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Abstract 

In contrast to conventional cognitive training paradigms, where learning effects are specific to trained parameters, 
playing action video games has been shown to produce broad enhancements in many cognitive functions. These 
remarkable generalizations challenge the conventional theory of generalization that learned knowledge can be 
immediately applied to novel situations (i.e., immediate generalization). Instead, a new “learning to learn” theory 
has recently been proposed, suggesting that these broad generalizations are attained because action video game 
players (AVGPs) can quickly acquire the statistical regularities of novel tasks in order to increase the learning rate 
and ultimately achieve better performance. Although enhanced learning rate has been found for several tasks, it 
remains unclear whether AVGPs efficiently learn task statistics and use learned task knowledge to guide learning. 
To address this question, we tested 34 AVGPs and 36 non-video game players (NVGPs) on a cue-response associa-
tive learning task. Importantly, unlike conventional cognitive tasks with fixed task statistics, in this task, cue-response 
associations either remain stable or change rapidly (i.e., are volatile) in different blocks. To complete the task, partici-
pants should not only learn the lower-level cue-response associations through explicit feedback but also actively 
estimate the high-level task statistics (i.e., volatility) to dynamically guide lower-level learning. Such a dual learning 
system is modelled using a hierarchical Bayesian learning framework, and we found that AVGPs indeed quickly 
extract the volatility information and use the estimated higher volatility to accelerate learning of the cue-response 
associations. These results provide strong evidence for the “learning to learn” theory of generalization in AVGPs. Taken 
together, our work highlights enhanced hierarchical learning of both task statistics and cognitive abilities as a mecha-
nism underlying the broad enhancements associated with action video game play.
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Introduction
Humans possess impressive and adaptable learning 
abilities, as evidenced by the rapid learning of diverse 
cognitive tasks and the flexible application of learned 
knowledge to unfamiliar scenarios. Optimizing learn-
ing and facilitating generalization has been a funda-
mental challenge in cognitive science. Traditional 
cognitive training often exhibits specificity to the train-
ing settings (tasks or parameters)–-the improvement in 
learning are greatly reduced in previously unseen situ-
ations [1, 2]. If the benefits of cognitive training cannot 
efficiently generalize across different application situa-
tions, its real-world applicability is significantly dimin-
ished. Action video game training has been shown a 
unique training regime that can overcome such limita-
tions. A large body of cognitive science research have 
shown that playing action video games can directly 
enhance a wide range of seemingly unrelated cognitive 
functions, such as attention [2, 3], memory [4–6], per-
ception [2, 7, 8], and reasoning [9]. Importantly, players 
are not directly trained on these specific cognitive tasks 
when playing action video games. Because of these 
astonishingly broad generalizations, action video games 
have also been suggested as a useful paradigm for cog-
nitive training [2] and even for therapeutic purposes 
[10]. As generalization is the key for observers to learn 
infinite knowledge based on finite learning samples, it 
is of paramount importance to understand the neuro-
computational mechanisms of broad generalization 
induced by action video game play.

Why can action video game play lead to broad gen-
eralization in stark contrast to conventional training 
approaches? Classic theories of learning generalization 
postulate that an observer generalizes learned knowl-
edge to novel cases by inferring the common constructs 
between training and application situations [11–13]. This 
view assumes that, once common constructs are identi-
fied, improvement on novel tasks is immediately achiev-
able. This classic view is often referred to as “immediate 
generalization” [14, 15]. More recently, a new mechanism 
of generalization has been proposed, which suggests that 
action video game play induces broad generalizations by 
enabling observers to “learning to learn” [10]. In contrast 
to the “immediate generalization” theory, the “learning to 
learn” theory predicts that avid action video game players 
(AVGPs) can quickly capture the underlying structural 
knowledge of new tasks and thus accelerate learning. 
Faster learning (i.e., taking less time to achieve good per-
formance) on new tasks, as a hallmark of “learning to 
learn”, has been found in several recent studies of action 
video games [16] and classical perceptual learning [7–9].

Although “learning to learn” is an elegant theory that 
can potentially explain the remarkable generalization 

afforded by action video game play, two issues remain 
unresolved. First, in addition to predicting faster learn-
ing of novel tasks, the “learning to learn” theory has two 
other key predictions — (1) action video game play-
ers (AVGPs) can estimate and understand task statistics 
more quickly and accurately, and (2) the learned task sta-
tistics can in turn guide faster learning of a task. How-
ever, the enhanced ability of AVGPs to learn the statistical 
structure of tasks has not been directly investigated. 
Second, the “learning to learn” theory also implicitly 
assumes that, even in an apparently simple task, a hier-
archical dual learning system operates: a high-level sys-
tem for learning task statistics and a lower-level system 
for learning appropriate responses. Previous studies only 
assessed observers’ learning behavior as a result of the 
low-level learning system. It remains unclear whether a 
high-level learning system exists and how it supports the 
lower-level response learning. To address these two ques-
tions directly, two factors should be considered. First, 
to demonstrate the superior ability of AVGPs to extract 
task statistics, we need a task with systematic variation in 
stimulus statistical regularities and test whether AVGPs 
are indeed sensitive to such variation. Second, the “learn-
ing to learn” ability should be explicitly formulated. In 
other words, a computational framework is needed 
to explicitly specify how the correct decisions emerge 
according to the interactions within the dual-learning 
system in an online fashion.

In this study, we aim to directly test the “learning 
to learn” theory using a volatile reversal learning task 
[17, 18]. In this task, participants learn the associations 
between a visual cue and its corresponding response 
through trial-by-trial feedback. Importantly, such cue-
response associations either remain stable over several 
trials (i.e., stable block) or change rapidly on other tri-
als (i.e., volatile block, see Methods for details). This 
volatility variation allows us to assess participants’ abil-
ity to learn such task statistics, and, unlike classic learn-
ing tasks [19–21], such an associative learning task also 
allows us to explicitly estimate participants’ learning rate 
at both levels. Furthermore, we used the Hierarchical 
Gaussian Filter (HGF, [22]) to formulate the “learning to 
learn” process. In particular, unlike classical reinforce-
ment learning models that only formulate the learning of 
cue-response associations [23, 24], the HGF also specifies 
a high-level learning process of task statistics (i.e., asso-
ciation volatility). Importantly, changes in the lower-level 
cue-response associations lead to trial-by-trial updates 
in the high-level belief of association volatility, and the 
high-level estimates of association volatility in turn 
adjust the rate of the lower-level association learning. 
These bidirectional interactions between a hierarchical 
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dual-learning systems exactly corresponds to the “learn-
ing to learn” hypothesis.

Our results show that AVGPs display higher learning 
rates in the volatile reversal learning task, consistent with 
previous studies. Most importantly, this higher learning 
rate is a result of an efficient representation of the asso-
ciation volatility, as evidenced by a higher estimate of 
association volatility in the AVGPs. All these results are 
consistent with the “learning to learn” theory of action 
video game play.

Materials and methods
Ethics and participants
All experimental protocols were approved by the insti-
tutional review board of Shanghai Jiao Tong University. 
All research was conducted in accordance with relevant 
guidelines and regulations. Informed written consent was 
obtained from all participants.

We firstly administered the Chinese version of the 
Video-Game-Expertise Classification Scheme [25] to 
screen for action video game players (AVGPs) and non-
video game players (NVGPs). Both English and Chi-
nese versions of the video game questionnaire can be 
downloaded from https://​www.​unige.​ch/​fapse/​brain​
learn​ing/​vgq/. The basic inclusion criteria require par-
ticipants to have Chinese as a first or second language; 
normal or corrected-to-normal vision; no history of 
mental disorders; not taking significant psychiatric 
medications; and an age range of 18 to 40  years old. 
NVGPs need to meet the following criteria:(1) play 
first/third-person shooter, action/sports, real-time 
strategy/ Multiplayer Online Battle Arena (MOBA) 
games, or simulation games for no more than 1 h/week 
in the past year and the year before; (2) play any other 
type of games for no more than 3  h/week in the past 
year; (3) play any other type of games for no more than 
5  h/week a year ago. AVGPs need to meet any of the 
following criteria:(1) play other games for no more than 
3  h/week, but play action games for at least 5  h/week 
in the past year; (2) play action games for at least 3 h/
week in the past year, with other games not exceeding 
3 h/week, and play action games for at least 5 h/week 
a year ago; (3) play other games for no more than 3 h/
week in the past year, with at least 3 h/week for action 
games and at least 5 h/week for sports/driving games; 
(4) play other games for no more than 3 h/week in the 
past year, with at least 3 h/week for action games and 
at least 5 h/week for real-time strategy/MOBA games. 
There exist other inclusion criteria for both groups. 
More detailed screening criteria can be found in the 
questionnaire above.

Previous studies have documented several important 
ingredients of AVGs that enable generalization effect, 

including (i) decision-making under time constraints, 
(ii) maintaining divided attention, and (iii) the necessity 
for prompt transitions between two distinct attentional 
states (focused and divided) [1, 26, 27]. These factors 
have also been incorporated into a number of other 
game genres, including sports and driving games, as well 
as real-time strategy and MOBA games. We thus also 
include these genres in the screening of AVGPs.

Based on the filtering criteria, 34 AVGPs (24 males and 
10 females) and 36 NVGPs (12 males and 24 females) 
were recruited to participate in the formal experiment 
after obtaining their consents. All participants were right-
handed and had normal or corrected-to-normal vision. 
After excluding the subjects who exhibited extreme per-
formance (see data analysis below), data from 33 AVGPs 
(23 males and 10 females) and 34 NVGPs (12 males and 
22 females) were included for further analysis.

Stimulus and task
This experiment was hosted on the Naodao platform 
(https://​www.​naodao.​com/). Participants accessed the 
task remotely and completed it online. They received 
the corresponding participant compensation after the 
experiment.

Both AVGPs and NVGPs performed the same volatile 
reversal learning task (Fig.  1A). Each trial began with a 
500 ms fixation period. A cue stimulus (i.e., a yellow or 
a blue window) was presented. The cue stimulus disap-
peared after the participant made a keypress response to 
predict which outcome stimulus (i.e., a cat or a dog) was 
more likely to appear after the cue stimulus. After the 
keypress response, an outcome stimulus was presented 
for 1000  ms. The whole experiment consists of four 
blocks (80 trials per block) with a total of 320 trials. In 
each block, the association settings between the cue and 
outcome stimuli were changed (Fig. 1B).

Here, association is defined as the probability of a 
cue-response pair. For example, in the first 80 trials, the 
outcome stimulus cat (or dog) appeared after the cue 
stimulus yellow window with a probability of 0.75 (or 
0.25, respectively). Similarly, the association “blue win-
dow-dog” is 0.75. The association settings changed in 
each block (Fig. 1B). The key point here is that the asso-
ciation setting is stable (i.e., stable condition) in Block 
1 (i.e., trials 1–80) and Block 3 (i.e., trials 161–240) but 
switches rapidly between 0.8 and 0.2 (i.e., volatile condi-
tion) in Block 2 (i.e., trials 81–160) and Block 4 (i.e., trials 
241–320).

The stimulus materials for this task were created using 
Photoshop, and each stimulus material has a resolution 
of 1080 × 720. The presentation order of the stimuli was 
pseudorandomized and generated in MATLAB 2020a 

https://www.unige.ch/fapse/brainlearning/vgq/
https://www.unige.ch/fapse/brainlearning/vgq/
https://www.naodao.com/
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according to the number of trials in each experimen-
tal block and the four cue-response association prob-
abilities. The presentation order of the cues within the 
experimental block was fixed by a predetermined shuffled 
order. Thus, each participant received the same stimulus 
sequence, allowing for a comparable learning process and 
model parameter estimation. The experimental procedure 
was developed using jsPsych-6.3.0 (https://​www.​jspsy​ch.​
org/6.​3/). Participants were informed that these prob-
abilities would change, but were not given with specific 

information about the four blocks and the exact values of 
the probabilities.

Computational modeling
The HGF [22] model is used to analyze the participants’ 
behavior. We plotted and compared the trial-by-trial 
generated data from two groups of participants. At the 
same time, we used t-tests to compare the parameters 
of the two groups of participants.

Fig. 1  Task design and model. A Each trial started with a fixation cross in the center of the screen. After a delay of 500 ms, a stimulus was presented 
on the screen. Participants were instructed to predict the animal behind the window based on the current yellow or blue window and press 
the ‘F’ key for a cat or the ‘J’ key for a dog. Immediate feedback and outcome stimuli were provided after each response, lasting for 1000 ms 
before proceeding to the next trial. B The experiment was divided into four blocks based on the probability of cue-response association: stable 
(trials 1–80, p = 0.75)—volatile (trials 81–160, with a switching sequence of p values: 0.2–0.8–0.2–0.8)—stable (trials 161–240, p = 0.25)—volatile 
(trials 241–320 with a switching sequence of p values: 0.8–0.2–0.8–0.2). The yellow line parallel to the x-axis represents trials in the stable blocks, 
the green line represents trials in the volatile blocks. In the stable blocks. the association probability remained constant within 80 trials, while in the 
volatile blocks, the probability changed every 20 trials. C Generative process of the HGF. A represents action; R indicates the estimated association 
probability between the given window cue and the corresponding animal response; V  represents the estimated association volatility. t  denotes 
each time point. At depends on Rt−1 , Vt−1 , and parameters θ,κ2 , ω . The interconnection between levels is achieved through uncertainty

https://www.jspsych.org/6.3/
https://www.jspsych.org/6.3/
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Generative model
The HGF can be understood via two distinct compo-
nents: prediction and update. Briefly, this model formu-
lates the prediction and update process in a two-level 
hierarchy (Fig.  2). The prediction (i.e., generative) pro-
cess can be seen in Fig.  1C and the left part of Fig.  2. 
Specifically, the higher level of the model represents the 
estimated association volatility ( V  ) (i.e., how quickly the 
cue-response associations switch), which is updated by

where θ is a constant parameter which determines the 
variance of estimated association volatility (the high-
level, V  ). Estimated association volatility V  determines 
the magnitude for updating the lower-level cue-response 
association ( R , the estimated association probability 
between the given window cue and the corresponding 
behavioral choices in the logarithmic domain).

(1)P(Vt |Vt−1) = N (Vt;Vt−1, θ)

(2)P(Rt |Rt−1,Vt) = N (Rt;Rt−1, exp(κ2Vt + ω))

where κ2 is the top-down influence factor that determines 
the coupling strength between the association probability 
(the low-level, R ) and the estimated association volatil-
ity (the high-level, V  ); ω is a constant component of the 
association variance (κ2 ∗ Vt + ω) , independent of the 
state of the estimated association volatility (the high-
level, V  ). The behavioral action A is generated by the 
association probability ( R ), and µ (i.e., correct or incor-
rect) is the actual outcome the participant received.

where the function s(·) is the sigmoid function with κ1 
as the inverse temperature. To simplify our modeling, 
we fixed the coupling factor controlling the influence of 
association probability (the low-level, R ) on action (i.e., 
κ1 ) to 1.

This model has three free parameters :θ,κ2 , andω.

(3)P(At |Rt) = Bernouli(At; s(κ1 ∗ Rt))

(4)P(µt |At) = (µt)
At (1− µt)

1−At

Fig. 2  Overview of the HGF model. The probability at each level is determined by the previous level and parameters. Throughout the paper, we 
analyzed several key variables of this model. We color labeled the variables of interest and illustrate the figure number where the group differences 
in the variables are compared to facilitate reading
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Trial‑by‑trial update rule of model parameters
The detailed trial-by-trial update rule of model parameters 
in HGF has been documented in Mathys, et al. [22]. Fur-
thermore, this update process is illustrated in the right part 
of Fig. 2. Here we provide a short overview and an intro-
duction of the variables and free parameters.

On the t-th trial, the action ( At ) is determined by the 
actual outcome the subject received ( µt ), where µt ∈ {0,1} 
indicates the correct/incorrect feedback.

The update of estimated association probability ( Rt ) 
depends on the association learning rate ( αR

t  ) and the asso-
ciation prediction errors ( PER

t ).

Note that the association learning rate ( αR
t  ) varies trial-

by-trial and is determined by association expectation ( αR
t  ) 

and action expectation ( ̂αA
t  ). The superscript R denotes the 

variables as the ones operating at the low-level association 
learning.

The association expectation ( ̂αR
t  ) per se also varies trial-

by-trial and is determined by the learning rate of the last 
trial ( αR

t−1 ) and the upper-level estimated association vola-
tility ( Vt−1 ), where κ2 and ω are free parameters.

The action expectation ( ̂αA
t  ) per se also varies trial-by-

trial and is determined by the action of the last trial ( At−1).

the association prediction errors ( PER
t  ) is given by:

The update of the estimated volatility ( Vt ) depends on 
the volatility learning rate ( αV

t  ) and the volatility prediction 
errors ( PEV

t  ) The superscript V  denotes the variables as the 
ones operating at the high-level volatility learning.

where the volatility learning rate ( αV
t  ) consists of three 

components:

(5)At = µt

(6)�Rt = α
R
t ∗ PE

R
t

(7)α
R
t =

1
1

α̂
R
t

+ α̂
A
t

(8)α̂
R
t = α

R
t−1 + e(

κ2∗Vt−1+ω)

(9)α̂
A
t = At−1 ∗ (1− At−1)

(10)PE
R
t = At − sigmoid(Rt−1)

(11)�V t = α
V
t ∗ PE

V
t

(12)α
V
t = α

V
t ∗

κ2

2
∗ w

V
t

Here, αV
t  represents unweighted volatility learning rate 

of V  and varies trial-by-trial:

where θ is a free parameter. wV
t  denotes a precision 

weighting factor.

the volatility prediction errors ( PEV
t  ) is given by:

In summary, the estimated free parameters for each 
participant are κ2 , ω , and θ . The variables with subscript 
“t” change from trial to trial, and the three free param-
eters without subscript “t” are fixed values that hold for 
all trials.

The analysis was performed using the HGF toolbox in 
MATLAB (https://​trans​latio​nalne​uromo​deling.​github.​
io/​tapas). The tapas_fitModel function was used to 
iteratively fit the model 100 times for each participant, 
using the Maximum A Posteriori (MAP) method for 
parameter estimation. Configuration settings, facilitated 
by functions such as tapas_hgf_binary_con-
fig, tapas_unitsq_sgm_config,and tapas_
quasinewton_optim_config, were used to set prior 
ranges for the parameters. The ranges of priors for the 
parameters to be fitted are as follows: top-down fac-
tor log(κ2) ∼ N

(
log(1), 4

)
 ; association constant uncer-

tainty ω ∼ N (−3, 16) ; volatility constant uncertainty 
log(θ) ∼ N (−6, 16) . All other parameters involved in the 
code, including their ranges and initial values, follow the 
default settings in the toolbox. 

Statistical analysis
Linear mixed model analysis was performed in JASP 
0.18.1.0 (https://​jasp-​stats.​org/), and all multiple com-
parisons were corrected using the Holm correction in 
JASP. All t-tests were performed using the Pingouin pack-
age in Python and were all two-tailed. In this experiment, 
participants with an average association learning rate 
exceeding (or fall below) the mean plus (or minus) two 

(13)

α
V
t =

1

α
V
t−1 + θ

+
κ2

2

2
∗ w

V
t ∗ (w

V
t + r

V
t ∗ PE

V
t )

(14)w
V
t =

e(
κ2Vt−1+ω)

α
R
t−1 + e(κ2Vt−1+ω)

(15)r
V
t =

e(κ2Vt−1+ω) − α
R
t−1

α
R
t−1 + e(κ2Vt−1+ω)

(16)PE
V
t =

α
R
t + (Rt − Rt−1)

2

α
R
t−1 + e(κ2Vt−1+ω)

− 1

https://translationalneuromodeling.github.io/tapas
https://translationalneuromodeling.github.io/tapas
https://jasp-stats.org/
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standard deviations of the overall sample were excluded. 
A total of 4 participants met these criteria. 33 AVGPs and 
34 NVGPs were included in the reported results.

Results
Superior low‑level learning rate of cue‑response 
associations in AVGPs
Participants performed a volatile reversal learning task 
(Fig. 1A). On each trial, a fixation was shown for 500 ms 
and followed by a cue stimulus (i.e., a yellow window 
or a blue window). Participants were asked to predict 
the subsequent outcome stimulus (i.e., a cat or a dog) 
associated with the cue. Following a keypress response, 
an outcome stimulus was presented for 1000  ms as 
feedback. The two cue stimuli and the two outcome 
stimuli were paired. For example, within a stable block, 
the cat (or dog) appeared after the yellow window (or 
blue) window in 75% (or 25%, respectively) of the trials. 
Such cue-response associations varied across blocks. 
Importantly, the task statistic is defined as the chang-
ing rate of such cue-response associations (i.e., vola-
tility). In particular, in the two stable blocks (Block 1, 
trials 1–80; Block 3, trials 161–240), the cue-response 
association settings remained constant. In contrast, in 
the two volatile blocks (Block 2, trials 81–160; Block 4, 
trials 241–320), the cue-response associations switched 

between 0.8 and 0.2 every 20 trials. The key question 
here is whether participants can learn the stability and 
volatility of the associations and use this information 
to guide their learning. Followed by the conventional 
approach [17, 28], we directly fitted computational 
models (see below) to represent participants’ learning 
process in this task.

We first asked whether we could replicate the finding 
that AVGPs learn a novel task faster than NVGPs [7, 10, 
16, 29]. Unlike the conventional reinforcement learning 
approach that estimates a single learning rate parameter 
throughout the task [30, 31], HGF assumes that partici-
pants’ learning rate also varies from trial to trial based on 
updated beliefs about the task statistics (i.e., volatility). 
In this task, participants learned the cue-response asso-
ciations. The trial-by-trial association learning rate ( αR

t  , 
Eqs. 6–8) in both groups is plotted as a function of trials 
in Fig. 3A.

A linear mixed model (LMM) was built in JASP with 
Trial as a random effect factor, Group (AVGPs/NVGPs) 
as a fixed effect factor, Log Association Learning Rate 
( αR

t  , Eqs.7–9) in each trial as the dependent variable. We 
found that the effect of Group is significant, indicating 
the overall higher learning rate of the AVGPs than that 
of the NVGPs (t(21119) = 2.852, p = 0.004, Estimate = 0.055, 
SE = 0.019, CI = [0.017, 0.093]). In summary, Fig.  3A 

Fig. 3  Comparison of association learning rate between two groups. A The log association learning rate ( αR
t  , Eqs.7, 8, 9) required for updating 

the estimated association probability for each participant. The x-axis represents the trial sequence (t), and the y-axis illustrates participants’ log 
association learning rate ( αR

t  ). The red line represents AVGPs, and the blue line represents NVGPs. The shaded area represents S.E.M across all 
participants within each group (33 AVGPs, 34 NVGPs). Significance symbol conventions is **: p < 0.01. B Two groups’ association prediction errors 
( PERt  , Eqs. 6&10) across trials. The x-axis represents the trial sequence (t), the y-axis illustrates association prediction errors ( PERt  ). Significance symbol 
convention is n.s.: non-significant
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shows that the AVGPs indeed had a generally higher 
learning rate than the NVGPs, although the learning rate 
in both groups varied from trial to trial in both groups.

Because the trial-by-trial update of the association 
probability ( �Rt , Eq.  6) is determined by both associa-
tion learning rate ( αR

t  ) and association prediction errors 
( PER

t  , Eqs.  6&10), we also analyzed the association pre-
diction errors ( PER

t  ) in both groups and plotted them as a 
function of trials in Fig. 3B. A LMM was performed with 
the Association Prediction Errors ( PER

t  ) as the dependent 
variable; Group (AVGPs/NVGPs) as a fixed effect factor 
and Trial as a random effect factor. We found no sig-
nificant effect of Group (t(21119) = -0.036, p = 0.971, Esti-
mate = -0.001, SE = 0.002, CI = [-0.003, 0.003]), suggesting 
the superior learning in AVGPs is mostly due to the asso-
ciation learning rate rather than association prediction 
errors.

Higher low‑level learning rate in AVGPs is due to high‑level 
association volatility
We have confirmed the overall higher association learn-
ing rate in AVGPs. A higher association learning rate 
( αR

t  ) leads to a larger update ( �Rt ) of the estimated asso-
ciation probability. But how did AVGPs develop an over-
all higher association learning rate in the volatile reversal 
task? The key aspect of the HGF is that association learn-
ing rate is determined by association variance in the last 

trial ( κ2 ∗ Vt−1 + ω ), which is further controlled by high-
level volatility Vt−1 in the last trial (Eqs.  7–9). Here, we 
examine whether higher association variance leading to 
an increased association learning rate in the AVGPs.

A LMM was performed with Association variance 
( κ2 ∗ Vt + ω ) as the dependent variable; Group (AVGPs/
NVGPs) as a fixed effect factor and Trial as a random 
effect factor. We found that the effect of the Group was 
significant, indicating overall greater association vari-
ance of AVGPs compared to NVGPs (t(21119) = 2.516, 
p = 0.012, Estimate = 0.100, SE = 0.040, CI = [0.022, 0.179], 
Fig.  4A). For completeness, in addition to the associa-
tion variance ( κ2 ∗ Vt + ω ) and the association learning 
rate from the previous trial ( αR

t−1 ), we also compared 
action expectation ( ̂αA

t  , Eqs. 6&7) that contribute to the 
update of association learning rate (Eq. 7). We found no 
significant effect of Group (t(21119) = -0.071, p = 0.944, 
Estimate = -0.001, SE = 0.005, CI = [-0.010, 0.009]). This 
suggests that the higher association learning rate ( αR

t  ) 
observed in AVGPs is likely due to their overall higher 
association variance ( κ2 ∗ Vt + ω).

The association variance ( κ2 ∗ Vt + ω ) is determined 
by the linear addition of two components: a top-down 
component ( κ2 ∗ Vt ) and a constant component ( ω ). 
The top-down component indicates that a higher 
estimated association volatility ( Vt ) leads to a larger 
update of the association learning rate, where κ2 is the 

Fig. 4  Association variance and estimated association volatility in two groups. A Participants’ association variance ( κ2 ∗ Vt + ω ) across trials. The 
x-axis represents the trial sequence (t), and the y-axis illustrates participants’ association variance ( κ2 ∗ Vt + ω ). The red line represents AVGPs, 
and the blue line represents NVGPs. The shaded area represents S.E.M across all participants within each group (33 AVGPs, 34 NVGPs). Significance 
symbol conventions is *: p < 0.05. B Participants’ estimated log association volatility ( Vt ) across trials. The x-axis represents the trial sequence (t), 
and the y-axis illustrates participants’ estimated association volatility ( Vt ). The y-axis is plotted on a logarithmic scale. The red line represents AVGPs, 
and the blue line represents NVGPs. Significance symbol conventions is ***: p < 0.001
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top-down coupling factor. The constant step indicates 
the default magnitude of the update in the subject. 
Note that the top-down factor κ2 and the association 
constant step ω are considered as traits of each subject 
and are fixed across trials, while the high-level esti-
mated association volatility Vt varied across trials.

Next, we sought to understand which factor of asso-
ciation variance contributed most to the increased 
association learning rate. There were no significant dif-
ferences in both κ2 (t(58.569) = -0.236, p = 0.814, Cohen’s 
d = 0.058, CI = [-0.320, 0.250]) and ω (t(64.677) = -0.597, 
p = 0.552, Cohen’s d = 0.146, CI = [-1.740, 0.940]). A 
LMM was performed with Estimated Association 
Volatility ( Vt ) in each trial as the dependent variable, 
Group (AVGPs/NVGPs), Block Type (stable/volatile), 
and their interaction as the fixed effect factors, and 
Trial as a random effect factor. The “learning to learn” 
theory predicts that AVGPs should be more sensitive 
to task statistics (i.e., volatility). Indeed, we found that 
AVGPs estimated higher association volatility than 
NVGPs (t(21116) = 8.453, p < 0.001, Estimate = 0.073, 
SE = 0.009, CI = [0.056, 0.090]). Post-hoc pairwise com-
parisons revealed that AVGPs had significantly higher 
estimated association volatility ( Vt ) than NVGPs in 
the second stable block(stable block 2, t(211116) = 3.737, 
p < 0.001, Estimate = 0.016, SE = 0.004, CI = [0.008, 
0.025]) and two volatile blocks (volatile block 1, 
t(21116) = 2.378, p = 0.017, Estimate = 0.010, SE = 0.004, 
CI = [0.002, 0.019]; volatile block 2, (t(21116) = 11.1778, 
p < 0.001, Estimate = 0.048, SE = 0.004, CI = [0.040, 
0.057]) but not in the first stable block (stable block 1, 
t(21116) = -0.387, p = 0.698, Estimate = -0.002, SE = 0.004, 
CI = [-0.011, 0.007], Fig. 4B). This may be because the 
first block was a stable block. These results show that 
the AVGPs can detect relatively higher association 
volatility ( Vt ) as the task proceeds and then produce 
a greater trial-by-trial update of the association learn-
ing rate, resulting in faster learning of low-level asso-
ciations. This process is consistent with the “learning 
to learn” theory that AVGPs can quickly adapt to ever-
changing task environments.

Furthermore, we found that the estimated associa-
tion volatility Vt during the volatile blocks was signifi-
cantly higher than that during the stable blocks in both 
groups (t(316.125) = 19.862, p < 0.001, Estimate = 0.183, 
SE = 0.009, CI = [0.164, 0.201]). This result indicates 
that both groups can indeed recognize the different 
levels of volatility of the task. This is also consistent 
with the well-established theory in reinforcement 
learning that an agent should relatively increase learn-
ing rate in a volatile reward environment [32].

Superior high‑level learning rate of tasks statistics 
in AVGPs
The above results suggest that AVGPs subjectively expe-
rience a higher high-level association volatility ( Vt ) and 
use this information to increase the low-level association 
learning rate ( αR

t  ). Here, we further asked how AVGPs 
learn the task statistics and obtain the higher associa-
tion volatility. Again, we examined the volatility learning 
rate ( αV

t  , Eq. 12), which indicates how quickly the asso-
ciation volatility ( Vt ) evolves across trials. The volatility 
learning rate is plotted as a function of trials in Fig. 5A. 
A LMM was performed with Log Volatility Learning Rate 
as the dependent variable; Group (AVGPs/NVGPs) as a 
fixed effect factor and Trial as a random effect factor. We 
found that the volatility learning rate of AVGPs consist-
ently exceeded that of NVGPs’ (t(211119) = 3.995, p < 0.001, 
Estimate = 0.081, SE = 0.020, CI = [0.041, 0.120]).

It was mentioned earlier that an advantage of the HGF 
model over traditional reinforcement learning models is 
that the precision-weighted learning rates (including the 
association learning rate and the volatility learning rate) 
in HGF can vary from trial to trial, allowing more flexible 
adaptation of individual beliefs to volatilities. According 
to the HGF model (Eq. 12, αV

t = α
V
t ∗

κ2
2 ∗ w

V
t  ), the vol-

atility learning rate ( αV
t  ) is determined by three factors: 

the unweighted volatility learning rate αV
t (see Eq. 13), the 

top-down factor κ2 introduced above, and the precision 
weighting factor ( wV

t  , Eq. 14) of the volatility prediction 
errors ( PEV

t  Eq.  16). Note that αV
t  and wV

t  varied from 
trial to trial but κ2 is a fixed value in each subject.

The trial-by-trial unweighted volatility learning 
rate, precision weighting factor, and volatility predic-
tion errors are plotted as function of trials in Fig. 5B-D. 
Three LMMs were performed with Unweighted Volatil-
ity Learning Rate ( αV

t  ), Precision Weighting Factor ( wV
t  ), 

and Volatility Prediction Errors ( PEV
t  ) as the dependent 

variables; Group (AVGPs/NVGPs) as the fixed effect fac-
tor and Trial as a random effect factor. We found that 
AVGPs had an overall higher unweighted learning rate 
(t(21119) = 5.142, p < 0.001, Estimate = 0.219, SE = 0.043, 
CI = [0.136, 0.303]) and an overall higher precision 
weighting (t(21119) = 2.459, p = 0.014, Estimate = 0.048, 
SE = 0.020, CI = [0.010, 0.087]) than NVGPs. However, 
there was no group difference on the volatility predic-
tion errors (t(21119) = -0.767, p = 0.443, Estimate = -0.003, 
SE = 0.004, CI = [-0.010, 0.005]).

Taken together, we found that AVGPs can perceive 
higher association volatility because they can learn vol-
atility per se faster (i.e., higher volatility learning rate) 
rather than because of higher volatility prediction errors. 
This higher volatility learning rate is augmented by more 
optimal uncertainty processing (i.e., higher precision 
weighting factor).
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Discussion
The theory of “learning to learn” has recently been pro-
posed as a novel mechanism of learning generalization 
[10], in particular the broad cross-task generalizations 
found in avid AVGPs. In this study, we proposed that 
enhanced “learning to learn” in AVGPs is achieved by 
an improved hierarchical dual learning system that takes 
into account both low-level cue-response associations 
and high-level task statistics (i.e., volatility). 34 AVGPs 
and 36 NVGPs completed a volatile reversal learning task 
in which participants should learn both cue-response 
associations and the temporal volatility of these associa-
tions (i.e., task statistics). We used Hierarchical Gaussian 
Filter (HGF) to quantify both low-level association learn-
ing and high-level volatility learning in the two groups 
and made three main observations. First, consistent with 
“learning to learn” and previous results, we found that 
AVGPs indeed exhibit a higher low-level learning rate 
of cue-response associations. Second, the higher low-
level learning rate of associations is primarily driven by a 
higher high-level volatility on a trial-by-trial basis. Third, 
we further investigated the evolution of estimated volatil-
ity and found that the high-level learning rate of volatil-
ity per se is also higher in the AVGP group. These results 

strongly support the “learning to learn” theory of action 
video game play and show that AVGPs can quickly learn 
the intrinsic statistics of novel tasks and use the learned 
task knowledge to guide low-level learning of correct 
responses. Our work sheds new light on generalization in 
action video games and, more broadly, on cognitive train-
ing in general.

Two aspects of “learning to learn”
“Learning to learn” has two key components—enhanced 
learning rate and multi-level hierarchical learning.

Within the framework of “learning to learn”, enhanced 
learning rate in novel tasks is a new form of learning 
generalization. The classical theory of learning gener-
alization posits that observers immediately and directly 
generalize what they have learned by inferring the shared 
constructs of the trained and generalization task con-
texts. This classical view is often referred to as immediate 
generalization [14, 15]. However, immediate generaliza-
tion highly depends on the recognition of shared con-
structs between training and generalization. This means 
that learned experience may be limited to some specific 
task components. In contrast, the “learning to learn” the-
ory emphasizes the general ability to quickly acquire task 

Fig. 5  Volatility learning in two groups. A The log volatility learning rate ( αV
t  ) over all trials of the two groups. The x-axis represents the trial 

sequence, and the y-axis reflects the volatility learning rate. The red line represents the AVGPs, and the blue line represents the NVGPs. The shaded 
area represents S.E.M across all participants within each group (33 AVGPs, 34 NVGPs). Significance symbol conventions is ***: p < 0.001. B The 
unweighted volatility learning rate ( αV

t  ) of the two groups across trials. The y-axis is plotted on a logarithmic scale. C The precision weighting factor 
( wV

t  ) of the association prediction errors of the two groups across trials. Significance symbol conventions is *: p < 0.005. D the volatility prediction 
errors ( PEVt  ) of the two groups across trials. Significance symbol convention is n.s.: non-significant
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statistics and facilitate learning in real time [7, 10, 16]. 
Most importantly, this “learning to learn” ability should 
not be specific to a particular task component and thus 
has the potential to produce broad generalizations across 
different types of tasks. This new form of generalization 
has recently been discovered in sequential perceptual 
learning [33] and has also been proposed to underlie 
broad generalization associated with action video game 
play [10, 34]. Both cross-sectional and intervention stud-
ies have identified the increased learning rate, as a hall-
mark of “learning to learn”, associated with action video 
game play in perceptual [7, 16], cognitive [16], and motor 
learning tasks [35].

“Learning to learn” also proposes that high-level statis-
tical learning of task structure is the underlying mecha-
nism for increasing learning rate. Hierarchical learning 
allows individuals to flexibly adjust their learning rates in 
response to changing environments. The environments 
we face are often filled with different types of uncertainty 
[17, 36], such as uncertainty about how an reward is 
obtained and uncertainty about how tasks may evolve. A 
lack of flexibility in responding to environmental changes 
is likely to be associated with psychiatric disorders, such 
as social anxiety disorder and major depressive disor-
der [37, 38]. Traditional reinforcement learning often 
assumes that the learning rate is a fixed property of an 
agent [39]. This means that an agent has the same learn-
ing rate across throughout the task, which is obviously 
suboptimal and inflexible [40, 41]. A better approach is 
to adjust the learning rate according to task statistics. For 
example, if the task statistics (e.g., the probabilistic map-
ping between action and reward) change rapidly, an agent 
needs to increase the learning rate to adapt quickly to the 
changes. However, if this task statistics are stable, indi-
viduals should decrease the learning rate to avoid overfit-
ting to noise [36, 42, 43]. In other words, the hierarchical 
form of “learning to learn” allows an agent to flexibly 
adjust learning speed accordingly in different tasks.

The underlying mechanisms associated with enhanced 
“learning to learn” in AVGPs
We speculate that several unique characteristics of action 
video games may be the reasons.

First, the fast pace of action video games may lead to 
superior cognitive functions. Fast-paced games require 
players to switch quickly between different scenarios or 
tasks [10, 26]. Several studies have shown that AVGPs 
have greater task switching abilities [34, 44–46]. Given 
limited cognitive resources [47, 48], the reduced cogni-
tive cost of task switching allows AVGPs to allocate more 
cognitive resources to hierarchical learning, leading to 
better “learning to learn”. The fast pace of action video 
games also requires players to simultaneously track and 

store multiple rapid processes and predict future game 
events in real time. For example, in a first-person shoot-
ing game (i.e., Overwatch), a player must quickly deter-
mine where other players have previously attacked and 
predict their possible current and next locations. Train-
ing to track and store information is associated with 
improved working memory in AVGPs [49, 50]. Improved 
working memory allows players to retain task statistics 
during sequential tasks and respond more quickly and 
accurately.

Second, the complex spatial environments of action 
video games promote perceptual sensitivity. Action video 
games tend to contain highly complex and realistic spa-
tial environments, and this is associated with increased 
perceptual sensitivity to external sensory events [51]. 
Enhanced perceptual sensitivity allows AVGPs to quickly 
and accurately detect real-time fluctuations or changes in 
new tasks, thereby improving “learning to learn”.

However, this is a cross-sectional study, and we can-
not exclude the possibility that the people with enhanced 
“learning to learn’ are more attracted by action video 
games such that they are related. Researchers [52, 53] 
postulated that the capacity to make multilevel predic-
tions and to learn from uncertainties that emerge during 
gameplay will facilitate the expeditious and efficacious 
reduction of prediction errors in game scenarios. This 
will enable players to “feel good” and, as a result, select 
and persist with such games.

Neural mechanisms underlying enhanced “learning 
to learn”
What are the neural mechanisms underlying enhanced 
“learning to learn”? Previous studies have shown that 
hierarchical learning exist in the human brain. Existing 
studies have focused on the neural mechanisms associ-
ated with different levels of learning rates and predic-
tion errors (PEs). A study combining HGF modeling 
with electroencephalogram (EEG) found that beta power 
in the sensorimotor cortex is negatively correlated with 
volatility learning rate before action execution and posi-
tively correlated with association learning rate after 
action execution [54]. Another EEG study found that the 
P300 response in the frontal and central scalp regions is 
positively correlated with the absolute values of low-level 
PEs and negatively correlated with high-level PEs [43]. 
In other words, beta power in sensorimotor cortex and 
P300 responses in the frontal and central scalp may serve 
as neural markers of hierarchical learning. In this study, 
we found both increased volatile and association learn-
ing rate. Our results predict that enhanced “learning to 
learn” may produce a weaker and stronger beta wave in 
sensorimotor cortex before and after action execution. 
Interestingly, these predictions are consistent with two 
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recent EEG studies of AVGPs. In the two EEG studies, 
the researchers did not find the changes in beta wave 
power in the frontal lobes before and after movement but 
found that the variation of beta-wave power is greater 
before and after action execution in AVGPs [55]. In addi-
tion, beta wave power has been shown to increase signifi-
cantly during high-intensity action video game activities 
[56]. Our findings also predict a stronger P300 response 
in the frontal and central scalp regions associated with 
enhanced “learning to learn”. This prediction is consistent 
with a recent EEG study that identified a greater ampli-
tude of the task-evoked P300 component in AVGPs [57].

The studies combining HGF modeling with func-
tional magnetic resonance imaging (fMRI) have shown 
that low-level PEs are encoded in dopamine-related 
regions of the midbrain, including the ventral teg-
mental area (VTA) and substantia nigra (SN). These 
regions have been shown to regulate dopamine release 
[60–62]. In contrast, high-level PEs are encoded in the 
basal forebrain, which regulates acetylcholine release 
[58, 59]. These results predict stronger activities in the 
midbrain VTA and SN  (Fig.  6). These predictions are 
consistent with several recent fMRI studies of AVGPs. 
One fMRI study found stronger activation of reward-
related midbrain structures in AVGPs [63]. Another 
longitudinal fMRI study showed that action video 
games can increase functional connectivity within the 
basal ganglia [64]. Similarly, some fMRI studies have 
found elevated activity in the striatum, as part of the 
basal forebrain, of AVGPs [65, 66]. All of these studies 
suggest that enhanced “learning to learn” is likely to be 

associated with stronger activation or inhibition in the 
midbrain and basal forebrain.

Conclusion
In conclusion, this study employed a Hierarchical 
Gaussian Filter (HGF) model to test 34 AVGPs and 36 
NVGPs in a volatile reversal learning task. The results 
of the study demonstrate that AVGPs indeed rapidly 
extract volatility information and utilize the estimated 
higher volatility to accelerate learning of cue-response 
associations. These findings provide strong evidence 
for the “learning to learn” theory of generalization in 
AVGPs.
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