar to the identification of genetic variants associated with

cancer susceptibility, a pharmacogenomics study for breast cancer

TABLE 1 Various gene panels that are used for hereditary breast and ovarian cancer

Study No. patients No. genes >5% 1%-5% <1%

Castera et al., (2014)28 708 27 BRCA1/2 PALB2 TP53, CHEK2, ATM, RAD51C, MSH2, PMS2, MRE11A, RAD50, NBS1,

CDH1, BARD1

Tung et al., (2015) 29 1781 25 BRCA1/2 CHEK2 ATM, PALB2, BRIP1, BARD1, NBN, TP53, PMS2, MSH6, MSH2, MUTYH

Schroeder et al., (2015)30 620 10 NA BRCA1/2 CHEK2, ATM, CDH1, PALB2, NBN, TP53

Minion et al., (2015)31a 353 21 NA CHEK2 ATM, BRIP1, NBN, PALB2, BARD1, RAD50

Lincoln et al., (2015)32 1105 29 BRCA1/2 NA ATM, PALB2, CHEK2, MLH1, MSH2, MSH6, PMS2, CDKN2A, MUTYH

aBRCA1/2 are not included in the gene list.
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began with candidate gene approaches. For instance, the associa-

tions of variants on CYP2D6, the enzyme that activates tamoxifen,

and ABCC2, the transporter that may be involved in transporting

tamoxifen and/or its metabolites, significantly affect recurrence-

free survival of breast cancer after tamoxifen treatment.37 CYP2D6

variants were found to affect Ki-67 response in breast cancer tis-

sues after tamoxifen therapy through a multicenter prospective

study.38 Even though the candidate gene approach in pharmacoge-

nomics studies has successfully identified genes involved in drug

response or drug-induced adverse events, it could only explain a

small proportion of the mechanism. Genes that are involved in the

immunological pathway might play a role in drug-induced adverse

events, such as the association of human leukocyte antigen (HLA)

alleles with various drug-induced toxicities.39,40 GWAS that pro-

vides a free-hypothesis approach facilitates the identification of

novel genes that are responsible for drug response or drug-

induced toxicity.

The GWAS of breast cancer pharmacogenomics is mostly divided

into 2 categories: drug response that influences breast cancer sur-

vival, and breast cancer therapy-induced toxicity. Table 2 summarizes

the up-to-date pharmacogenomics studies by using GWAS in breast

cancer.41-51 Most of the studies could not identify variants that sur-

passed the genome-wide significance threshold, 5.0 9 10�8 (multiple

testing of P = .05 divided by a million independent test SNP), owing

to the relatively low statistical power studies that contributed from

the small sample size. It is always a challenge for cancer pharmacoge-

nomics studies to recruit an adequate number of samples with uni-

form therapy for a specific phenotype as the incidence of drug-

induced adverse events is often low, and cancer therapy often varies

in drug combinations, dosing regimens and treatment duration.

TABLE 2 Breast cancer pharmacogenomics study

Treatment Phenotype SNP (P-value, OR/HR) Gene References

Drug response

Tamoxifen Recurrence-free survival rs10509373

(P = 1.26E�10, HR = 4.53)

C10orf11 41

Anastrozole exemestane

(aromatase inhibitor)

Breast cancer-free

interval

rs13260300

(P = 2.0E�07, HR = 1.64)

Intergenic region of

chr8q21.11

42

Endocrine therapy Survival rs8113308

(P = 6.3E�07, HR = 1.69)

ZNF613 43

Drug-induced adverse events

Anastrozole exemestane

(aromatase inhibitor)

Musculoskeletal adverse

events

rs11849538

(P = 6.67E�07, OR = 2.21)

TCL1A 44

Paclitaxel Sensory neuropathy rs7349683

(P = 9.60E�07, HR = 1.63)

EPHA5 45

rs10771973

(P = 2.6E�06, HR = 1.57)

FGD4

Combinations of chemotherapy Alopecia rs3820706

(P = 1.85E�09, OR = 2.38)

CACNB4 46

Anthracycline Congestive heart failure rs28714259

(Discovery: P = 9.25E�06; OR = 2.1;

Rep1: P = .04; OR = 1.9; and Rep2:

P = .02; OR = 4.2)

Intergenic region of

chr15q11.2

48

Bevacizumab Hypertension rs6453204

(P = 6.0E�08, OR = 3.3)

SV2C 47

Trastuzumab Cardiotoxicity

(decline in LVEF)

rs55756123

(P = 9.0E�08, b = 6.11 unit decrease)

LDB2 49

rs10117876

(P = 6.0E�07, b = 7.79 unit decrease)

BRINP1

rs4305714

(P = 1.0E�06, b = 1.87 unit decrease)

Intergenic region of

chr6p22.3

rs707557

(P = 6.0E�06, b = 1.46 unit decrease)

RAB22A

rs77679196

(P = 8.0E�06, b = 7 unit decrease)

TRPC6

Lapatinib Hepatotoxicity HLA-DRB1*07:01

(P = 2.0E�18, OR = NA)

HLA-DRB1 50,51

rs7828135

(P = 4.5E�08, OR = NA)

TPD52 50

HR, hazard ratio; LVEF, left ventricular ejection fraction; OR, odds ratio; SNP, single nucleotide polymorphism.
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Importantly, dosage adjustment and change of therapy are often car-

ried out according to the patient’s physical condition.52

Nevertheless, GWAS has successfully identified some novel

genes that might deepen our understanding of pathophysiology

drug-induced toxicity. For example, Ingle et al44 reported a variant

on the T-cell leukemia 1A (TCL1A) gene to be associated with aro-

matase inhibitor induced musculoskeletal adverse events and sug-

gested that the mechanism of adverse events involved cytokine

receptor genes that are related to the inflammatory response. Chung

et al46 reported the variants of the calcium voltage-gated channel

auxiliary subunit b 4 (CACNB4) gene to be significantly associated

with drug-induced alopecia in breast cancer. Since minoxidil, a potas-

sium channel opener, was approved by the FDA for the treatment of

alopecia,53 the finding from this GWAS suggested the involvement

of ion channels in the pathogenesis of alopecia.46

3 | SOMATIC MUTATION: MOLECULAR
PORTRAITS OF BREAST CANCER AND
PRECISION MEDICINE

Germline alterations are mostly identified through GWAS and NGS

gene-panels, whereas somatic mutations for tumors are mostly

uncovered through targeted re-sequencing, WES or WGS by

sequencing surgically resected tumor tissue that subsequently con-

tributes to big genomic data. Two main collaborative efforts, the

International Cancer Genome Consortium (ICGC, http://icgc.org/)

and The Cancer Genome atlas (TCGA, https://cancergenome.nih.

gov/) projects, and numerous independent research groups have suc-

cessfully used NGS technology to characterize the landscape of

various common cancer types. The mutation information that was

collected from these collaborative efforts was deposited in the COS-

MIC database, which is an open access platform to provide mutation

information for other researchers.54 The results obtained from NGS

have deepened understanding in the era of cancer biology through

identification of genetic alterations that play roles in tumor initiation,

development and metastasis as well as enabling the possibility of

studying tumor evolution. It also showed the clues of driver vs pas-

senger mutations, which are important criteria for treatment selec-

tion. The application of NGS could help to improve patient

classification, predict prognosis, evaluate drug resistance and identify

drug targets. More importantly, current advancement in cancer geno-

mics discoveries could be translated into therapeutic advances. For

instance, targeted therapy epidermal growth factor receptor (EGFR)

inhibitor could be paired with genomic mutation information to dis-

tinguish responsive patients and to monitor resistance occurrence

throughout the course of treatment in non-small cell lung cancer.55

In the context of breast cancer, comprehensive sequencing of

breast tumor tissues identified frequently mutated genes that include

PIK3CA, TP53, GATA3, PTEN, AKT1, CDH1, ARID1B, CASP8, BRCA1,

RB1, MLL3, MAP3K1, MAP3K13, NCOR1, SMARCD1, CDKN1B, TBX3,

RUNX1, CBFB, AFF2, PIK3R1, PTPN22, PTPRD, NF1, SF3B1 and

CCND3 as well as copy number alterations in PIK3CA, ERBB2, TP53,

MAP2K4, MLL3, CDKN2A, PTEN and RB1.56,57 Somatic mutations in

TP53, PIK3CA and GATA3 occurred at >10% incidence across all

breast cancer.56 Currently, the classification of breast tumor is based

mainly on the expression of estrogen receptor (ER), progesterone

receptor (PgR) and the overexpression or amplification of oncogenic

human epidermal growth factor receptor 2 (HER2). The different

molecular subtypes are:

1. ER-positive group is divided into

a. luminal A: PgR high, HER2 negative

b. luminal B: PgR low, HER2 negative

2. HER2 type: HER2 positive (particularly aggressive)

3. Basal like: often referred to as triple negative breast cancer

(TNBC): ER negative, PgR negative, HER2 negative.

Even though the classification is based mainly on the expression

of hormonal receptors and HER2 amplification, these molecular sub-

types of breast cancer showed different gene mutation patterns that

could further characterize the different types of breast cancer.56

Approximately 60% of breast cancers are luminal subtype (lumi-

nal A and B) and could be treated with endocrine therapy according

to the St Gallen 2015 recommendations.58 The majority of luminal A

show good prognosis and require no chemotherapy except those

with high risk of relapse. Luminal B/HER2 negative tumors require

both endocrine therapy and chemotherapy. Aromatase inhibitor that

suppresses estrogen production is 1 of the recommended endocrine

therapies for metastatic breast cancer patients with ER positivity.59

Nonetheless, more than one-third of patients do not benefit from

endocrine therapy owing to intrinsic resistance.60 Even if therapy is

shown to be effective initially, prolonged exposure causes resistance

towards the therapy. One of the proposed mechanisms that causes

resistance are mutations on the ESR1 gene that render the estrogen

receptor from constitutive activation.61,62 Hence, monitoring ESR1

mutations could help to assess the resistance of endocrine therapy.

From the perspective of cancer genomics, luminal A subtypes are

shown to have the most mutated genes, with the most frequent in

PIK3CA, followed by MAP3K1, GATA3, TP53, CDH1 and MAP2K4.

Notably, luminal A tumors harbored inactivating mutations in

MAP3K1 and MAP2K4, which represent 2 contiguous steps in the

p38-JNK1 stress kinase pathway.56 Luminal B subtypes showed a

diversity of mutated genes that include TP53 and PIK3CA being the

most frequent. Significantly, the TP53 pathway remains largely intact

in luminal A cancers but is often inactivated in more aggressive lumi-

nal B cancers.56 The high frequency of PIK3CA mutations in this

luminal subgroup indicates that inhibitors of this kinase and its

related signaling pathway may act as potential druggable targets.56

Approximately 25% of breast cancer patients are HER2 positive

which is associated with decreased overall survival and increased risk

of metastasis.63 HER2 protein (human epidermal growth factor

receptor 2) regulates cell growth, proliferation and differentiation.

The establishment of trastuzumab, a humanized monoclonal antibody

against HER2-extracellular domain, and lapatinib, an intracellular tyr-

osine kinase inhibitor that blocks both HER2 and EGFR activation,
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represent a prominent therapeutic advance for HER-2 breast cancer

patients.64,65 Findings from a cancer genomics study suggested

EGFR, FGFR, CDK4 and cyclin D1 as possible druggable targets.56

Among the subtypes of breast cancer, TNBC is the most hetero-

geneous subtype and, hence, treatment of this subtype is extremely

ineffective and challenging. Owing to this subgroup’s lack of hor-

monal receptor expression and HER2 amplification as drug target,

chemotherapy remains the first-line standard treatment; hence, iden-

tification of new drug targets for this group is essential. In the con-

text of cancer genomics, unlike luminal and HER2 subgroups, basal-

like breast cancer showed a high frequency of TP53 mutations (80%)

and these mutations caused the loss of TP53 function in almost all

basal-like breast cancer.56 In addition, basal-like breast cancer

showed similar genetic characteristics with serous ovarian cancers

that included TP53, RB1 and BRCA1 loss, with MYC amplification,

which strongly suggests that common therapeutic approaches, such

as platinum analogues and taxanes could be considered.56 Besides,

approximately 20% of basal-like breast cancer was shown to carry

BRCA1/2 mutations, which suggests these patients might benefit

from poly ADP ribose polymerase (PARP) inhibitors and/or platinum

compounds.66,67 Several clinical trials were conducted to evaluate

the efficacy and response rate of different PARP inhibitors in meta-

static breast cancer with BRCA1/2 mutations that included basal-like

breast cancer. In the proof-of-concept trial, the response rate of

TNBC carrying BRCA1/2 mutations was 54% treated with 400 mg

olaparib, a PARP inhibitor, and 25% treated with 100 mg olaparib.68

A phase III study that evaluated the additional iniparib, a PARP inhi-

bitor, with gemcitabine and carboplatin, reported that even though

there was no statistically significant difference between the combi-

nation of regimen vs gemcitabine and carboplatin as first-line treat-

ment, exploratory analysis indicated that patients in the second/third

line showed improved overall survival.69 Notably, a randomized,

open-label phase III trial reported that HER2-negative metastatic

breast cancer patients with germline BRCA mutation who received

olaparib showed significantly longer progression-free survival (7.0 vs

4.2 months) and a 42% lower risk of disease progression or death

compared with standard therapy.70

4 | GENOME-BASED MEDICINE THAT
LEADS TO CANCER PRECISION MEDICINE

Undeniably, the advancement of big genomic data that evolves from

single gene to whole-exome, whole-genome and whole-transcriptome

sequencing has offered an unbiased approach for discovery and pro-

vided a great amount of useful information to enhance the progression

of cancer precision medicine. Nevertheless, considering its practical

use in clinical settings, many academic cancer centers and commercial

testing laboratories have focused on a fraction of the frequently

mutated genes that provide better cost-effectiveness, lower burden of

data analysis and rapid turnaround time for making clinical decisions.

Gene panel-based targeted sequencing that is used in clinical can-

cer genomic profiling is designed to sequence genomic “hot spot”

regions that are frequently mutated in human cancer genes or drug-

gable targets by using DNA from the formalin-fixed paraffin-

embedded (FFPE) tumor or frozen tissue samples. Clinical cancer

genomic profiling has facilitated the establishment of a “basket” trial

in which enrollment of patients is based on particular mutations

regardless of tumor histology. Frampton et al71 reported a clinical

cancer genomic profiling test that included 287 cancer-related genes

and, among 2221 clinical cases with various cancers, showed action-

able alterations in 76% of tumors. In a large-scale study of 2000

patients with advanced cancer, 789 (39%) harbored at least 1 muta-

tion in potentially actionable genes; of the 230 patients with PIK3CA/

AKT1/PTEN/BRAF mutations, 116 (50%) received a genotype-

matched drug; 40 (17%) were treated in a genotype-selected trial

requiring a mutation for eligibility and 40 (17%) received a genotype-

relevant drug off trial.72 Notably, a phase I program that was con-

ducted at The University of Texas MD Anderson Cancer Center

showed that patients who received therapy that matched with the

alteration (n = 143) showed a higher objective response rate (12% vs

5%; P < .0001), longer PFS (median, 3.9 vs 2.2 months; P = .001),

and longer overall survival (median, 11.4 vs 8.6 months; P = .04)

compared with treatment without matching (n = 236).73 Recently,

genomic alterations in druggable targets, such as EGFR, BRAF, RET,

ALK, ROS1, CDK4/6, MET, FGFR, were included in trials to match

patients to therapies.74-81 Taken together, comprehensive genomic

profiling by clinical sequencing could categorize cancer patients based

on genetic alterations and therapy could be provided according to

the genetic alteration, thus implementing cancer precision medicine.

Particularly, clinical cancer genomic profiling tests are also extremely

useful for cancer patients with unknown primary origin, in which the

genomic profile could provide clues for therapy selection according

to the genetic alteration.82 Nonetheless, there are several challenges

with this approach that include insufficient amount of DNA obtained

from the FFPE tumor for genomic profiling, treating patients with

mutations of unknown significance (driver vs passenger mutations),

limited clinical trials in the institutions, availability of off-label

approved drugs as well as social acceptability of this approach.83

Owing to the invasive method of obtaining biopsy samples from

primary or metastatic lesions, there is growing interest in the field of

blood-based biomarkers that includes circulating tumor cells (CTC),

exosomes and circulating tumor DNA (ctDNA), which, together, is

termed liquid biopsy. CTC that are released from the primary tumor

and survive in the bloodstream have the potential to seed at sec-

ondary sites to form metastases.84 Importantly, CTC could be used

to generate CTC-derived explants (CDX) that show broad similarity

with the primary tumor; hence, the response of CDX to therapeutic

agents mirrors the patient’s response to the same treatment.85 The

major demerit of CTC is that there are only low-input amounts of

CTC from the bloodstream that could be isolated using limited cap-

ture techniques.86 Exosomes are small membrane vesicles released

from diverse cell types that transfer functional molecules such as

DNA, miRNA, proteins and lipid to the recipient cells.87,88 Lately,

much research has focused on specific exosomal miRNA that reflect

pathological changes in cancer and suggests that exosomes are
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promising biomarkers.89,90 Nevertheless, the isolation and purifica-

tion of exosomes presently remains a challenge.86 ctDNA are short

DNA fragments that originate from apoptosis and necrosis of normal

and tumor cells.91 ctDNA can be detected in the cell-free fraction of

the blood and provide a snapshot of the genetic profiles of primary

and metastatic tumor site(s).92,93 Mutation status in ctDNA is highly

concordant with the corresponding tumor tissue and the level of

ctDNA increase corresponds to the stage of cancer.94 In addition, it

is known that ctDNA has superior sensitivity compared to conven-

tional biomarkers, such as CA-153, and has a greater dynamic range

that correlates with changes in tumor burden.95 Because half-time of

ctDNA is quite short (about 2 hours), they could reflect the current

status of both primary tumors and secondary deposits accurately

and sensitively. Applications of ctDNA could be used throughout the

course of cancer management that includes: (i) early cancer detec-

tion; (ii) molecular profiling (prognostication); (iii) detection of resid-

ual disease; (iv) monitoring therapeutic responses; and (v) monitoring

clonal evolution of the tumor.96 In metastatic breast cancer, ESR1

mutations in ctDNA were used to monitor the resistance of aro-

matase inhibitor treatment in which patients with ESR1 mutations

detected in the plasma had a markedly shorter progression-free sur-

vival when treated with aromatase inhibitors.97

5 | CONCLUSION AND PERSPECTIVE

Cross-talk genetic screening by incorporating germline alterations to

stratify individuals who are predisposed to a higher risk of cancer

and somatic mutations to profile tumor characteristic for precise

therapy selection can importantly aid patient care. In addition to

genomics, the advancement of other “�omics” that includes tran-

scriptomics, epigenomics, proteomics, and metabolomics have further

increased the complexity of datasets that require sophisticated ana-

lytical tools. Hence, there is much anticipation about the involve-

ment of deep machine learning and artificial intelligence to examine

the integrative clinical and -omics datasets in order to inform, edu-

cate and help cancer treatment and research.
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