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Abstract: Radio Frequency Identification (RFID) sensors, integrating the features of Wireless
Information and Power Transfer (WIPT), object identification and energy efficient sensing capabilities,
have been considered a new paradigm of sensing and communication for the futuristic information
systems. RFID sensor tags featuring contactless sensing, wireless information transfer, wireless
powered, light weight, non-line-of-sight transmission, flexible and pasteable are a critical enabling
technology for future Internet-of-Things (IoT) applications, such as manufacturing, logistics,
healthcare, agriculture and food. They have attracted numerous research efforts due to their
innovative potential in the various application fields. However, there has been a gap between the
in-lab investigations and the practical IoT application scenarios, which has motivated this survey
of this research to identify the promising enabling techniques and the underlying challenges. This
study aims to provide an exhaustive review on the state-of-art RFID sensor technologies from the
system implementation perspective by focusing on the fundamental RF energy harvesting theories,
the recent technical progresses and commercial solutions, innovative applications and some RFID
sensor based IoT solutions, identify the underlying technological challenges at the time being, and
give the future research trends and promising application fields in the rich sensing applications of the
forthcoming IoT era.

Keywords: radio frequency energy harvesting; radio frequency identification (RFID); RFID sensor;
inductive coupling; backscattering

1. Introduction

Radio Frequency Identification (RFID) technology, as a key enabling technique of the Internet of
Things (IoT) sensing layer now finds applications in a wide spectrum of fields for data integration and
management, including human identification, logistics and retail, access control, parking management,
indoor localization, etc. [1–3]. Compared to the other alternatives, such as barcodes and QR
codes, the radio frequency-powered identification approach featuring contactless, wireless powered,
non-line-of-sight, read- and writeable, light weight, and multiple tag simultaneous reading allows the
connected “things” to be identifiable for further data communication and integration [4,5]. The functions
of RFID are to collect RF energy from the interrogator with its antenna, either Ultra-high Frequency
(UHF) or High-Frequency (HF), activate the RFID chip in the tag, and transmit an ID code back to the
interrogator, where the ID code is a fixed number used as a unique identifier of a “thing”. The features
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of the “things” corresponding to their identities can be saved into a database and updated in real-time
for data management to meet the needs of different applications.

However, since the RFID chip is an Integrated Circuit (IC) powered by RF energy, components
with sensing capability can also be potentially integrated into RFID tags for simultaneous identification
and sensing purposes. The integration of RFID tags with sensing components could eventually deliver
identification and sensing capability in a wireless powered, contactless, and non-line-of-sight way.
Simultaneous Wireless Information and Power Transfer (SWIPT), different from the conventional
wired- or battery-powered sensing [6,7], has become a new paradigm of sensing and communication,
which could potentially reshape the future rich-sensing IoT world [8]. On the one hand, due to the
wide coverage and mobility of RFID interrogators, the measurement of RFID sensor tagged “things” is
no longer limited to specific locations. On the other hand, since RFID sensors can be fully passive,
there is no need to frequently change the batteries of the RFID sensors like in traditional wireless sensor
nodes. Therefore, the information sensing procedure of RFID sensors becomes much more flexible and
convenient, and its applications can be extended into a wider field.

Due to the convenience of RFID sensing techniques, they have attracted many research efforts
in the recent years and plenty of exemplary novel applications can be found in the literature.
Firstly, they have been widely applied in industry for the sensing of temperature and humidity [9],
strain [10], pressure [11], steel corrosion and cracks [12], concrete structure [13], pipeline integrity
monitoring [14], etc. Secondly, they are also popular in healthcare, in devices such as wearable and
implanted sensing devices for glucose monitoring [15], blood pressure [16], intraocular pressure [17],
and on-skin monitoring discrimination of breath anomalies [18] etc. The above examples are some
exemplary cases of investigations, and the research and applications are not limited to them [19].
The investigations of RFID sensing techniques can be mainly divided into four categories: (1) radio
frequency energy harvesting efficiency; (2) the integration of RFID and sensing techniques; (3) chip-less
RFID techniques; (4) RFID sensor network technology.

Although significant technical progress regarding the research and application of RFID sensing
techniques has already been achieved, there is still a gap between in-lab investigations and practical
applications. In addition, there are also technical issues in the integration of RFID technology with
sensing components that have not been sufficiently addressed. A comprehensive report summarizing
the recent technical progress and challenges of the state-of-the-art in the literature is also lacking.
The above reasons have motivated this review work to report the state-of-the-art in RFID sensor
technical solutions, the recent technical progress, the technical challenges, and to forecast the direction
of future investigations in the rich sensing applications of the forthcoming IoT era.

The structure of this article is organized as follows: Firstly, Section 2 presents the fundamentals
of RF energy harvesting, RFID, and RFID sensing; secondly, Section 3 gives the recent technical
progress of RFID sensing techniques, including RF energy harvesting efficiency, the integration of RFID
with sensors, the commercial solutions and innovative applications in both academia and industry.
Then, Section 4 identifies the potential challenges in this particular field, followed by Section 5 which
presents an outlook of the future perspectives of novel RFID applications. Finally, Section 6 concludes
the work of this investigation.

2. The Fundamentals of RF Energy Harvesting and RFID Sensor Techniques

The source power of energy harvesting can be in different forms, such as mechanical movement
and vibrations, solar energy, thermal energy, electromagnetic power, etc. Since the early 1990s, when
Tesla and Hertz proposed the concept of wireless energy harvesting [20,21], research on wireless
energy collection has become more and more extensive in the scientific community. According
to the fundamentals of RFID, radio frequency energy harvesting can be divided into inductive
coupling and backscattering [22]. The HF RFID working at the carrier frequency 13.56 MHz transmits
and receives power with near-field inductive coupling [23], and the UHF working at the carrier
frequency 840–960 MHz deals with power transmission and reception with far-field backscattering [24].
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In addition, chip-less RFID, which performs its measurements using the shift resonant frequency
has also become a focal research topic. This investigation focuses on the HF and UHF RFID sensor
techniques, for which, new investigations and novel technical solutions have been widely reported in
the recent few years.

2.1. HF Inductive Coupling and HF RFID Sensor Techniques

HF RFID sensor devices transmit or receive both energy and data through inductive coupling,
which is achieved by the alternating magnetic field between the coil antennas of the interrogator and
the tag. The alternating magnetic field is generated by the inductor-capacitor (LC) resonant tank,
the structure and the equivalent circuits of which are as depicted in Figure 1 [25,26].

Figure 1. The Fundamentals of HF RFID Sensors.

As shown in Figure 1, Vs is the RF source in the interrogator, L1 and C1 constitute a resonant tank
(resonance to the frequency Vs) for power transmission, and the resonant frequency is f0, normally
13.56 MHz for HF RFID. The tag antenna L2 and C2 constitute the receiver, which works at the same
frequency. The resonant frequency can be calculated as follows:

f0 =
1

2π
√

L1C1
=

1
2π
√

L2C2
(1)

The inductive voltage v2 on the tag antenna is directly proportional to the change rate of magnetic
flux Ψ through the coils, which can be represented by:

v2 = −
dΨ
dt

= −N2
dΦ
dt

= −N2
d
dt

(

∫
B · dS) = −N2

d
dt

∫ µ0i1a2N1

2[a2+r2]
3/2

cosαdS
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where N2 and N1 are the number of windings of the tag and interrogator antenna coils, Φ is the
magnetic flux of each winding coil, B and S are the strength of magnetic induction and the area of
the coils, i1 is the current of the interrogator coil, a is the radius of interrogator coil, r is the distance
between the two coils, and α is the angle between B and S. In (1), when the angle between B and S is 00,
v2 can be calculated by the following expression:

v2 = −

µ0N1N2a2S

2[a2+r2]
3/2

di
dt

= −−M
di
dt

(3)

where M is the mutual induction coefficient, which can be calculated with M =
µ0N1N2a2S

2(a2+r2)
3/2 .

Formulas (2) and (3) provide a clear relationship between the power received and the key
parameters of the two antennas and their relationship. The voltage V2 can be processed with
rectifier and regulator circuits to power the RFID chip and sensor module for data acquisition and
information transmission.
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2.2. UHF Backscattering and UHF Sensor Techniques

Different from a HF RFID system, the operating mode of a UHF RFID sensor device is radar
backscattering, consisting of the UHF interrogator, RF transmission path, RFID tag and sensor module,
the structure of which is as shown in Figure 2 [27]. The performance of the power transfer is
determined by the parameters of the main components, including the radiation power and gain of
the transmission antenna and receiving antenna, the wavelength of carrier signal, and the distance
between the transmission and receiving antennas.

Figure 2. The Fundamentals of UHF RFID Sensors.

2.2.1. Interrogator-to-Tag RF Power Transfer

As a passive device, the RFID sensor tag receives the interrogator’s power to complete the sensing
and data transmission procedures. According to the mathematical relationship for RF transmission
given by Friis equation [28], the power density of RF energy at a distance R from the antenna of
interrogator S can be represented by:

S =
PTGT

4πR2 (4)

where PT and GT are the power and gain of the transmission antenna. Suppose the effective dimension
of a tag’s receiving antenna is AE defined as AE= λ2GTag/(4π), the gain of the receiving antenna is
GTag, and the wavelength of RF carrier signal is λ, then, the received power PTag can be expressed by:

PTag= S ·AE= PT

(
λ

4πR

)2
GTGTag (5)

2.2.2. UHF RFID Power Reflection

The RF power reflected by the tag is directly proportional to the tag’s Radar Cross-Section (RCS)
σ. The power reflected by RFID tag PBack can be denoted with Equation (6), where S is the power
density, and the power density SBack can be denoted by Equation (7), PT and GT are the transmission
power and gain of tag antenna. Suppose GR is the gain of interrogator antenna, the effective dimension
of the receiving antenna is Aw= λ2GR/(4π), and the power received by the interrogator PR can be
represented by Equation (8) [29]:

PBack= Sσ =
PTGT

4πR2 σ (6)

SBack =
PTGTσ

(4π)2R4
(7)

PR= SBackAw =
PTGTGRλ

2σ

(4π)3R4
(8)

The tag’s information, including the tag ID and sensor information, is transmitted to the interrogator
by modulating the reflected carrier RF waves. Evidently, the gain of the antennas, the distance between
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antennas, and the tag’s RCS are key parameters determining the reading distance and efficiency of the
resulting RFID sensor measurements.

2.3. Chip-less RFID Sensors

Chip-less RFID sensors simply change the radar profile of the RFID tags to transmit sensor data
without the need for complex integrated circuits, the structure of which is as shown in Figure 3a. When
the receiving antenna of the tag receives the signal transmitted by the interrogator, the resonant circuit
selects signals of different frequencies to generate a specific resonant frequency and a different resonant
amplitude, and then returns the data to the interrogator through the transmitting antenna of the tag.
The interrogator then parses the amplitude and phase changes of its specific frequency signal. Finally,
the signal ID is encoded according to different spectrum characteristics after data processing [30].
When the chip-less tag is placed on a Material Under Test (MUT), the resonant frequency will drift as
the sensor data changes, as shown in Figure 3b [31].

Figure 3. Chip-less RFID Sensors—Fundamentals and Frequency Characteristics.

The function of chip-less RFID is determined by the antenna which is normally designed for some
particular applications. The ID of chip-less RFIDs are defined by the characteristic frequencies of the
tag at a series of specific values [32]. Since some physical features of the materials under test can be
reflected by the resonant circuits in the form of capacitance and inductance. The data storage capacity
of the chip-less RFIDs is far less than the chipped ones. However, due to silicon chips, the cost of
chip-less RFIDs is significantly lower than the chipped ones. Therefore, chip-less RFID has become a
competitive choice for low-cost sensing and identification applications [33].

In addition to HF, UHF and chip-less RFID sensors, some applications utilize commercial tags for
object distance measurement and localization, which may find use in applications like robot localization
and navigation, product localization in large warehouse and logistics, etc.

3. RFID Sensor Techniques—Technical Progresses and Innovative Applications

Compared to other environmental energy harvesting approaches, radio frequency is a relatively
efficient approach which can obtain more available power in a low-energy environment [34].
In addition, RF energy harvesting integrated with information transmission, termed as Wireless
Power Communication (WPC) and SWIPT [35,36], has enabled many innovative applications by the
wireless powering, identification and communication. Especially in recent years, with the continuous
progress of IoT application techniques [37] and the increase of low-power sensing and micro-controller
devices, the integration of sensor techniques with RFID has attracted much research interest and made
remarkable progress. This section aims to provide a timely summary of the recent technical progress
and innovative applications.
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3.1. Technical Progress of RFID Integrated Sensing

3.1.1. Novel Antenna Designs: The Front End of RFID Sensing Techniques

The RF energy harvesting circuit is mainly composed of an antenna, a rectifier, a voltage multiplier
and an energy storage device as shown in Figure 4, in which the antenna captures the RF energy in the
electromagnetic field, then rectifier converts RF energy into a DC voltage through a rectifier, and finally
stores the increased voltage of the voltage multiplier in the energy storage device.

Figure 4. The Diagram of a RF Energy Harvesting Circuit.

The commonly used RFID antennas are shown in Figure 5. The antenna in Figure 5a is normally
applied to the HF systems, and the antennas in Figure 5b–d are usually applied to UHF systems. High
gain antennas can improve the conversion efficiency and acquire more power, so high gain antennas are
preferred. The performance of antennas can be evaluated with parameters including gain, frequency
band, radiation pattern, polarization, physical size or fields of application.

Located in the front of a RFID sensing device, the antenna is a key component determining
the performance of a RFID sensor, including its reading distance, operation speed and the size of
sensor module. Therefore, novel antenna design to enhance the performance of sensor devices and for
different application scenarios becomes a hotspot. The main contributions focus on miniaturization of
the size, foldable antennas, 3D antennas, metallic surface mountable antennas, multi-band antennas,
and omnidirectional and directional antennas, etc., some representatives of which are summarized in
Table 1.

Figure 5. Commonly Used RFID Antennas [38].
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Table 1. RFID Antennas.

Novel Antenna Carrier Frequency Size Reading Range Investigators

metallic surface
mountable
antennas

UHF 30 × 18× 3.2mm3 1.5 m Chen [39]
UHF 106 × 44 × 5mm3 N/A Xu et al. [40]
UHF 104 × 31 × 7.6mm3 14.6m Hamani et al. [41]

UHF 41.5 × 55 × 3 mm3 Metal: 6.1m
Dielectrics: 14.1m Li et al. [42]

3D antennas
UHF 3 × 3 × 3 cm3 N/A Kruesi et al. [43]
UHF 50 × 50 × 50 mm3 N/A Jin et al. [44]
UHF 2 × 2 × 1.2 cm3 N/A Galehdar et al. [45]

multi-band
antennas

UHF-HF 85 × 54 × 0.8 mm3 N/A Ma et al. [46]
UHF-MW L: 19 cm N/A Keyrouz et al. [47]
UHF-MW 30 × 30 mm2 N/A Li et al. [48]

omnidirectional
and directional

antennas

UHF
866 MHz: 98.7 × 14.2 mm2

915 MHz: 88 × 14.2 mm2

953 MHz: 84 × 14.2 mm2
N/A Tang et al. [49]

UHF 43 × 43 mm2 9.5 m Liu et al. [50]
UHF Near-Field R: 80 mm 120 mm Zeng et al. [51]

With respect to metallic surface mountable antennas, Chen [39] proposed a miniature UHF RFID
antenna design for metallic object applications, consisting of two rectangular patches electrically
connected through via to the ground plane and a non-connected inter-conductive layer to form an
RFID tag antenna. The miniature design is achieved by inserting a conductive layer into the antenna
structure to increase the capacitive reactance of the antenna. The overall size is 32 × 18 × 3.2 (mm)
and the maximum reading range of RFID tag placed on a metallic object is about 1.5 m. 3D antennas
have also become an interest in order to pursue omnidirectional patterns in orientation-independent
RFID applications, and many new designs are proposed. Kruesi et al. [43] introduced a miniaturized
folded meander line 3D cubic antenna for wireless sensor network (WSN) and RFID application
in environmental sensing with a 3D dimension of 3 × 3 × 3 cm, which may find applications in
smart packaging by integrating it into a cube’s hollow interior. In addition, multi-band antennas, and
omnidirectional and directional antennas are attractive topics as well for different RFID applications. By
increasing the working bands of antennas to collect energy over multiple frequency bands, the output
voltage of the RF energy harvester can be increased [46]. Keyrouz et al. [47] designed a three-frequency
antenna (900 MHz, 1800 MHz, and 2.45 GHz) to collect RF energy, and the energy collection efficiency
increased significantly. However, due to the increase in the number of antennas, the dimension of
circuit area was enlarged. Liu et al. [50] proposed a capacitively loaded, inductively coupled fed loop
antenna with an omnidirectional radiation pattern for UHF RFID tags, with a small size of 43 × 43mm,
the measured maximum reading range of the prototype is 9.5 m with a total transmitted power of 4.0
W effective isotropic radiated power (EIRP). The omnidirectional radiation pattern on the horizontal
plane makes the proposed tag insensitive to be mounted on different target objects.

Since RFID sensing devices are used for different purposes and application scenarios in different
ambient environments, the design of antenna should be customized to the requirements of the
particular applications.

However, for RFID sensors, the antenna design of a typical RFID tag is versatile and requires
the impedance matching for the maximal reading range. But, due to the sensors and various devices,
energy consumption has increased significantly. In order to obtain stable RFID sensor data, the RFID
sensor antenna can also be configured as a multi-port to collect natural energy to enhance the energy
harvesting of the self-powered wireless sensor, as shown in Figure 6.
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Figure 6. RFID sensor with multi-port energy harvesting.

3.1.2. RF-to-DC Conversion and Power Management

Since the RFID chip and sensing module require DC power for data acquisition and transmission,
the RF power needs to be converted to DC to provide the power supply. RF energy harvesting
normally uses a multi-stage voltage rectifier to obtain high output voltage [52], and various rectifiers
designed to perform the conversion and improve energy harvesting efficiency are presented in [53–61].
Half-wave, full-wave, bridge and differential rectification methods, as shown in Figure 7, are the
most commonly used solutions [62,63]. Bakhtiar et al. [64] proposed a high sensitivity CMOS rectifier
designed with standard threshold voltage devices. The rectifier is designed and laid out in a standard
0.13 µm CMOS process, allowing it to operate even when the input RF power is weak. Ye and Fan [65]
describe a high efficiency rectifier circuit for passive UHF RFID applications. The simulation and
measurement show efficiency of 30.7% and 15% at low input power level respectively. The rectifier
was fabricated in a standard 0.18 µm CMOS process and its core circuit occupied 0.169 × 0.137 mm2

silicon area. Ouda et al. [66] proposed a cross-rectifier that can extend the dynamic range of RF power.
The rectifier can achieve wireless power supply at different distances, which reduces the problem of
reverse leakage without reducing its sensitivity. This design can be used in UHF RFID applications.
On-chip measurements show that when the load is 100 kΩ, the sensitivity is −18 dBm at a voltage of 1 V,
and the peak conversion efficiency of RF power to DC power is 65%. Yi et al. [53] used a CMOS process
in the design of a multi-stage rectifier, which uses a diode with a very low threshold voltage to connect
the MOS transistor for energy conversion. However, since a MOS transistor is used, the threshold
voltage is increased due to the bulk effect. Liu et al. [54] used a novel diode-connected MOS transistor,
and based on this, designed an N-level current rectification circuit, which has higher conversion
efficiency and higher output voltage than a rectifier composed of a conventional diode and MOS
transistor. However, the threshold voltage of the MOS transistor increases as the usage time increases.
Rabén et al. [67] developed a theoretical model for diode-connected MOS transistors with a threshold
cancellation technique, and the derived design equations illustrate the tradeoff between the voltage
drop and the reverse leakage of the diode. A rectifier was designed and implemented in a 0.35-µm
CMOS process, and cadence simulation results of the PCE and the voltage conversion efficiency showed
good agreement with the model. Besides UHF, there are also several RF-DC converters operating at
13.56 MHz that can be found in the literature. In [15] and [59], for instance, high-efficiency RF-DC
converters exhibiting −4 dBm and 1.2 dBm sensitivity, respectively, are presented. In [68], a HF RF-DC
rectifier that uses reverse loss reduction to ensure high output current, even if the DC-DC boost
converter limits sensitivity. Colella et al. [69] proposed a four-stage RF-DC converter for HF RFID
that is fully integrated using 350 nm CMOS technology. Pelliconi’s two-stage charge pump is used to
increase the voltage. Experimental verification showed it can work normally with an RF input power
of −19 dBm.
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Figure 7. Half-wave, Full-wave, and Bridge Rectifier.

Since the collected RF energy provides the power supply for the operation of the whole RFID
sensing module, a voltage multiplier is expected to increase the voltage value and reduce the energy
storage time. However, the output voltage of the voltage multiplier changes with process variations
and temperature fluctuations (work time is too long or environmental impact). Yuan et al. [70] studied
the threshold voltage compensation scheme to improve the effects of voltage multiplier temperature
and process variability. Chouhan et al. [71] designed a new cascading method for voltage multiplication
circuits, which allows the rectifier to have better power conversion efficiency at lower RF power.

3.1.3. Printable and Flexible RFID Techniques for Sensor Fabrication

Flexibility is an important advantage of RFID tags and RFID sensors, which allows the sensor
tags to be able to pasted onto the object under test. The ink-jet printing process has been introduced
to the fabrication of RFID sensors [72]. Printed electronics is a new technology that combines
traditional printing technology with electronic technology and applies traditional printing technology
to electronic manufacturing [73]. Compared with traditional electronic component manufacturing
methods, printing technology is more stable in an oxidizing environment, and has the advantages of
cost efficient, flexibility, and environmentally friendly. Among them, the contact type mainly includes
flexographic printing, offset printing and screen gravure printing, and the non-contact type is mainly
inkjet printing. The principle is as shown in Figure 8 [74].

Figure 8. Four Typical Printing Techniques.

Flexible RFID printing is mainly used to fabricate chip-based RFID antennas and chip-free RFDs,
which print nanoparticles such as graphene, silver, or copper on photographic papers, plastics or
textiles [75]. In the past ten years, the scarcity of resources, the rapid updating of products and the
deteriorating ecological environment have made the market put forward low-cost, flexible and green
requirements for modern technology. As an electronic substrate, paper substrates have the advantages
of low cost and mass production, which has attracted wide attention [27]. At the same time, although
nanoparticle conductive inks are produced in a wide variety of materials (such as copper (Cu), gold
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(Au), graphene, carbon nanotubes (CNT)), silver nanoparticle ink is the main choice for the electronic
conductive trace of printed paper.

Pioneering researchers have already made significant progress regarding RFID applications,
and novel investigations can be found in the literature. Paper substrate inkjet-printed RFID sensors
have been a prevalent way to fabricate flexible sensors. For example, Kim et al. [27,76] presented
a paper substrate silver nanoparticle-based printed sensor fabrication solution and provided two
proof-of-concept sensors designs with evaluations: (1) chip-less CNT gas sensor, and (2) UHF dual-tag
capacitive haptic sensors (see Figure 9a). Sharif et al. [77] presented a low cost, conductive ink printed
small loop integrated with meandered dipole used as an inductive load, which was also connected with
RFID chip for metallic can measurement in a smart refrigerator system. Borgese et al. [78] introduced a
chip-less RFID humidity sensor based on finite artificial impedance surface (AIS) inkjet printed on
a thin sheet of commercial coated paper, composed of three concentric loops thus obtaining three
deep and high-Q nulls in the electromagnetic response of the tag. Salmeron et al. [79] reported two
printed UHF RFID tags capable of measuring temperature and humidity, as shown in Figure 9b, using
the SL900A IC on-chip temperature sensor and capacitive humidity sensor fabricated on polyimide
substrate: (1) inkjet-printed array of capacitive humidity sensors, and (2) screen printing interdigitated
capacitive sensors.

Figure 9. Inkjet Printed RFID Sensors.

In the above applications, the printed antennas are connected to an RFID chip and sensing
components to allow RF-powered sensing capabilities. The advantages of printed RFID electronics are:
(1) sensors can be made flexible by choosing flexible substrates; (2) the cost of RFID sensor fabrication
can be effectively reduced; and (3) sensing components can be designed as a printable structure. These
advantages allow the RFID sensors to be conveniently fabricated for different investigations and
applications with reasonable low cost.

However, the size of the RFID sensor is still a limitation for many practical applications. Since the
area of the RFID sensor chip is small, the size of the entire RFID sensor is determined by the size of the
antenna. In order to study RFID sensors of small size, the use of textile technology to weave RFID sensors
are introduced [80–85]. Textile integrated RFID has the advantages of low cost, durability, and the
separation of textile and RFID chip manufacturing, making mass production fast. Kalhnayer et al. [80]
studied the textile transponder system, in order to achieve a high read/write distance, the antenna uses
a textile-based design, but the washability needs to be improved. Vieroth et al. [81] used a flexible
substrate on the coupling module package to obtain the flexibility of the package. The test results
showed that the package with silver surface finish can withstand all test conditions, even washed at
60 ◦C. Alonso-González et al. [82] designed a three-layer woven structure that converts the antenna of
an RFID tag into a woven type. The label can be processed directly into the garment, making it widely
used in the apparel sector. The integration of RFID with textiles is an effective means to obtain the
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flexibility of RFID sensor devices, which therefore extends the application fields compared to rigid
RFID sensor devices.

3.2. Commercial Solutions

Due to the great commercial opportunities in the RFID sensing techniques in the future IoT era,
some pioneers in the industry including TI, STMicroelectronics, ASM, Farsen, Axzon, and Impinj have
also devoted much effort to the research and development in this particular field. Some novel RF-to-DC
converter modules, RFID transceivers, and RFID ICs are invented which can be found on the market.
Some novel exemplar technical solutions for different applications are found on the market as well.

3.2.1. Promising RFID ICs for Sensor Development

Many RFID ICs were invented as RFID transponders in RFID applications, including both
UHF EPC Class-1 G2 and NFC ISO/IEC14443 and ISO/IEC15693, some representatives of which are
summarized in Table 2. Most of these ICs integrate RF energy harvesting circuits, internal logic
control and memories, and a serial port to allow the read/write capability for an external MCU in
order to update the sensor data. Analog-to-Digital Converters (ADCs) are included in some RFID
ICs for interfacing with sensor components, such as the MLX90129 and SL13A [86,87]. The model
RF430FRL152H from TI integrating a low-power microcontroller MSP430 and a 14-bit digital signal
A/D interface has effectively facilitated the further development [88]. SL900A and Magnus-S3 M3D IC
have gone further by integrating temperature and capacitive sensors, and integrating temperature,
moisture sensors, and proximity sensors, respectively [89]. The integration of built-in sensing modules
allows even more convenient development for different applications. The most convenient choices for
RFID sensor development are the Rocky100, RF430CL330H and RF430FRL152H, which have RF-to-DC
converters and also power output in order to power the external sensors and MCUs. They can be used
to develop battery-less RFID sensor devices.

Table 2. RFID ICs.

Manufacturer IC Model RF Band/ Protocols RF
Sensitivity

Digital
Interfaces

Power
Output Packaging

Farsens Rocky100 UHF/EPC Class-1 G2 −13 dBm SPI 1.2 V~3.0 V QFN-16: 4 × 4 mm
Ramtron WM72016 UHF/EPC Class-1 G2 < −6 dBm DSPI N/A UDFN-8: 3 × 3 mm

AMS SL900A UHF/EPC Class-3 −7 dBm SPI N/A QFN-16: 5 × 5 mm
Axzon (formerly

RFMicron) Magnus-S3 M3D IC UHF EPC Class 1 G2
and ISO/IEC18000 N/A N/A N/A QFN

Impinj Monza X-2K/X-8K UHF/EPC Class-1 G2 −17 dBm I2C N/A XQFN-8L:1.65 × 1.65 mm
AMS AS3953A HF NFC/ISO14443A-4 N/A SPI N/A WLCSP-10: 3 × 3 mm
AMS SL13A HF NFC/ISO 15693 N/A SPI N/A QFN-16LD: 5 × 5 mm

TI RF430CL330H HF NFC/ISO14443B N/A SPI/I2C N/A TSSOP-14 VQFN-16
TI RF430FRL152H HF NFC/ISO/IEC 15693 N/A SPI/I2C N/A VQFN-24: 4 × 4 mm

Melexis MLX90129 HF NFC/ISO/IEC 15693 N/A SPI 2.8 V~3.2 V TSSOP-20

Silicon Craft SIC4310/
4340/4341 ISO 14443A N/A UART N/A QFN-16: 3 × 3 mm

NXP NT3H1101/1201 ISO 14443-3 N/A I2C N/A SOT902-3:
1.6 × 1.6 × 0.6 mm

NXP SL3ICS1002/1202 UHF/EPC Class-1 G2 N/A / N/A TSSOP-8: 4.9 × 3 mm

ST
Micro-electronics M24LR0xE-R/ST25DV-I2C HF NFC/ISO15693 N/A I2C N/A

SO8N: 4.9 × 6 mm
TSSOP8: 3 × 6.4

mmUFDFN8: 2 × 3 mm
On

Semiconductor N24RF64 HF NFC/ISO15693 N/A I2C N/A SOIC-8: 6 × 5 mm
TSSOP-8: 6.4 × 3 mm

3.2.2. Commercial RFID Sensor Applications

Based on the RFID ICs, there are also sample application modules. Farsens has produced a series
of UHF RFID solutions for industrial, agricultural and logistics applications, including battery-less
sensor modules, including temperature sensors, ambient light sensors, pressure sensors, magnetic
field sensors, humidity/moisture sensors (Figure 10a), force/strain sensors (Figure 10b), and RF
field sensors [90]. Similarly, On Semiconductor provides UHF RFID battery-free wireless sensors
solutions based on the MagnusS2®Sensor IC, including moisture/proximity and temperature/proximity
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sensors [91]. In addition, TI has provided some NFC sensing modules based on its RFID IC products,
such as a NFC temperature sensor patch (Figure 10c) [92] providing temperature readings to NFC
enabled smartphones, and NFC keyboards (Figure 10d) as an alternative to touchscreen keypads for
NFC-enabled smartphones and tablets [93]. Novel developments are not limited to the abovementioned
examples. Due to the features in wireless power and data transmission, battery-less and light-weight,
contactless sensing, the RFID sensing techniques will play an important role in the future IoT market,
including consumer electronics, manufacturing, agriculture, medical devices and logistics, etc.

Figure 10. Examples of Commercial RFID Sensor Solutions.

3.3. Innovative Applications

RFID sensor techniques, taking advantage of both wireless power and data transfer and object
identification, have been a new way of sensing and communication which can now find applications in
a wide spectrum of fields. On the one hand, the wireless power and data transfer provides an interface
for transmitting sensing data out from the object under test without wires and batteries, which results
in substantial miniaturization of the sensor devices. On the other hand, the unique identification code
distinguishes the object under tests and integrates the data with its ID directly. In many aspects, these
two strengths make RFID sensing devices more competitive than traditional wireless sensor nodes,
which need to carry a battery and a wireless module. Therefore, with the novel integration of RFID
and lightweight sensor techniques, some measurement tasks which are technically challenging in the
past become much more convenient. The fields of application include consumer electronics, healthcare,
food and agriculture, chemical engineering, manufacturing and logistics, civil engineering, automotive,
machinery, etc., which are summarized with typical examples as shown in Figure 11.

Figure 11. Application Fields and Examples of RFID Sensor Techniques.
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Some novel applications of RFID sensors in the literature regarding the interface protocols, sensing
techniques, fabrication process, and sizes are summarized in Table 3 and Figure 12. From Figure 12,
it is easy to find that:

(1) RFID sensors of different types, including HF, UHF, and chip-less RFID devices have been
widely used and integrated with cutting-edge technologies in different fields in recent years. This
has been an effective and cost-efficient means for accessing sensing data in a battery-less, wireless,
and passive way, which were significant technical challenges before RFID was invented;

(2) The RFID technique, as a power and communication interface in sensor solutions, is easy to
integrate with other sensing modules with different processes, including inkjet printing, CMOS, flexible
PCB, etc. Therefore, the functionality is easily extended for different purposes and application scenarios;

(3) The sensor techniques are integrated with RFID in different ways: a. digital sensors with RFID
ICs; b. sensitive materials integrated with RFID antennas; c. commercial RFID tags; d. chip-less RFID
antenna as a sensor.

Table 3. Novel Applications of RFID Sensors.

Functions Interface
Protocols Sensing Techniques Fabrication

Process Size Investigators

Humidity monitoring Chip-less RFID Artificial impedance
surface Inkjet Printed 77 × 58 ×

43 cm3 Borgese et al., 2017 [78]

Glucose monitoring HF NFC
ISO15693 Potentiostat 0.13 µm CMOS 1.2 × 2 mm Xiao et al.,

2015 [15]
Ambulatory
monitoring UHF RFID Accelerometer PCB circuit N/A Wickramasinghe et al.,

2015 [94]

Implanted sensors RFID
(100 MHz) Pressure sensor Copper tape

made mm-sized Moradi et al., 2017 [95]

E-Skin sensor HF Coil antennas Flexible PCB
circuit

134.4 ×
18.2 mm

Baek et al.,
2018 [96]

Fish freshness HF NFC Resistive sensor and
humidity sensors

Flexible PCB
circuit N/A Smits, et al.,

2012 [97]

Meat freshness UHF Temperature, humidity,
gas

Assembled
with modules N/A Eom et al.,

2014 [98]
Soil moisture UHF (SL900A) Capacitive sensor PCB circuit 100 × 180 mm Pichorim et al., 2018 [99]

Chemical sensor UHF Sensitive coating materials Flexible PCB
circuit 55 × 45 mm Manzari et al., 2014 [100]

Industrial process
parameters UHF RFID Vibration, light,

temperature, humidity PCB circuit 80 × 120 mm Petrov, et al., 2019 [101]

Supply chain
monitoring

HF NFC
ISO15693

Critical temperature
indicator (CTI) PCB circuit

Sensor:
35 × 10 × 2 mm

Tag:
not given

Lorite et al.,
2017 [102]

Strain UHF Resistive strain gauge PCB circuit 150 × 120 mm DiGiampaolo et al., 2017
[103]

Metal crack detection Chip-less RFID Microstrip patch antenna
resonator PCB antenna 35 × 15 mm Marindra et al., 2018 [104]

Concrete crack UHF RFID Couplet of RFID tags RFID tag
designed N/A Caizzone and

DiGiampaolo, 2015 [105]

Corrosion in concrete HF NFC
ISO15693

Three-electrode
potentionstat PCB circuit 11.8 × 4 ×

5.6 cm
Leon-Salas and Halmen,

2016 [106]
Bicycle tire pressure

measurement
HF NFC
ISO14443 Capacitive sensor 130 nm CMOS 5.76 mm2 Kollegger et al.,

2017 [107]
Vehicle road distancer

measurement UHF RFID Distance Commercial
tags N/A Huo et al.,

2014 [108]
Fault diagnosis &

prognosis
UHF

(Monza X-8K) Accelerometer PCB circuit Long: 12 mm Wang et al.,
2017 [109]

Metal structure
displacement UHF RFID Deformation sensor Custom

designed 72 × 37 mm Kuhn et al.,
2018 [110]
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Figure 12. Typical Application of RFID Sensors.

4. Technical Challenges

Although continuous technical progresses have been made and many innovative applications of
RFID-based sensor techniques are found in the literature, most of the presented work are still in the
stage of proof-of-concept demonstration and in-lab test and evaluation. It is hard to find RFID sensor
applications on the market besides a few commercial solutions. There is still a big gap between the
investigations and practical applications. In summary, the key technical challenges are identified and
listed as follows:

4.1. Efficiency of RF Frontend Energy Harvesting and Power Conversion

For an RFID tag, the antenna and IC just receive the RF power, store the energy and power the
controller to respond to the read/write commands. All the power conversion and logical operations are
completed in the RFID IC, which makes energy harvesting efficient, and therefore the reading distance
normally reaches as far as 10 m. However, for RFID sensors, the RF energy harvesting front end needs
to power the RFID IC, the MCU, and the sensing module. Although all the components are power
efficient, the operation logic of the sensors are more complex and time consuming. Therefore, it is still
a challenge to power all the components and cover the logic operations with RF energy harvesting only.
Especially when the sensors are implanted in the materials under test, the RF signal is attenuated by
the ambient materials and the received RF energy can hardly power all the operations, which seriously
affects the read/write range of the RFID sensor.

4.2. Heterogeneity in the Enabling Techniques

The underlying techniques of RFID sensors show great heterogeneities in antennas, IC
functionalities, sensing components, and data protocols, etc. The heterogeneity hinders the techniques
from cross-platform integration and standardization. Most designs in the investigations are custom
designed for the particular sensing scenarios, including the antennas, ICs, control logic, and data
transmission. On the one hand, in order to gain high energy harvesting efficiency, the impedance
of the antenna and RFID IC ports should satisfy a conjugate matching. Due to the variations of the
impedance in RFID IC ports, the antennas need to be custom-designed for different ICs. For example,
the port impedance for Impinj Monza 4 at 915MHz is (11 + j143)Ω [111–113], and those for the AMS AG
SL900A and Farsens Rocky100 at 915 MHz are (123 − j303)Ω and (52 − j479)Ω, respectively [114,115],
which results in a requirement for custom-designed antennas. On the other hand, the sensor data
transmission protocols are variables for different applications. UHF sensor solutions may utilize the



Sensors 2019, 19, 4012 15 of 23

user ID section to accommodate the sensor data. But there are no widely accepted coding protocols for
different sensor categories and measurement accuracies.

4.3. Reliability

RFID sensors are mainly attached to the measured object for identification and parameter sensing.
However, they are also influenced by certain environmental factors in their actual applications. This
not only requires high performance RFID sensors, but also requires RFID sensors to have the ability
to cope with harsh environmental features such as high temperature, high pressure, humidity and
impact. The metal package also blocks the information transmitted by the RFID sensor, causing the
RFID sensor to malfunction. Therefore, in order to obtain stable RFID sensor information, the reliability
of RFID sensor devices and antennas under severe conditions still poses great challenges.

The above technical issues have been the dominant obstacles facing the progress of RFID sensors.
However, the products of the pioneer companies such as TI, AMS AG, Impinj, Farsens, Axzon, and
some innovative applications have paved the way for building blocks for RFID sensor techniques.
By overcoming the technical issues in energy harvesting efficiency and heterogeneities, the RFID
sensing techniques will play an important role in the future rich sensing IoT world.

5. Future Prospectives

RFID sensor techniques will continue to attract interest in a variety of fields in both industry
and academia. This section identifies the key research areas of RFID sensor research, focusing on the
techniques for improving the sensor performance and the futuristic promising applications. Particular
attention has been paid to the IoT applications of RFID sensing techniques, which is considered a
revolutionary technology for future information systems.

5.1. Research Focuses

The means to improve the performance of RFID sensor techniques such as integration of some
new materials and new processes will become a key research area. RFID relay technique for the
purpose of extending the reading range of RFID sensors will be of interest as well. In addition, RFID
sensor network for wide area and multiple object monitoring taking advantage of the battery-less and
light-weight performance can find its place in academic research.

5.1.1. Integration with New Materials and New Processes

New materials and processes will be introduced to RFID sensing techniques in order to improve the
performance compared to traditional means, such as graphene dipole antenna on paper substrate UHF
RFID [116], graphene nanoflake-printed flexible meandered-line dipole antenna on paper substrate for
UHF RFID [117], and RFID passive gas sensors integrating carbon nanotubes [118]. The application of
new materials may effectively reduce the cost with acceptable performance. New processes such as
CMOS processes, inkjet printing and 3D printing are being introduced to RFID sensor techniques as
well. The integration of the new materials and new processes will create new opportunities for RFID
sensing techniques, which will become a critical research direction.

5.1.2. Relay Resonator for Extending RFID Reading Distance

Power transmission has been a limit for lossy materials in some applications, such as human
tissue implantable sensors and civil structure built-in sensors. A power relay of the sensor system will
effectively enhance the functionality and extend the usability of the sensing devices. For instance, a
relay resonator was designed for HF RFID food monitoring by Cao and Chung, which has effectively
extended the reading distance to 5 cm [34]. It is evident that effective technical solutions for extending
the RFID working distance will be of interest for some applications.
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5.1.3. RFID Sensor Based Wireless Sensor Network (WSN)

The integration of RFID and WSN can increase their utility in other scientific and engineering fields
by exploiting the advantages of both technologies. However, these two technologies have separate
research and development areas. As an integration of both, the system architecture, communication
protocols, and data presentation are still under investigation and practice [119]. The integration of
the advantage of wireless power and sensor data transfer of RFID sensor techniques will create new
chances for WSN applications [120].

5.1.4. RFID Sensor Based IoT Applications

Since IoT techniques have spread to a variety of fields, including manufacturing, supply chain,
elderly care, agriculture, livestock management, etc., and most of the relevant applications may include
RFID tags to identify the product item, human, location, or animal, etc. Normally, the identified items
may have their data recorded with different sensing approaches. The integration of sensor interfaces
with RFID will significantly promote the efficiency of data accessing for these IoT applications.

5.2. Promising IoT Applications

The advantages in sensing and communication of IoT sensor techniques have promised a very big
market in the future IoT world. RFID sensor techniques will revolutionize the traditional non-sensing
RFID based application, especially in the IoT applications.

5.2.1. Product Lifecycle Management (PLM) in Manufacturing Industry

RFID tags are implemented in manufacturing industry and supply chain for product identification
in different stages of the production. By integrating the sensor techniques with RFID, the key parameters
of products in these stages can be observed and the product information at all stages can be used for
further analysis in order to optimize the product design and the production process. RFID sensor can
potentially revolutionize the efficiency and management of manufacturing and supply chain.

5.2.2. Continuous Monitoring of Human Physical Characteristics

For medical care and elderly care, RFID sensors are an effective sensing and data transmission
interface, which has already been an interesting research topic. RFID sensor networks for the monitoring
of human physical characteristics will be an effective way for data collection and transmission, especially
for some vital signs of chronic diseases.

5.2.3. RFID Sensors in Smart Logistics

Current logistics applications may include RFID tags in order to identify the product items at
the key nodes of products to track its information. Sensor-enabled RFID could monitor the quality
of products through the whole logistics process, which may extend the products monitored from
traditional things to fresh food and live plants, etc.

5.2.4. RFID Sensors in Smart Agriculture

Future agriculture may become highly automated and informatized. The integration of sensing
techniques and RFID has been a solution for monitoring some key parameters, such as humidity,
temperature, and light strength of different identifiable positions using a drone carrying a RFID
reader. The collected data can be used to predict the health status and grade of maturity of plants. By
taking advantages of RFID for sensing purpose in different fields, RFID sensor techniques may be of
particular interest in the above fields. Compared to traditional RFID-based applications, the RFID
sensors featuring wireless power and data transfer, real-time and continuous data collection could
potentially revolutionize traditional applications. Due to their unique advantages, RFID sensors will
be a competitive choice for various measurement applications.
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6. Summary

The rapid technical progress and widespread application of RFID sensing techniques have
produced novel solutions in different fields of applications, which have very promising prospective for
future IoT rich sensing applications. This investigation identifies the gaps between in-lab studies and
practical applications and provides a thorough overview of the underlying theories, technical progress,
and real-world application examples covering different application scenarios.

Based on the survey of the state-of-the-art studies, it is found that: (1) RFID sensors are an effective
and cost-efficient means for accessing sensing data in a battery-less, wireless, and passive way, which
were technical challenges before RFID was invented, and they will play an important role in the future;
(2) RFID sensor technology integrates sensing techniques and RFID with many cutting-edge techniques,
including CMOS, flexible PCB, inkjet-printed electronics, etc. The critical technical challenges lie in:
(1) Efficiency of the RF frontend energy harvesting and power conversion is a limitation for some
miniature sensor applications; (2) the heterogeneity in antenna, RFID ICs, the way of applications,
and sensor data reading protocols. An industrial level standardization or guidelines for RFID sensing
techniques are expected to simplify the applications.

The RFID sensing techniques will continuously attract research efforts in both industry and the
academia in the forthcoming IoT era, when the sensing and communication become the basis of the
information infrastructure. The RFID sensor technology may find more applications in biomedical
areas for implantation in the human body, in civil engineering to be integrated in civil structures for
health monitoring, in food engineering for low-cost quality monitoring. Due to the rapid progress of
the relevant techniques in the manufacturing industry, such as smart robotics and smart controllers,
RFID sensing techniques are a promising opportunity for Product Lifecycle Management (PLM),
which could potentially build a comprehensive information link between each life stage of products,
including raw materials, production processes, logistics, usage, and disposal. The key parameters of
products in some life stages can be observed and the data can be collected for further analysis. Based
on the related investigations, we can draw the conclusion that in strategic fields such as manufacturing,
healthcare, automotive industry and transport, and energy saving, RFID sensor techniques will play
an important role due to the strengths in wireless data transmission, battery-less, power-efficiency and
cost-efficiency and the extreme power constraints in Internet of Things applications are driving the
emergence of new devices and innovative solutions.

Author Contributions: Conceptualization, Z.M. and L.C.; writing—original draft preparation, L.C.;
writing—review and editing, Z.M.; visualization, Z.L. and N.G.; supervision, Z.Z. and N.G.; project administration,
Z.M.; funding acquisition, Z.M.

Funding: This research was funded by National Natural Science Foundation of China (NSFC) (Grant number
51805143), Natural Science Foundation of Hebei Province (Grant number E2019202131), and Project Support for
the Introduced Overseas Students of Hebei Province (Grant number C20190324).

Acknowledgments: The authors would like to thank the Nondestructive Detection and Monitoring Technology
for High Speed Transportation Facilities, Key Laboratory of Ministry of Industry and Information Technology for
the technical advices and support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey
on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
[CrossRef]

2. Xu, L.D.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.
[CrossRef]

3. Want, R. An introduction to RFID technology. IEEE Pervas. Comput. 2006, 1, 25–33. [CrossRef]

http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/MPRV.2006.2


Sensors 2019, 19, 4012 18 of 23

4. Welbourne, E.; Battle, L.; Cole, G.; Gould, K.; Rector, K.; Raymer, S.; Balazinska, M.; Borriello, G. Building
the internet of things using RFID: the RFID ecosystem experience. IEEE Internet Comput. 2009, 13, 48–55.
[CrossRef]

5. Wang, T.; He, Y.; Shi, T.; Li, B. Transformer incipient hybrid fault diagnosis based on solar-powered RFID
sensor and optimized DBN approach. IEEE Access 2019, 7, 74103–74110. [CrossRef]

6. Kaneko, M.; Hu, W.; Hayashi, K.; Sakai, H. Compressed sensing-based tag identification protocol for a
passive RFID system. IEEE Commun. Lett. 2014, 18, 2023–2026. [CrossRef]

7. Zeng, L.; Grau, D.; Xiao, Y. Assessing the feasibility of passive and BAP RFID communications on construction
site scenarios. IEEE Syst. J. 2015, 10, 1505–1515. [CrossRef]

8. Zhang, J.; Tian, G.Y.; Marindra, A.M.J.; Sunny, A.I.; Zhao, A.B. A review of passive RFID tag antenna-based
sensors and systems for structure health monitoring applications. Sensors 2017, 17, 265. [CrossRef]

9. Oprea, A.; Bârsan, N.; Weimar, U.; Bauersfeld, M.L.; Ebling, D.; Wöllenstein, J. Capacitive humidity sensors
on flexible RFID labels. Sensor. Actuat. B-Chem. 2008, 132, 404–410. [CrossRef]

10. Occhiuzzi, C.; Paggi, C.; Marrocco, G. Passive RFID strain-sensor based on meander-line antennas. IEEE
Trans. Antennas Propag. 2011, 59, 4836–4840. [CrossRef]

11. Rennane, A.; Abdelnour, A.; Kaddour, D.; Touhami, R.; Tedjini, S. Design of passive UHF RFID sensor
on flexible foil for sports balls pressure monitoring. IET Microw. Antennas Propag. 2018, 12, 2154–2160.
[CrossRef]

12. Zhang, J.; Tian, G.Y.; Zhao, A.B. Passive RFID sensor systems for crack detection & characterization. NDT&E
Int. 2017, 86, 89–99.

13. Caizzone, S.; DiGiampaolo, E. Passive RFID Deformation Sensor for Concrete Structures. In Proceedings of
the 2014 IEEE RFID Technology and Applications Conference (RFID-TA), Tampere, Finland, 8–9 September
2014; pp. 127–130.

14. Zarifi, M.H.; Deif, S.; Daneshmand, M. Wireless passive RFID sensor for pipeline integrity monitoring.
Sens. Actuat. A-Phys. 2017, 261, 24–29. [CrossRef]

15. Xiao, Z.; Tan, X.; Chen, X.; Chen, S.; Zhang, Z.; Zhang, H.; Wang, J.; Huang, Y.; Zhang, P.; Zheng, L.; et al.
An implantable RFID sensor tag toward continuous glucose monitoring. IEEE J. Biomed. Health 2015, 19,
910–919. [CrossRef] [PubMed]

16. Caldara, M.; Nodari, B.; Re, V.; Bonandrini, B. Miniaturized and low-power blood pressure telemetry system
with RFID interface. Procedia Eng. 2014, 87, 344–347. [CrossRef]

17. Turner, M.; Naber, J. The Development of a RFID Based Mixed Signal ASIC for the Wireless Measurement of
Intraocular Pressure. In Proceedings of the 2010 18th Biennial University/Government/Industry Micro/Nano
Symposium, West Lafayette, IN, USA, 28 June–1 July 2010; pp. 1–4.

18. Caccami, M.C.; Mulla, M.Y.S.; Occhiuzzi, C.; Di Natale, C.; Marrocco, G. Design and experimentation of a
batteryless on-skin RFID graphene-oxide sensor for the monitoring and discrimination of breath anomalies.
IEEE Sens. J. 2018, 18, 8893–8901. [CrossRef]

19. Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. Color measurement and analysis of fruit with a battery-less
NFC sensor. Sensors 2019, 19, 1741. [CrossRef]

20. Lumpkins, W. Nikola Tesla’s dream realized: Wireless power energy harvesting. IEEE Consum. Electron. Mag.
2013, 3, 39–42. [CrossRef]

21. Brown, W.C. The history of power transmission by radio waves. IEEE Trans. Microw. Theory 1984, 32,
1230–1242. [CrossRef]

22. Hemour, S.; Wu, K. Radio-frequency rectifier for electromagnetic energy harvesting: Development path and
future outlook. Proc. IEEE 2014, 102, 1667–1691. [CrossRef]

23. Zargham, M.; Gulak, P.G. Maximum achievable efficiency in near-field coupled power-transfer systems.
IEEE Trans. Biomed. Circuits Syst. 2012, 6, 228–245. [CrossRef] [PubMed]

24. De Venuto, D.; Rabaey, J. RFID transceiver for wireless powering brain implanted microelectrodes and
backscattered neural data collection. Microelectron. J. 2014, 45, 1585–1594. [CrossRef]

25. Shan, C.Y.; Shan, Y.F.; Yao, L. Radio Frequency Identification (RFID) Principles and Applications; Electronic
Industry Press: Beijing, China, 2015; pp. 25–60.

26. Cao, X.T.; Chung, W.Y. An enhanced multiplication of RF energy harvesting efficiency using relay resonator
for food monitoring. Sensors 2019, 19, 1963. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/MIC.2009.52
http://dx.doi.org/10.1109/ACCESS.2019.2921108
http://dx.doi.org/10.1109/LCOMM.2014.2360684
http://dx.doi.org/10.1109/JSYST.2014.2369413
http://dx.doi.org/10.3390/s17020265
http://dx.doi.org/10.1016/j.snb.2007.10.010
http://dx.doi.org/10.1109/TAP.2011.2165517
http://dx.doi.org/10.1049/iet-map.2018.5193
http://dx.doi.org/10.1016/j.sna.2017.04.006
http://dx.doi.org/10.1109/JBHI.2015.2415836
http://www.ncbi.nlm.nih.gov/pubmed/25823049
http://dx.doi.org/10.1016/j.proeng.2014.11.746
http://dx.doi.org/10.1109/JSEN.2018.2867208
http://dx.doi.org/10.3390/s19071741
http://dx.doi.org/10.1109/MCE.2013.2284940
http://dx.doi.org/10.1109/TMTT.1984.1132833
http://dx.doi.org/10.1109/JPROC.2014.2358691
http://dx.doi.org/10.1109/TBCAS.2011.2174794
http://www.ncbi.nlm.nih.gov/pubmed/23853145
http://dx.doi.org/10.1016/j.mejo.2014.08.007
http://dx.doi.org/10.3390/s19091963
http://www.ncbi.nlm.nih.gov/pubmed/31027382


Sensors 2019, 19, 4012 19 of 23

27. Kim, S.; Georgiadis, A.; Tentzeris, M. Design of inkjet-printed RFID-based sensor on paper: Single-and
dual-tag sensor topologies. Sensors 2018, 18, 1958. [CrossRef] [PubMed]

28. AN 1629 UHF RFID Label Antenna Design. Available online: https://www.nxp.com/docs/en/application-
note/AN162910.pdf (accessed on 15 July 2019).

29. Nikitin, P.V.; Rao, K.V.S.; Lazar, S. An Overview of Near Field UHF RFID. In Proceedings of the 2007 IEEE
International Conference on RFID, Grapevine, TX, USA, 26–28 March 2007; pp. 167–174.

30. Herrojo, C.; Muela, F.J.; Mata-Contreras, J.; Paredes, F.; Martín, F. High-density microwave encoders for
motion control and near-field chipless-RFID. IEEE Sens. J. 2019, 19, 3673–3682. [CrossRef]

31. Feng, Y.; Xie, L.; Chen, Q.; Zheng, L.R. Low-cost printed chipless RFID humidity sensor tag for intelligent
packaging. IEEE Sens. J. 2014, 15, 3201–3208. [CrossRef]

32. Athauda, T.; Karmakar, N.C. The realisation of chipless RFID resonator for multiple physical parameter
sensing. IEEE Internet Things 2019, 6, 5387–5396. [CrossRef]

33. Shen, Y.; Law, C.L. A low-cost UWB-RFID system utilizing compact circularly polarized chipless tags.
IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1382–1385. [CrossRef]

34. Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF
energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE
2014, 102, 1649–1666. [CrossRef]

35. Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun.
Mag. 2015, 53, 117–125. [CrossRef]

36. Ng, D.W.K.; Lo, E.S.; Schober, R. Wireless information and power transfer: Energy efficiency optimization in
OFDMA systems. IEEE Trans. Wirel. Commun. 2013, 12, 6352–6370. [CrossRef]

37. Gope, P.; Amin, R.; Islam, S.K.H.; Kumar, N.; Bhalla, V.K. Lightweight and privacy-preserving RFID
authentication scheme for distributed IoT infrastructure with secure localization services for smart city
environment. Future Gener. Comput. Syst. 2018, 83, 629–637. [CrossRef]

38. Deng, X.Y.; Wang, Y.; He, Y.J. Passive RFID Electronic Label Wireless Theory and Engineering; Tsinghua University
Press: Beijing, China, 2016; pp. 31–91.

39. Chen, S.L. A miniature RFID tag antenna design for metallic objects application. IEEE Antennas Wirel.
Propag. Lett. 2009, 8, 1043–1045. [CrossRef]

40. Xu, L.; Tian, L.; Hu, B. A Novel Broadband UHF RFID Tag Antenna Mountable on Metallic Surface.
In Proceedings of the 2007 International Conference on Wireless Communications, Networking and Mobile
Computing, Shanghai, China, 21–25 September 2007; pp. 2128–2131.

41. Hamani, A.; Yagoub, M.C.E.; Vuong, T.P.; Touhami, R. A novel broadband antenna design for UHF RFID
tags on metallic surface environments. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 91–94. [CrossRef]

42. Li, H.; Zhu, J.; Yu, Y. Compact single-layer RFID tag antenna tolerant to background materials. IEEE Access
2017, 5, 21070–21079. [CrossRef]

43. Kruesi, C.M.; Vyas, R.J.; Tentzeris, M.M. Design and development of a novel 3-D cubic antenna for wireless
sensor networks (WSNs) and RFID applications. IEEE Trans. Antennas Propag. 2009, 57, 3293–3299. [CrossRef]

44. Jin, X.; Dang, X.; Yang, F. Compact 3-D cubic loop antennas with omnidirectional patterns. In Proceedings of
the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA,
6–11 July 2014; pp. 380–381.

45. Galehdar, A.; Thiel, D.V.; O’Keefe, S.G. Design methods for 3D RFID antennas located on a conducting
ground plane. IEEE Trans. Antennas Propag. 2009, 57, 339–346. [CrossRef]

46. Ma, Z.L.; Jiang, L.J.; Xi, J.; Ye, T.T. A single-layer compact HF-UHF dual-band RFID tag antenna. IEEE Antennas
Wirel. Propag. Lett. 2012, 11, 1257–1260.

47. Keyrouz, S.; Visser, H.J.; Tijhuis, A.G. Multi-Band Simultaneous Radio Frequency Energy Harvesting.
In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg,
Sweden, 8–12 April 2013; pp. 3058–3061.

48. Li, H.H.; Mou, X.Q.; Ji, Z.; Yu, H.; Li, Y.; Jiang, L. Miniature RFID tri-band CPW-fed antenna optimised using
ISPO algorithm. Electron. Lett. 2011, 47, 161–162. [CrossRef]

49. Tang, Z.J.; He, Y.G.; Wang, Y. Broadband UHF RFID tag antenna with quasi-isotropic radiation performance.
AEU-Int. J. Electron. C. 2011, 65, 859–863. [CrossRef]

50. Liu, Q.; Yu, Y.; He, S. Capacitively loaded, inductively coupled fed loop antenna with an omnidirectional
radiation pattern for UHF RFID tags. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1161–1164. [CrossRef]

http://dx.doi.org/10.3390/s18061958
http://www.ncbi.nlm.nih.gov/pubmed/29914190
https://www.nxp.com/docs/en/application-note/AN162910.pdf
https://www.nxp.com/docs/en/application-note/AN162910.pdf
http://dx.doi.org/10.1109/JSEN.2019.2895015
http://dx.doi.org/10.1109/JSEN.2014.2385154
http://dx.doi.org/10.1109/JIOT.2019.2901470
http://dx.doi.org/10.1109/LAWP.2012.2225822
http://dx.doi.org/10.1109/JPROC.2014.2357031
http://dx.doi.org/10.1109/MCOM.2015.7081084
http://dx.doi.org/10.1109/TWC.2013.103113.130470
http://dx.doi.org/10.1016/j.future.2017.06.023
http://dx.doi.org/10.1109/LAWP.2009.2032252
http://dx.doi.org/10.1109/LAWP.2016.2557778
http://dx.doi.org/10.1109/ACCESS.2017.2756670
http://dx.doi.org/10.1109/TAP.2009.2028672
http://dx.doi.org/10.1109/TAP.2008.2011227
http://dx.doi.org/10.1049/el.2010.3065
http://dx.doi.org/10.1016/j.aeue.2011.02.005
http://dx.doi.org/10.1109/LAWP.2013.2281070


Sensors 2019, 19, 4012 20 of 23

51. Zeng, Y.; Chen, Z.N.; Qing, X.; Jin, J.M. A directional, closely spaced zero-phase-shift-line loop array for UHF
near-field RFID reader antennas. IEEE Trans. Antennas Propag. 2018, 66, 5639–5642. [CrossRef]

52. De Vita, G.; Iannaccone, G. Design criteria for the RF section of UHF and microwave passive RFID
transponders. IEEE Trans. Microw. Theory 2005, 53, 2978–2990. [CrossRef]

53. Yi, J.; Ki, W.H.; Tsui, C.Y. Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor
and RFID applications. IEEE Trans. Circuits Syst. I 2007, 54, 153–166. [CrossRef]

54. Liu, D.S.; Zuo, X.C.; Dai, K.; Li, S.Z.; Hui, X.M.; Liu, Y.; Tong, Q.L. New design of RF rectifier for passive
UHF RFID transponders. Microelectron. J. 2010, 41, 51–55.

55. Ghovanloo, M.; Atluri, S. An integrated full-wave CMOS rectifier with built-in back telemetry for RFID and
implantable biomedical applications. IEEE Trans. Circuits Syst. I 2008, 55, 3328–3334. [CrossRef]

56. Xu, H.; Ortmanns, M. A temperature and process compensated ultralow-voltage rectifier in standard
threshold cmos for energy-harvesting applications. IEEE Trans. Circuits Syst. II 2011, 58, 812–816. [CrossRef]

57. Galup-Montoro, C.; Schneider, M.C.; Machado, M.B. Ultra-low-voltage operation of CMOS analog circuits:
amplifiers, oscillators, and rectifiers. IEEE Trans. Circuits Syst. II 2012, 59, 932–936. [CrossRef]

58. Theilmann, P.T.; Presti, C.D.; Kelly, D.J.; Asbeck, P.M. AµW complementary bridge rectifier with near zero
turn-on voltage in SOS CMOS for wireless power supplies. IEEE Trans. Circuits Syst. I 2012, 59, 2111–2124.
[CrossRef]

59. Hwang, Y.S.; Hwang, B.H.; Lin, H.C.; Chen, J.J. PLL-based contactless energy transfer analog FSK demodulator
using high-efficiency rectifier. IEEE Trans. Ind. Electron. 2011, 60, 280–290. [CrossRef]

60. Nguyen, T.T.; Feng, T.; Häfliger, P.; Chakrabartty, S. Hybrid CMOS rectifier based on synergistic
RF-piezoelectric energy scavenging. IEEE Trans. Circuits Syst. I 2014, 61, 3330–3338. [CrossRef]

61. Chouhan, S.S.; Halonen, K. Threshold voltage compensation scheme for RF-to-DC converter used in RFID
applications. Electron. Lett. 2015, 51, 892–894. [CrossRef]

62. Tran, L.G.; Cha, H.K.; Park, W.T. RF power harvesting: A review on designing methodologies and applications.
Micro Nano Syst. Lett. 2017, 5, 14. [CrossRef]

63. Wei, P.; Che, W.; Bi, Z.; Wei, C.; Na, Y.; Qiang, L.; Hao, M. High-efficiency differential RF front-end for a Gen2
RFID tag. IEEE Trans. Circuits Syst. II 2011, 58, 189–194. [CrossRef]

64. Bakhtiar, A.S.; Jalali, M.S.; Mirabbasi, S. A High-Efficiency CMOS Rectifier for Low-Power RFID Tags.
In Proceedings of the 2010 IEEE International Conference on RFID (IEEE RFID 2010), Orlando, FL, USA,
14–16 April 2010; pp. 83–88.

65. Ye, S.; Fan, J. A High Efficiency CMOS Rectifier Circuit for 900MHz Passive RFID Tags. In Proceedings
of the 2010 Second Pacific-Asia Conference on Circuits, Communications and System, Beijing, China,
1–2 August 2010; pp. 450–452.

66. Ouda, M.H.; Khalil, W.; Salama, K.N. Wide-range adaptive RF-to-DC power converter for UHF RFIDs.
IEEE Microw. Wirel. Compon. Lett. 2016, 26, 634–636. [CrossRef]

67. Raben, H.; Borg, J.; Johansson, J. A model for MOS diodes with Vth cancellation in RFID rectifiers. IEEE Trans.
Circuits Syst. II 2012, 59, 761–765. [CrossRef]

68. Hwang, Y.S.; Lei, C.C.; Yang, Y.W.; Chen, J.J.; Yu, C.C. A 13.56-MHz low-voltage and low-control-loss
RF-DC rectifier utilizing a reducing reverse loss technique. IEEE Trans. Power Electron. 2014, 29, 6544–6554.
[CrossRef]

69. Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D’Amico, S. High-sensitivity CMOS RF-DC converter in
HF RFID Band. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 732–734. [CrossRef]

70. Yuan, J.S.; Bi, Y. Process and temperature robust voltage multiplier design for RF energy harvesting.
Microelectron. Reliab. 2015, 55, 107–113. [CrossRef]

71. Chouhan, S.S.; Nurmi, M.; Halonen, K. Efficiency enhanced voltage multiplier circuit for RF energy harvesting.
Microelectron. J. 2016, 48, 95–102. [CrossRef]

72. Kim, S.; Mariotti, C.; Alimenti, F.; Mezzanotte, P.; Georgiadis, A.; Collado, A.; Roselli, L.; Tentzeris, M.M.
No battery required: Perpetual RFID-enabled wireless sensors for cognitive intelligence applications.
IEEE Microw. Mag. 2013, 14, 66–77. [CrossRef]

73. Son, H.W. Design of RFID tag antenna for metallic surfaces using lossy substrate. Electron. Lett. 2008, 44,
711–713. [CrossRef]

74. Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for printing sensors and electronics over large flexible
substrates: a review. IEEE Sens. J. 2014, 15, 3164–3185. [CrossRef]

http://dx.doi.org/10.1109/TAP.2018.2860619
http://dx.doi.org/10.1109/TMTT.2005.854229
http://dx.doi.org/10.1109/TCSI.2006.887974
http://dx.doi.org/10.1109/TCSI.2008.924877
http://dx.doi.org/10.1109/TCSII.2011.2173976
http://dx.doi.org/10.1109/TCSII.2012.2231042
http://dx.doi.org/10.1109/TCSI.2012.2185293
http://dx.doi.org/10.1109/TIE.2011.2181135
http://dx.doi.org/10.1109/TCSI.2014.2334972
http://dx.doi.org/10.1049/el.2015.0445
http://dx.doi.org/10.1186/s40486-017-0051-0
http://dx.doi.org/10.1109/TCSII.2011.2124530
http://dx.doi.org/10.1109/LMWC.2016.2586077
http://dx.doi.org/10.1109/TCSII.2012.2220691
http://dx.doi.org/10.1109/TPEL.2014.2304517
http://dx.doi.org/10.1109/LMWC.2016.2597212
http://dx.doi.org/10.1016/j.microrel.2014.09.024
http://dx.doi.org/10.1016/j.mejo.2015.11.012
http://dx.doi.org/10.1109/MMM.2013.2259398
http://dx.doi.org/10.1049/el:20081141
http://dx.doi.org/10.1109/JSEN.2014.2375203


Sensors 2019, 19, 4012 21 of 23

75. Salmerón, J.F.; Molina-Lopez, F.; Rivadeneyra, A.; Quintero, A.V.; Capitán-Vallvey, L.F.; de Rooij, N.F.;
Ozáez, J.B.; Briand, D.; Palma, A.J. Design and development of sensing RFID Tags on flexible foil compatible
with EPC Gen 2. IEEE Sens. J. 2014, 14, 4361–4371. [CrossRef]

76. Kim, S.; Kawahara, Y.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Low-cost inkjet-printed fully passive RFID
tags for calibration-free capacitive/haptic sensor applications. IEEE Sens. J. 2014, 15, 3135–3145. [CrossRef]

77. Sharif, A.; Ouyang, J.; Yang, F.; Chattha, H.T.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. Low-cost inkjet-printed
UHF RFID tag-based system for internet of things applications using characteristic modes. IEEE Internet
Things 2019, 6, 3962–3975. [CrossRef]

78. Borgese, M.; Dicandia, F.A.; Costa, F.; Genovesi, S.; Manara, G. An inkjet printed chipless RFID sensor for
wireless humidity monitoring. IEEE Sens. J. 2017, 17, 4699–4707. [CrossRef]

79. Salmerón, J.F.; Rivadeneyra, A.; Agudo-Acemel, M.; Capitán-Vallvey, L.F.; Banqueri, J.; Carvajal, M.A.;
Palma, A.J. Printed single-chip UHF passive radio frequency identification tags with sensing capability.
Sensor. Actuat. A-Phys. 2014, 220, 281–289. [CrossRef]

80. Kallmayer, C.; Pisarek, R.; Neudeck, A.; Cichos, S.; Gimpel, S.; Aschenbrenner, R.; Reichl, H. New Assembly
Technologies for Textile Transponder Systems. In Proceedings of the Electronic Components and Technology
Conference, New Orleans, LA, USA, 27–30 May 2003; pp. 1123–1126.

81. Vieroth, R.; Kallmayer, C.; Aschenbrenner, R.; Reichl, H. A New Package for Textile Integrated RFID Tags.
In Proceedings of the 2009 11th Electronics Packaging Technology Conference, Singapore, 9–11 December
2009; pp. 240–243.

82. Alonso-Gonzalez, L.; Ver-Hoeye, S.; Vazquez-Antuna, C.; Fernández-García, M.; Las-Heras Andrés, F.
Multifunctional fully textile-integrated RFID tag to revolutionize the internet of things in clothing [wireless
corner]. IEEE Antennas Propag. Mag. 2019, 61, 104–110. [CrossRef]

83. Alonso-González, L.; Ver-Hoeye, S.; Fernández-García, M.; Andrés, F.L.H. Broadband flexible fully
textile-integrated bandstop frequency selective surface. IEEE Trans. Antennas Propag. 2018, 66, 5291–5299.
[CrossRef]

84. Alonso-González, L.; Ver-Hoeye, S.; Fernández-García, M.; Álvarez-López, Y.; Vázquez-Antuña, C.;
Andrés, F.L.H. Fully textile-integrated microstrip-fed slot antenna for dedicated short-range communications.
IEEE Trans. Antennas Propag. 2018, 66, 2262–2270. [CrossRef]

85. Alonso-González, L.; Ver-Hoeye, S.; Vázquez-Antuña, C.; Fernández-García, M.; Andrés, F.L.H. On the
techniques to develop millimeter-wave textile integrated waveguides using rigid warp threads. IEEE Trans.
Microw. Theory 2017, 66, 751–761. [CrossRef]

86. Download datasheet for CSA-1VG. Available online: https://www.melexis.com/en/documents/
documentation/datasheets/datasheet-csa-1vg (accessed on 15 July 2019).

87. SL13A Smart Sensory Tag Chip for Unique Identification, Monitoring and Data Logging. Available online:
http://www.mouser.com/ds/2/588/AMS_SL13A_Datasheet_EN_v4-371531.pdf (accessed on 15 July 2019).

88. RF430FRL15xH NFC ISO 15693 Sensor Transponder. Available online: http://www.ti.com/lit/ds/symlink/

rf430frl152h.pdf (accessed on 15 July 2019).
89. RFM3300-D Magnus®-S3 M3D Passive Sensor, IC. Available online: https://axzon.com/rfm3300-d-magnus-

s3-m3d-passive-sensor-ic/ (accessed on 15 July 2019).
90. EPC C1G2 Batteryless Load Sensor. Available online: http://www.farsens.com/wp-content/uploads/2018/06/

DS-EVAL01-ZYGOS-RM-V04.pdf (accessed on 15 July 2019).
91. Battery Free Wireless Sensor. Available online: http://www.ebvnews.ru/doc16/SPS1M002-D.pdf (accessed on

15 July 2019).
92. Passive NFC Temperature Patch Reference Design. Available online: http://www.ti.com.cn/cn/lit/ug/tidubt8/

tidubt8.pdf (accessed on 15 July 2019).
93. Battery-Less Near Field Communication (NFC) Keyboard. Available online: http://www.ti.com.cn/cn/lit/ug/

tidu398/tidu398.pdf (accessed on 15 July 2019).
94. Wickramasinghe, A.; Ranasinghe, D.C. Ambulatory monitoring using passive computational RFID sensors.

IEEE Sens. J. 2015, 15, 5859–5869. [CrossRef]
95. Moradi, E.; Sydänheimo, L.; Bova, G.S.; Ukkonen, L. Measurement of wireless power transfer to deep-tissue

RFID-based implants using wireless repeater node. IEEE Antennas Wirel. Propag. 2017, 16, 2171–2174.
[CrossRef]

http://dx.doi.org/10.1109/JSEN.2014.2335417
http://dx.doi.org/10.1109/JSEN.2014.2366915
http://dx.doi.org/10.1109/JIOT.2019.2893677
http://dx.doi.org/10.1109/JSEN.2017.2712190
http://dx.doi.org/10.1016/j.sna.2014.10.023
http://dx.doi.org/10.1109/MAP.2019.2907910
http://dx.doi.org/10.1109/TAP.2018.2858141
http://dx.doi.org/10.1109/TAP.2018.2814203
http://dx.doi.org/10.1109/TMTT.2017.2777983
https://www.melexis.com/en/documents/documentation/datasheets/datasheet-csa-1vg
https://www.melexis.com/en/documents/documentation/datasheets/datasheet-csa-1vg
http://www.mouser.com/ds/2/588/AMS_SL13A_Datasheet_EN_v4-371531.pdf
http://www.ti.com/lit/ds/symlink/rf430frl152h.pdf
http://www.ti.com/lit/ds/symlink/rf430frl152h.pdf
https://axzon.com/rfm3300-d-magnus-s3-m3d-passive-sensor-ic/
https://axzon.com/rfm3300-d-magnus-s3-m3d-passive-sensor-ic/
http://www.farsens.com/wp-content/uploads/2018/06/DS-EVAL01-ZYGOS-RM-V04.pdf
http://www.farsens.com/wp-content/uploads/2018/06/DS-EVAL01-ZYGOS-RM-V04.pdf
http://www.ebvnews.ru/doc16/SPS1M002-D.pdf
http://www.ti.com.cn/cn/lit/ug/tidubt8/tidubt8.pdf
http://www.ti.com.cn/cn/lit/ug/tidubt8/tidubt8.pdf
http://www.ti.com.cn/cn/lit/ug/tidu398/tidu398.pdf
http://www.ti.com.cn/cn/lit/ug/tidu398/tidu398.pdf
http://dx.doi.org/10.1109/JSEN.2015.2449862
http://dx.doi.org/10.1109/LAWP.2017.2702757


Sensors 2019, 19, 4012 22 of 23

96. Baek, J.J.; Kim, S.W.; Park, K.H.; Jeong, M.J.; Kim, Y.T. Design and performance evaluation of 13.56-MHz
passive RFID for e-skin sensor application. IEEE Microw. Wirel. Compon. 2018, 28, 1074–1076. [CrossRef]

97. Smits, E.; Schram, J.; Nagelkerke, M.; Kusters, R.H.L.; Heck, G.V.; Acht, V.V.; Koetse, M.M.; Brand, J.V.D.;
Gelinck, G.H.; Schoo, H.F.M. Development of Printed RFID Sensor Tags for Smart Food Packaging.
In Proceedings of the 14th International Meeting on Chemical Sensors, Nuremberg, Germany, 20–23 May
2012; pp. 20–23.

98. Eom, K.H.; Hyun, K.H.; Lin, S.; Kim, J.W. The meat freshness monitoring system using the smart RFID tag.
Int. J. Distrib. Sens. Netw. 2014, 10, 591812. [CrossRef]

99. Pichorim, S.; Gomes, N.; Batchelor, J. Two solutions of soil moisture sensing with RFID for landslide
monitoring. Sensors 2018, 18, 452. [CrossRef]

100. Manzari, S.; Catini, A.; Pomarico, G.; Natale, C.D.; Marrocco, G. Development of an UHF RFID chemical
sensor array for battery-less ambient sensing. IEEE Sens. J. 2014, 14, 3616–3623. [CrossRef]

101. Petrov, D.; Schmidt, M.; Hilleringmann, U.; Hedayat, C.; Otto, T. RFID Based Sensor Platform for Industry 4.0
Application. In Proceedings of the Smart Systems Integration, 13th International Conference and Exhibition
on Integration Issues of Miniaturized Systems, Barcelona, Spain, 10–11 April 2019; pp. 1–4.

102. Lorite, G.S.; Selkälä, T.; Sipola, T.; Palenzuela, J.; Jubete, E.; Viñuales, A.; Cabañero, G.; Grande, H.J.;
Tuominen, J.; Uusitalo, S.; et al. Novel, smart and RFID assisted critical temperature indicator for supply
chain monitoring. J. Food Eng. 2017, 193, 20–28. [CrossRef]

103. DiGiampaolo, E.; DiCarlofelice, A.; Gregori, A. An RFID-enabled wireless strain gauge sensor for static and
dynamic structural monitoring. IEEE Sens. J. 2016, 17, 286–294. [CrossRef]

104. Marindra, A.M.J.; Tian, G.Y. Chipless RFID sensor tag for metal crack detection and characterization.
IEEE Trans. Microw. Theory 2018, 66, 2452–2462. [CrossRef]

105. Caizzone, S.; DiGiampaolo, E. Wireless passive RFID crack width sensor for structural health monitoring.
IEEE Sens. J. 2015, 15, 6767–6774. [CrossRef]

106. Leon-Salas, W.D.; Halmen, C. A RFID sensor for corrosion monitoring in concrete. IEEE Sens. J. 2015, 16,
32–42. [CrossRef]

107. Kollegger, C.; Greiner, P.; Steffan, C.; Wiessflecker, M.; Froehlich, H.; Kautzsch, T.; Holweg, G.; Deutschmann, B.
A System-on-Chip NFC Bicycle Tire Pressure Measurement System. In Proceedings of the 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017;
pp. 60–63.

108. Huo, Y.; Lu, Y.; Cheng, W.; Jing, T. Vehicle Road Distance Measurement and Maintenance in RFID Systems
on Roads. In Proceedings of the 2014 International Conference on Connected Vehicles and Expo (ICCVE),
Vienna, Austria, 3–7 November 2014; pp. 30–36.

109. Wang, T.; He, Y.; Luo, Q.; Deng, F.; Zhang, C. Self-powered RFID sensor tag for fault diagnosis and prognosis
of transformer winding. IEEE Sens. J. 2017, 17, 6418–6430. [CrossRef]

110. Kuhn, M.F.; Breier, G.P.; Clarke, T.G.R. Passive Wireless Sensor for Displacement Monitoring in Metal
Structures. IEEE Lat. Am. Trans. 2018, 16, 1353–1357. [CrossRef]

111. Escobedo, P.; Erenas, M.M.; Lopez-Ruiz, N.; Carvajal, M.A.; Gonzalez-Chocano, S.; de Orbe-Payá, I.;
Capitán-Valley, L.F.; Palma, A.J.; Martínez-Olmos, A. Flexible passive near field communication tag for
multigas sensing. Anal. Chem. 2017, 89, 1697–1703. [CrossRef]

112. RFID Test Tire Pressure. Available online: http://www.chinatiredealer.com/news/show-5089.html (accessed
on 15 July 2019).

113. Monza 4 Tag Chip Datasheet. Available online: https://support.impinj.com/hc/en-us/articles/202756908-
Monza-4-RFID-Tag-Chip-Datasheet (accessed on 15 July 2019).

114. SL900A EPC Class 3 Sensory Tag Chip–for Automatic Data Logging. Available online: https://ams.com/

documents/20143/36005/SL900A_DS000294_5-00.pdf/d399f354-b0b6-146f-6e98-b124826bd737 (accessed on
15 July 2019).

115. Rocky100 datasheet. Available online: http://www.farsens.com/wp-content/uploads/2017/12/DS-ROCKY100-
V04.pdf (accessed on 15 July 2019).

116. Kopyt, P.; Salski, B.; Olszewska-Placha, M.; Janczak, D.; Sloma, M.; Kurkus, T.; Jakubowska, M.; Gwarek, W.
Graphene-based dipole antenna for a UHF RFID tag. IEEE Trans. Antennas Propag. 2016, 64, 2862–2868.
[CrossRef]

http://dx.doi.org/10.1109/LMWC.2018.2876764
http://dx.doi.org/10.1155/2014/591812
http://dx.doi.org/10.3390/s18020452
http://dx.doi.org/10.1109/JSEN.2014.2329268
http://dx.doi.org/10.1016/j.jfoodeng.2016.06.016
http://dx.doi.org/10.1109/JSEN.2016.2631259
http://dx.doi.org/10.1109/TMTT.2017.2786696
http://dx.doi.org/10.1109/JSEN.2015.2457455
http://dx.doi.org/10.1109/JSEN.2015.2476997
http://dx.doi.org/10.1109/JSEN.2017.2738028
http://dx.doi.org/10.1109/TLA.2018.8408427
http://dx.doi.org/10.1021/acs.analchem.6b03901
http://www.chinatiredealer.com/news/show-5089.html
https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-RFID-Tag-Chip-Datasheet
https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-RFID-Tag-Chip-Datasheet
https://ams.com/documents/20143/36005/SL900A_DS000294_5-00.pdf/d399f354-b0b6-146f-6e98-b124826bd737
https://ams.com/documents/20143/36005/SL900A_DS000294_5-00.pdf/d399f354-b0b6-146f-6e98-b124826bd737
http://www.farsens.com/wp-content/uploads/2017/12/DS-ROCKY100-V04.pdf
http://www.farsens.com/wp-content/uploads/2017/12/DS-ROCKY100-V04.pdf
http://dx.doi.org/10.1109/TAP.2016.2565696


Sensors 2019, 19, 4012 23 of 23

117. Leng, T.; Huang, X.; Chang, K.H.; Chen, J.C.; Abdalla, M.A.; Hu, Z. Graphene nanoflakes printed flexible
meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications. IEEE Antennas
Wirel. Propag. 2016, 15, 1565–1568. [CrossRef]

118. Occhiuzzi, C.; Rida, A.; Marrocco, G.; Tentzeris, M. RFID passive gas sensor integrating carbon nanotubes.
IEEE Trans. Microw. Theory 2011, 59, 2674–2684. [CrossRef]

119. Mitrokotsa, A.; Douligeris, C. Integrated RFID and sensor networks: Architectures and applications.
RFID Sens. Netw. 2009, 512, 511–535.

120. Yang, H.; Yang, S.H. RFID sensor network architectures to integrate RFID, sensor and WSN. Meas. Control
2007, 40, 56–59. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LAWP.2016.2518746
http://dx.doi.org/10.1109/TMTT.2011.2163416
http://dx.doi.org/10.1177/002029400704000208
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Fundamentals of RF Energy Harvesting and RFID Sensor Techniques 
	HF Inductive Coupling and HF RFID Sensor Techniques 
	UHF Backscattering and UHF Sensor Techniques 
	Interrogator-to-Tag RF Power Transfer 
	UHF RFID Power Reflection 

	Chip-less RFID Sensors 

	RFID Sensor Techniques—Technical Progresses and Innovative Applications 
	Technical Progress of RFID Integrated Sensing 
	Novel Antenna Designs: The Front End of RFID Sensing Techniques 
	RF-to-DC Conversion and Power Management 
	Printable and Flexible RFID Techniques for Sensor Fabrication 

	Commercial Solutions 
	Promising RFID ICs for Sensor Development 
	Commercial RFID Sensor Applications 

	Innovative Applications 

	Technical Challenges 
	Efficiency of RF Frontend Energy Harvesting and Power Conversion 
	Heterogeneity in the Enabling Techniques 
	Reliability 

	Future Prospectives 
	Research Focuses 
	Integration with New Materials and New Processes 
	Relay Resonator for Extending RFID Reading Distance 
	RFID Sensor Based Wireless Sensor Network (WSN) 
	RFID Sensor Based IoT Applications 

	Promising IoT Applications 
	Product Lifecycle Management (PLM) in Manufacturing Industry 
	Continuous Monitoring of Human Physical Characteristics 
	RFID Sensors in Smart Logistics 
	RFID Sensors in Smart Agriculture 


	Summary 
	References

